1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
29 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
31 #include "assembler.h"
33 #include "v8globals.h"
38 // Convenience for platform-independent signatures. We do not normally
39 // distinguish memory operands from other operands on ia32.
40 typedef Operand MemOperand;
42 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
43 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
46 enum RegisterValueType {
47 REGISTER_VALUE_IS_SMI,
48 REGISTER_VALUE_IS_INT32
52 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
55 // MacroAssembler implements a collection of frequently used macros.
56 class MacroAssembler: public Assembler {
58 // The isolate parameter can be NULL if the macro assembler should
59 // not use isolate-dependent functionality. In this case, it's the
60 // responsibility of the caller to never invoke such function on the
62 MacroAssembler(Isolate* isolate, void* buffer, int size);
64 // ---------------------------------------------------------------------------
66 enum RememberedSetFinalAction {
71 // Record in the remembered set the fact that we have a pointer to new space
72 // at the address pointed to by the addr register. Only works if addr is not
74 void RememberedSetHelper(Register object, // Used for debug code.
77 SaveFPRegsMode save_fp,
78 RememberedSetFinalAction and_then);
80 void CheckPageFlag(Register object,
85 Label::Distance condition_met_distance = Label::kFar);
87 void CheckPageFlagForMap(
92 Label::Distance condition_met_distance = Label::kFar);
94 void CheckMapDeprecated(Handle<Map> map,
96 Label* if_deprecated);
98 // Check if object is in new space. Jumps if the object is not in new space.
99 // The register scratch can be object itself, but scratch will be clobbered.
100 void JumpIfNotInNewSpace(Register object,
103 Label::Distance distance = Label::kFar) {
104 InNewSpace(object, scratch, zero, branch, distance);
107 // Check if object is in new space. Jumps if the object is in new space.
108 // The register scratch can be object itself, but it will be clobbered.
109 void JumpIfInNewSpace(Register object,
112 Label::Distance distance = Label::kFar) {
113 InNewSpace(object, scratch, not_zero, branch, distance);
116 // Check if an object has a given incremental marking color. Also uses ecx!
117 void HasColor(Register object,
121 Label::Distance has_color_distance,
125 void JumpIfBlack(Register object,
129 Label::Distance on_black_distance = Label::kFar);
131 // Checks the color of an object. If the object is already grey or black
132 // then we just fall through, since it is already live. If it is white and
133 // we can determine that it doesn't need to be scanned, then we just mark it
134 // black and fall through. For the rest we jump to the label so the
135 // incremental marker can fix its assumptions.
136 void EnsureNotWhite(Register object,
139 Label* object_is_white_and_not_data,
140 Label::Distance distance);
142 // Notify the garbage collector that we wrote a pointer into an object.
143 // |object| is the object being stored into, |value| is the object being
144 // stored. value and scratch registers are clobbered by the operation.
145 // The offset is the offset from the start of the object, not the offset from
146 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
147 void RecordWriteField(
152 SaveFPRegsMode save_fp,
153 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
154 SmiCheck smi_check = INLINE_SMI_CHECK);
156 // As above, but the offset has the tag presubtracted. For use with
157 // Operand(reg, off).
158 void RecordWriteContextSlot(
163 SaveFPRegsMode save_fp,
164 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
165 SmiCheck smi_check = INLINE_SMI_CHECK) {
166 RecordWriteField(context,
167 offset + kHeapObjectTag,
171 remembered_set_action,
175 // Notify the garbage collector that we wrote a pointer into a fixed array.
176 // |array| is the array being stored into, |value| is the
177 // object being stored. |index| is the array index represented as a
178 // Smi. All registers are clobbered by the operation RecordWriteArray
179 // filters out smis so it does not update the write barrier if the
181 void RecordWriteArray(
185 SaveFPRegsMode save_fp,
186 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187 SmiCheck smi_check = INLINE_SMI_CHECK);
189 // For page containing |object| mark region covering |address|
190 // dirty. |object| is the object being stored into, |value| is the
191 // object being stored. The address and value registers are clobbered by the
192 // operation. RecordWrite filters out smis so it does not update the
193 // write barrier if the value is a smi.
