1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
29 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
31 #include "assembler.h"
33 #include "v8globals.h"
38 // Convenience for platform-independent signatures. We do not normally
39 // distinguish memory operands from other operands on ia32.
40 typedef Operand MemOperand;
42 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
43 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
46 enum RegisterValueType {
47 REGISTER_VALUE_IS_SMI,
48 REGISTER_VALUE_IS_INT32
52 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
55 // MacroAssembler implements a collection of frequently used macros.
56 class MacroAssembler: public Assembler {
58 // The isolate parameter can be NULL if the macro assembler should
59 // not use isolate-dependent functionality. In this case, it's the
60 // responsibility of the caller to never invoke such function on the
62 MacroAssembler(Isolate* isolate, void* buffer, int size);
64 // Operations on roots in the root-array.
65 void LoadRoot(Register destination, Heap::RootListIndex index);
66 void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
67 void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
68 // These methods can only be used with constant roots (i.e. non-writable
69 // and not in new space).
70 void CompareRoot(Register with, Heap::RootListIndex index);
71 void CompareRoot(const Operand& with, Heap::RootListIndex index);
73 // ---------------------------------------------------------------------------
75 enum RememberedSetFinalAction {
80 // Record in the remembered set the fact that we have a pointer to new space
81 // at the address pointed to by the addr register. Only works if addr is not
83 void RememberedSetHelper(Register object, // Used for debug code.
86 SaveFPRegsMode save_fp,
87 RememberedSetFinalAction and_then);
89 void CheckPageFlag(Register object,
94 Label::Distance condition_met_distance = Label::kFar);
96 void CheckPageFlagForMap(
100 Label* condition_met,
101 Label::Distance condition_met_distance = Label::kFar);
103 void CheckMapDeprecated(Handle<Map> map,
105 Label* if_deprecated);
107 // Check if object is in new space. Jumps if the object is not in new space.
108 // The register scratch can be object itself, but scratch will be clobbered.
109 void JumpIfNotInNewSpace(Register object,
112 Label::Distance distance = Label::kFar) {
113 InNewSpace(object, scratch, zero, branch, distance);
116 // Check if object is in new space. Jumps if the object is in new space.
117 // The register scratch can be object itself, but it will be clobbered.
118 void JumpIfInNewSpace(Register object,
121 Label::Distance distance = Label::kFar) {
122 InNewSpace(object, scratch, not_zero, branch, distance);
125 // Check if an object has a given incremental marking color. Also uses ecx!
126 void HasColor(Register object,
130 Label::Distance has_color_distance,
134 void JumpIfBlack(Register object,
138 Label::Distance on_black_distance = Label::kFar);
140 // Checks the color of an object. If the object is already grey or black
141 // then we just fall through, since it is already live. If it is white and
142 // we can determine that it doesn't need to be scanned, then we just mark it
143 // black and fall through. For the rest we jump to the label so the
144 // incremental marker can fix its assumptions.
145 void EnsureNotWhite(Register object,
148 Label* object_is_white_and_not_data,
149 Label::Distance distance);
151 // Notify the garbage collector that we wrote a pointer into an object.
152 // |object| is the object being stored into, |value| is the object being
153 // stored. value and scratch registers are clobbered by the operation.
154 // The offset is the offset from the start of the object, not the offset from
155 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
156 void RecordWriteField(
161 SaveFPRegsMode save_fp,
162 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
163 SmiCheck smi_check = INLINE_SMI_CHECK);
165 // As above, but the offset has the tag presubtracted. For use with
166 // Operand(reg, off).
167 void RecordWriteContextSlot(
172 SaveFPRegsMode save_fp,
173 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
174 SmiCheck smi_check = INLINE_SMI_CHECK) {
175 RecordWriteField(context,
176 offset + kHeapObjectTag,
180 remembered_set_action,
184 // Notify the garbage collector that we wrote a pointer into a fixed array.
185 // |array| is the array being stored into, |value| is the
186 // object being stored. |index| is the array index represented as a
187 // Smi. All registers are clobbered by the operation RecordWriteArray
188 // filters out smis so it does not update the write barrier if the
190 void RecordWriteArray(
194 SaveFPRegsMode save_fp,
195 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
196 SmiCheck smi_check = INLINE_SMI_CHECK);
198 // For page containing |object| mark region covering |address|
199 // dirty. |object| is the object being stored into, |value| is the
200 // object being stored. The address and value registers are clobbered by the
201 // operation. RecordWrite filters out smis so it does not update the
202 // write barrier if the value is a smi.