198 SaveFPRegsMode save_fp,
199 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
200 SmiCheck smi_check = INLINE_SMI_CHECK);
202 // For page containing |object| mark the region covering the object's map
203 // dirty. |object| is the object being stored into, |map| is the Map object
205 void RecordWriteForMap(
210 SaveFPRegsMode save_fp);
212 #ifdef ENABLE_DEBUGGER_SUPPORT
213 // ---------------------------------------------------------------------------
219 // Enter specific kind of exit frame. Expects the number of
220 // arguments in register eax and sets up the number of arguments in
221 // register edi and the pointer to the first argument in register
223 void EnterExitFrame(bool save_doubles);
225 void EnterApiExitFrame(int argc);
227 // Leave the current exit frame. Expects the return value in
228 // register eax:edx (untouched) and the pointer to the first
229 // argument in register esi.
230 void LeaveExitFrame(bool save_doubles);
232 // Leave the current exit frame. Expects the return value in
233 // register eax (untouched).
234 void LeaveApiExitFrame();
236 // Find the function context up the context chain.
237 void LoadContext(Register dst, int context_chain_length);
239 // Conditionally load the cached Array transitioned map of type
240 // transitioned_kind from the native context if the map in register
241 // map_in_out is the cached Array map in the native context of
243 void LoadTransitionedArrayMapConditional(
244 ElementsKind expected_kind,
245 ElementsKind transitioned_kind,
248 Label* no_map_match);
250 // Load the initial map for new Arrays from a JSFunction.
251 void LoadInitialArrayMap(Register function_in,
254 bool can_have_holes);
256 void LoadGlobalContext(Register global_context);
258 // Load the global function with the given index.
259 void LoadGlobalFunction(int index, Register function);
261 // Load the initial map from the global function. The registers
262 // function and map can be the same.
263 void LoadGlobalFunctionInitialMap(Register function, Register map);
265 // Push and pop the registers that can hold pointers.
266 void PushSafepointRegisters() { pushad(); }
267 void PopSafepointRegisters() { popad(); }
268 // Store the value in register/immediate src in the safepoint
269 // register stack slot for register dst.
270 void StoreToSafepointRegisterSlot(Register dst, Register src);
271 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
272 void LoadFromSafepointRegisterSlot(Register dst, Register src);
274 void LoadHeapObject(Register result, Handle<HeapObject> object);
275 void CmpHeapObject(Register reg, Handle<HeapObject> object);
276 void PushHeapObject(Handle<HeapObject> object);
278 void LoadObject(Register result, Handle<Object> object) {
279 AllowDeferredHandleDereference heap_object_check;
280 if (object->IsHeapObject()) {
281 LoadHeapObject(result, Handle<HeapObject>::cast(object));
283 Set(result, Immediate(object));
287 void CmpObject(Register reg, Handle<Object> object) {
288 AllowDeferredHandleDereference heap_object_check;
289 if (object->IsHeapObject()) {
290 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
292 cmp(reg, Immediate(object));
296 // ---------------------------------------------------------------------------
297 // JavaScript invokes
299 // Set up call kind marking in ecx. The method takes ecx as an
300 // explicit first parameter to make the code more readable at the
302 void SetCallKind(Register dst, CallKind kind);
304 // Invoke the JavaScript function code by either calling or jumping.
305 void InvokeCode(Register code,
306 const ParameterCount& expected,
307 const ParameterCount& actual,
309 const CallWrapper& call_wrapper,
310 CallKind call_kind) {
311 InvokeCode(Operand(code), expected, actual, flag, call_wrapper, call_kind);
314 void InvokeCode(const Operand& code,
315 const ParameterCount& expected,
316 const ParameterCount& actual,
318 const CallWrapper& call_wrapper,
321 void InvokeCode(Handle<Code> code,
322 const ParameterCount& expected,
323 const ParameterCount& actual,
324 RelocInfo::Mode rmode,
326 const CallWrapper& call_wrapper,
329 // Invoke the JavaScript function in the given register. Changes the
330 // current context to the context in the function before invoking.
331 void InvokeFunction(Register function,
332 const ParameterCount& actual,
334 const CallWrapper& call_wrapper,
337 void InvokeFunction(Handle<JSFunction> function,
338 const ParameterCount& expected,
339 const ParameterCount& actual,
341 const CallWrapper& call_wrapper,
344 // Invoke specified builtin JavaScript function. Adds an entry to
345 // the unresolved list if the name does not resolve.
346 void InvokeBuiltin(Builtins::JavaScript id,
348 const CallWrapper& call_wrapper = NullCallWrapper());
350 // Store the function for the given builtin in the target register.
351 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
353 // Store the code object for the given builtin in the target register.
354 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
356 // Expression support
357 void Set(Register dst, const Immediate& x);
358 void Set(const Operand& dst, const Immediate& x);
360 // Support for constant splitting.
361 bool IsUnsafeImmediate(const Immediate& x);
362 void SafeSet(Register dst, const Immediate& x);
363 void SafePush(const Immediate& x);
365 // Compare against a known root, e.g. undefined, null, true, ...
366 void CompareRoot(Register with, Heap::RootListIndex index);
367 void CompareRoot(const Operand& with, Heap::RootListIndex index);
369 // Compare object type for heap object.
370 // Incoming register is heap_object and outgoing register is map.
371 void CmpObjectType(Register heap_object, InstanceType type, Register map);
373 // Compare instance type for map.
374 void CmpInstanceType(Register map, InstanceType type);
376 // Check if a map for a JSObject indicates that the object has fast elements.
377 // Jump to the specified label if it does not.
378 void CheckFastElements(Register map,
380 Label::Distance distance = Label::kFar);
382 // Check if a map for a JSObject indicates that the object can have both smi
383 // and HeapObject elements. Jump to the specified label if it does not.
384 void CheckFastObjectElements(Register map,
386 Label::Distance distance = Label::kFar);
388 // Check if a map for a JSObject indicates that the object has fast smi only
389 // elements. Jump to the specified label if it does not.
390 void CheckFastSmiElements(Register map,
392 Label::Distance distance = Label::kFar);
394 // Check to see if maybe_number can be stored as a double in
395 // FastDoubleElements. If it can, store it at the index specified by key in
396 // the FastDoubleElements array elements, otherwise jump to fail.
397 void StoreNumberToDoubleElements(Register maybe_number,
401 XMMRegister scratch2,
403 bool specialize_for_processor,
406 // Compare an object's map with the specified map and its transitioned
407 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with
408 // result of map compare. If multiple map compares are required, the compare
409 // sequences branches to early_success.
410 void CompareMap(Register obj,
412 Label* early_success);
414 // Check if the map of an object is equal to a specified map and branch to
415 // label if not. Skip the smi check if not required (object is known to be a
416 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
417 // against maps that are ElementsKind transition maps of the specified map.
418 void CheckMap(Register obj,
421 SmiCheckType smi_check_type);
423 // Check if the map of an object is equal to a specified map and branch to a
424 // specified target if equal. Skip the smi check if not required (object is
425 // known to be a heap object)
426 void DispatchMap(Register obj,
429 Handle<Code> success,
430 SmiCheckType smi_check_type);
432 // Check if the object in register heap_object is a string. Afterwards the
433 // register map contains the object map and the register instance_type
434 // contains the instance_type. The registers map and instance_type can be the
435 // same in which case it contains the instance type afterwards. Either of the
436 // registers map and instance_type can be the same as heap_object.
437 Condition IsObjectStringType(Register heap_object,
439 Register instance_type);
441 // Check if the object in register heap_object is a name. Afterwards the
442 // register map contains the object map and the register instance_type
443 // contains the instance_type. The registers map and instance_type can be the
444 // same in which case it contains the instance type afterwards. Either of the
445 // registers map and instance_type can be the same as heap_object.
446 Condition IsObjectNameType(Register heap_object,
448 Register instance_type);
450 // Check if a heap object's type is in the JSObject range, not including
451 // JSFunction. The object's map will be loaded in the map register.
452 // Any or all of the three registers may be the same.
453 // The contents of the scratch register will always be overwritten.
454 void IsObjectJSObjectType(Register heap_object,
459 // The contents of the scratch register will be overwritten.
460 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
462 // FCmp is similar to integer cmp, but requires unsigned
463 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
466 void ClampUint8(Register reg);
468 void ClampDoubleToUint8(XMMRegister input_reg,
469 XMMRegister scratch_reg,
470 Register result_reg);
473 // Smi tagging support.
474 void SmiTag(Register reg) {
475 STATIC_ASSERT(kSmiTag == 0);
476 STATIC_ASSERT(kSmiTagSize == 1);
479 void SmiUntag(Register reg) {
480 sar(reg, kSmiTagSize);
483 // Modifies the register even if it does not contain a Smi!
484 void SmiUntag(Register reg, Label* is_smi) {
485 STATIC_ASSERT(kSmiTagSize == 1);
486 sar(reg, kSmiTagSize);
487 STATIC_ASSERT(kSmiTag == 0);
488 j(not_carry, is_smi);
491 void LoadUint32(XMMRegister dst, Register src, XMMRegister scratch);
493 // Jump the register contains a smi.
494 inline void JumpIfSmi(Register value,
496 Label::Distance distance = Label::kFar) {
497 test(value, Immediate(kSmiTagMask));
498 j(zero, smi_label, distance);
500 // Jump if the operand is a smi.
501 inline void JumpIfSmi(Operand value,
503 Label::Distance distance = Label::kFar) {
504 test(value, Immediate(kSmiTagMask));
505 j(zero, smi_label, distance);
507 // Jump if register contain a non-smi.
508 inline void JumpIfNotSmi(Register value,
509 Label* not_smi_label,
510 Label::Distance distance = Label::kFar) {
511 test(value, Immediate(kSmiTagMask));
512 j(not_zero, not_smi_label, distance);
515 void LoadInstanceDescriptors(Register map, Register descriptors);
516 void EnumLength(Register dst, Register map);
517 void NumberOfOwnDescriptors(Register dst, Register map);
519 template<typename Field>
520 void DecodeField(Register reg) {
521 static const int shift = Field::kShift;
522 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
524 and_(reg, Immediate(mask));
526 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
528 // Abort execution if argument is not a number, enabled via --debug-code.
529 void AssertNumber(Register object);
531 // Abort execution if argument is not a smi, enabled via --debug-code.
532 void AssertSmi(Register object);
534 // Abort execution if argument is a smi, enabled via --debug-code.
535 void AssertNotSmi(Register object);
537 // Abort execution if argument is not a string, enabled via --debug-code.
538 void AssertString(Register object);
540 // Abort execution if argument is not a name, enabled via --debug-code.
541 void AssertName(Register object);
543 // ---------------------------------------------------------------------------
544 // Exception handling
546 // Push a new try handler and link it into try handler chain.
547 void PushTryHandler(StackHandler::Kind kind, int handler_index);
549 // Unlink the stack handler on top of the stack from the try handler chain.
550 void PopTryHandler();
552 // Throw to the top handler in the try hander chain.
553 void Throw(Register value);
555 // Throw past all JS frames to the top JS entry frame.
556 void ThrowUncatchable(Register value);
558 // ---------------------------------------------------------------------------
559 // Inline caching support
561 // Generate code for checking access rights - used for security checks
562 // on access to global objects across environments. The holder register
563 // is left untouched, but the scratch register is clobbered.
564 void CheckAccessGlobalProxy(Register holder_reg,
569 void GetNumberHash(Register r0, Register scratch);
571 void LoadFromNumberDictionary(Label* miss,
580 // ---------------------------------------------------------------------------
581 // Allocation support
583 // Allocate an object in new space or old pointer space. If the given space
584 // is exhausted control continues at the gc_required label. The allocated
585 // object is returned in result and end of the new object is returned in
586 // result_end. The register scratch can be passed as no_reg in which case
587 // an additional object reference will be added to the reloc info. The
588 // returned pointers in result and result_end have not yet been tagged as
589 // heap objects. If result_contains_top_on_entry is true the content of
590 // result is known to be the allocation top on entry (could be result_end
591 // from a previous call). If result_contains_top_on_entry is true scratch
592 // should be no_reg as it is never used.
593 void Allocate(int object_size,
598 AllocationFlags flags);
600 void Allocate(int header_size,
601 ScaleFactor element_size,
602 Register element_count,
603 RegisterValueType element_count_type,
608 AllocationFlags flags);
610 void Allocate(Register object_size,
615 AllocationFlags flags);
617 // Undo allocation in new space. The object passed and objects allocated after
618 // it will no longer be allocated. Make sure that no pointers are left to the
619 // object(s) no longer allocated as they would be invalid when allocation is
621 void UndoAllocationInNewSpace(Register object);
623 // Allocate a heap number in new space with undefined value. The
624 // register scratch2 can be passed as no_reg; the others must be
625 // valid registers. Returns tagged pointer in result register, or
626 // jumps to gc_required if new space is full.
627 void AllocateHeapNumber(Register result,
632 // Allocate a sequential string. All the header fields of the string object
634 void AllocateTwoByteString(Register result,
640 void AllocateAsciiString(Register result,
646 void AllocateAsciiString(Register result,
652 // Allocate a raw cons string object. Only the map field of the result is
654 void AllocateTwoByteConsString(Register result,
658 void AllocateAsciiConsString(Register result,
663 // Allocate a raw sliced string object. Only the map field of the result is
665 void AllocateTwoByteSlicedString(Register result,
669 void AllocateAsciiSlicedString(Register result,
674 // Copy memory, byte-by-byte, from source to destination. Not optimized for
675 // long or aligned copies.
676 // The contents of index and scratch are destroyed.
677 void CopyBytes(Register source,
678 Register destination,
682 // Initialize fields with filler values. Fields starting at |start_offset|
683 // not including end_offset are overwritten with the value in |filler|. At
684 // the end the loop, |start_offset| takes the value of |end_offset|.
685 void InitializeFieldsWithFiller(Register start_offset,
689 // ---------------------------------------------------------------------------
690 // Support functions.
692 // Check a boolean-bit of a Smi field.
693 void BooleanBitTest(Register object, int field_offset, int bit_index);
695 // Check if result is zero and op is negative.
696 void NegativeZeroTest(Register result, Register op, Label* then_label);
698 // Check if result is zero and any of op1 and op2 are negative.
699 // Register scratch is destroyed, and it must be different from op2.
700 void NegativeZeroTest(Register result, Register op1, Register op2,
701 Register scratch, Label* then_label);
703 // Try to get function prototype of a function and puts the value in
704 // the result register. Checks that the function really is a
705 // function and jumps to the miss label if the fast checks fail. The
706 // function register will be untouched; the other registers may be
708 void TryGetFunctionPrototype(Register function,
712 bool miss_on_bound_function = false);
714 // Generates code for reporting that an illegal operation has
716 void IllegalOperation(int num_arguments);
718 // Picks out an array index from the hash field.
720 // hash - holds the index's hash. Clobbered.
721 // index - holds the overwritten index on exit.
722 void IndexFromHash(Register hash, Register index);
724 // ---------------------------------------------------------------------------
727 // Call a code stub. Generate the code if necessary.
728 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
730 // Tail call a code stub (jump). Generate the code if necessary.
731 void TailCallStub(CodeStub* stub);
733 // Return from a code stub after popping its arguments.
734 void StubReturn(int argc);
736 // Call a runtime routine.
737 void CallRuntime(const Runtime::Function* f, int num_arguments);
738 void CallRuntimeSaveDoubles(Runtime::FunctionId id);
740 // Convenience function: Same as above, but takes the fid instead.
741 void CallRuntime(Runtime::FunctionId id, int num_arguments);
743 // Convenience function: call an external reference.
744 void CallExternalReference(ExternalReference ref, int num_arguments);
746 // Tail call of a runtime routine (jump).
747 // Like JumpToExternalReference, but also takes care of passing the number
749 void TailCallExternalReference(const ExternalReference& ext,
753 // Convenience function: tail call a runtime routine (jump).
754 void TailCallRuntime(Runtime::FunctionId fid,
758 // Before calling a C-function from generated code, align arguments on stack.
759 // After aligning the frame, arguments must be stored in esp[0], esp[4],
760 // etc., not pushed. The argument count assumes all arguments are word sized.
761 // Some compilers/platforms require the stack to be aligned when calling
763 // Needs a scratch register to do some arithmetic. This register will be
765 void PrepareCallCFunction(int num_arguments, Register scratch);
767 // Calls a C function and cleans up the space for arguments allocated
768 // by PrepareCallCFunction. The called function is not allowed to trigger a
769 // garbage collection, since that might move the code and invalidate the
770 // return address (unless this is somehow accounted for by the called
772 void CallCFunction(ExternalReference function, int num_arguments);
773 void CallCFunction(Register function, int num_arguments);
775 // Prepares stack to put arguments (aligns and so on). Reserves
776 // space for return value if needed (assumes the return value is a handle).
777 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
778 // etc. Saves context (esi). If space was reserved for return value then
779 // stores the pointer to the reserved slot into esi.
780 void PrepareCallApiFunction(int argc, bool returns_handle);
782 // Calls an API function. Allocates HandleScope, extracts returned value
783 // from handle and propagates exceptions. Clobbers ebx, edi and
784 // caller-save registers. Restores context. On return removes
785 // stack_space * kPointerSize (GCed).
786 void CallApiFunctionAndReturn(Address function_address,
787 Address thunk_address,
788 Operand thunk_last_arg,
791 int return_value_offset_from_ebp);
793 // Jump to a runtime routine.
794 void JumpToExternalReference(const ExternalReference& ext);
796 // ---------------------------------------------------------------------------
801 // Return and drop arguments from stack, where the number of arguments
802 // may be bigger than 2^16 - 1. Requires a scratch register.
803 void Ret(int bytes_dropped, Register scratch);
805 // Emit code to discard a non-negative number of pointer-sized elements
806 // from the stack, clobbering only the esp register.
807 void Drop(int element_count);
809 void Call(Label* target) { call(target); }
811 // Emit call to the code we are currently generating.
813 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
814 call(self, RelocInfo::CODE_TARGET);
817 // Move if the registers are not identical.
818 void Move(Register target, Register source);
820 // Push a handle value.
821 void Push(Handle<Object> handle) { push(Immediate(handle)); }
822 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
824 Handle<Object> CodeObject() {
825 ASSERT(!code_object_.is_null());
829 // Insert code to verify that the x87 stack has the specified depth (0-7)
830 void VerifyX87StackDepth(uint32_t depth);
832 // ---------------------------------------------------------------------------
833 // StatsCounter support
835 void SetCounter(StatsCounter* counter, int value);
836 void IncrementCounter(StatsCounter* counter, int value);
837 void DecrementCounter(StatsCounter* counter, int value);
838 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
839 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
842 // ---------------------------------------------------------------------------
845 // Calls Abort(msg) if the condition cc is not satisfied.
846 // Use --debug_code to enable.
847 void Assert(Condition cc, const char* msg);
849 void AssertFastElements(Register elements);
851 // Like Assert(), but always enabled.
852 void Check(Condition cc, const char* msg);
854 // Print a message to stdout and abort execution.
855 void Abort(const char* msg);
857 // Check that the stack is aligned.
858 void CheckStackAlignment();
860 // Verify restrictions about code generated in stubs.
861 void set_generating_stub(bool value) { generating_stub_ = value; }
862 bool generating_stub() { return generating_stub_; }
863 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
864 bool allow_stub_calls() { return allow_stub_calls_; }
865 void set_has_frame(bool value) { has_frame_ = value; }
866 bool has_frame() { return has_frame_; }
867 inline bool AllowThisStubCall(CodeStub* stub);
869 // ---------------------------------------------------------------------------
872 // Check whether the instance type represents a flat ASCII string. Jump to the
873 // label if not. If the instance type can be scratched specify same register
874 // for both instance type and scratch.
875 void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
877 Label* on_not_flat_ascii_string);
879 // Checks if both objects are sequential ASCII strings, and jumps to label
881 void JumpIfNotBothSequentialAsciiStrings(Register object1,
885 Label* on_not_flat_ascii_strings);
887 // Checks if the given register or operand is a unique name
888 void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
889 Label::Distance distance = Label::kFar) {
890 JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
893 void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
894 Label::Distance distance = Label::kFar);
896 static int SafepointRegisterStackIndex(Register reg) {
897 return SafepointRegisterStackIndex(reg.code());
900 // Activation support.
901 void EnterFrame(StackFrame::Type type);
902 void LeaveFrame(StackFrame::Type type);
904 // Expects object in eax and returns map with validated enum cache
905 // in eax. Assumes that any other register can be used as a scratch.
906 void CheckEnumCache(Label* call_runtime);
908 // AllocationSiteInfo support. Arrays may have an associated
909 // AllocationSiteInfo object that can be checked for in order to pretransition
911 // On entry, receiver_reg should point to the array object.
912 // scratch_reg gets clobbered.
913 // If allocation info is present, conditional code is set to equal
914 void TestJSArrayForAllocationSiteInfo(Register receiver_reg,
915 Register scratch_reg);
918 bool generating_stub_;
919 bool allow_stub_calls_;
921 // This handle will be patched with the code object on installation.
922 Handle<Object> code_object_;
924 // Helper functions for generating invokes.
925 void InvokePrologue(const ParameterCount& expected,
926 const ParameterCount& actual,
927 Handle<Code> code_constant,
928 const Operand& code_operand,
930 bool* definitely_mismatches,
932 Label::Distance done_distance,
933 const CallWrapper& call_wrapper = NullCallWrapper(),
934 CallKind call_kind = CALL_AS_METHOD);
936 void EnterExitFramePrologue();
937 void EnterExitFrameEpilogue(int argc, bool save_doubles);
939 void LeaveExitFrameEpilogue();
941 // Allocation support helpers.
942 void LoadAllocationTopHelper(Register result,
944 AllocationFlags flags);
946 void UpdateAllocationTopHelper(Register result_end,
948 AllocationFlags flags);
950 // Helper for PopHandleScope. Allowed to perform a GC and returns
951 // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
952 // possibly returns a failure object indicating an allocation failure.
953 MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved,
957 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
958 void InNewSpace(Register object,
961 Label* condition_met,
962 Label::Distance condition_met_distance = Label::kFar);
964 // Helper for finding the mark bits for an address. Afterwards, the
965 // bitmap register points at the word with the mark bits and the mask
966 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
968 inline void GetMarkBits(Register addr_reg,
972 // Helper for throwing exceptions. Compute a handler address and jump to
973 // it. See the implementation for register usage.
974 void JumpToHandlerEntry();
976 // Compute memory operands for safepoint stack slots.
977 Operand SafepointRegisterSlot(Register reg);
978 static int SafepointRegisterStackIndex(int reg_code);
980 // Needs access to SafepointRegisterStackIndex for compiled frame
982 friend class StandardFrame;
986 // The code patcher is used to patch (typically) small parts of code e.g. for
987 // debugging and other types of instrumentation. When using the code patcher
988 // the exact number of bytes specified must be emitted. Is not legal to emit
989 // relocation information. If any of these constraints are violated it causes
993 CodePatcher(byte* address, int size);
994 virtual ~CodePatcher();
996 // Macro assembler to emit code.
997 MacroAssembler* masm() { return &masm_; }
1000 byte* address_; // The address of the code being patched.
1001 int size_; // Number of bytes of the expected patch size.
1002 MacroAssembler masm_; // Macro assembler used to generate the code.
1006 // -----------------------------------------------------------------------------
1007 // Static helper functions.
1009 // Generate an Operand for loading a field from an object.
1010 inline Operand FieldOperand(Register object, int offset) {
1011 return Operand(object, offset - kHeapObjectTag);
1015 // Generate an Operand for loading an indexed field from an object.
1016 inline Operand FieldOperand(Register object,
1020 return Operand(object, index, scale, offset - kHeapObjectTag);
1024 inline Operand ContextOperand(Register context, int index) {
1025 return Operand(context, Context::SlotOffset(index));
1029 inline Operand GlobalObjectOperand() {
1030 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1034 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1035 Operand ApiParameterOperand(int index, bool returns_handle);
1038 #ifdef GENERATED_CODE_COVERAGE
1039 extern void LogGeneratedCodeCoverage(const char* file_line);
1040 #define CODE_COVERAGE_STRINGIFY(x) #x
1041 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1042 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1043 #define ACCESS_MASM(masm) { \
1044 byte* ia32_coverage_function = \
1045 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1048 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1049 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1056 #define ACCESS_MASM(masm) masm->
1060 } } // namespace v8::internal
1062 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_