207 SaveFPRegsMode save_fp,
208 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
209 SmiCheck smi_check = INLINE_SMI_CHECK);
211 // For page containing |object| mark the region covering the object's map
212 // dirty. |object| is the object being stored into, |map| is the Map object
214 void RecordWriteForMap(
219 SaveFPRegsMode save_fp);
221 #ifdef ENABLE_DEBUGGER_SUPPORT
222 // ---------------------------------------------------------------------------
228 // Generates function and stub prologue code.
229 void Prologue(PrologueFrameMode frame_mode);
231 // Enter specific kind of exit frame. Expects the number of
232 // arguments in register eax and sets up the number of arguments in
233 // register edi and the pointer to the first argument in register
235 void EnterExitFrame(bool save_doubles);
237 void EnterApiExitFrame(int argc);
239 // Leave the current exit frame. Expects the return value in
240 // register eax:edx (untouched) and the pointer to the first
241 // argument in register esi.
242 void LeaveExitFrame(bool save_doubles);
244 // Leave the current exit frame. Expects the return value in
245 // register eax (untouched).
246 void LeaveApiExitFrame(bool restore_context);
248 // Find the function context up the context chain.
249 void LoadContext(Register dst, int context_chain_length);
251 // Conditionally load the cached Array transitioned map of type
252 // transitioned_kind from the native context if the map in register
253 // map_in_out is the cached Array map in the native context of
255 void LoadTransitionedArrayMapConditional(
256 ElementsKind expected_kind,
257 ElementsKind transitioned_kind,
260 Label* no_map_match);
262 // Load the initial map for new Arrays from a JSFunction.
263 void LoadInitialArrayMap(Register function_in,
266 bool can_have_holes);
268 void LoadGlobalContext(Register global_context);
270 // Load the global function with the given index.
271 void LoadGlobalFunction(int index, Register function);
273 // Load the initial map from the global function. The registers
274 // function and map can be the same.
275 void LoadGlobalFunctionInitialMap(Register function, Register map);
277 // Push and pop the registers that can hold pointers.
278 void PushSafepointRegisters() { pushad(); }
279 void PopSafepointRegisters() { popad(); }
280 // Store the value in register/immediate src in the safepoint
281 // register stack slot for register dst.
282 void StoreToSafepointRegisterSlot(Register dst, Register src);
283 void StoreToSafepointRegisterSlot(Register dst, Immediate src);
284 void LoadFromSafepointRegisterSlot(Register dst, Register src);
286 void LoadHeapObject(Register result, Handle<HeapObject> object);
287 void CmpHeapObject(Register reg, Handle<HeapObject> object);
288 void PushHeapObject(Handle<HeapObject> object);
290 void LoadObject(Register result, Handle<Object> object) {
291 AllowDeferredHandleDereference heap_object_check;
292 if (object->IsHeapObject()) {
293 LoadHeapObject(result, Handle<HeapObject>::cast(object));
295 Set(result, Immediate(object));
299 void CmpObject(Register reg, Handle<Object> object) {
300 AllowDeferredHandleDereference heap_object_check;
301 if (object->IsHeapObject()) {
302 CmpHeapObject(reg, Handle<HeapObject>::cast(object));
304 cmp(reg, Immediate(object));
308 // ---------------------------------------------------------------------------
309 // JavaScript invokes
311 // Set up call kind marking in ecx. The method takes ecx as an
312 // explicit first parameter to make the code more readable at the
314 void SetCallKind(Register dst, CallKind kind);
316 // Invoke the JavaScript function code by either calling or jumping.
317 void InvokeCode(Register code,
318 const ParameterCount& expected,
319 const ParameterCount& actual,
321 const CallWrapper& call_wrapper,
322 CallKind call_kind) {
323 InvokeCode(Operand(code), expected, actual, flag, call_wrapper, call_kind);
326 void InvokeCode(const Operand& code,
327 const ParameterCount& expected,
328 const ParameterCount& actual,
330 const CallWrapper& call_wrapper,
333 void InvokeCode(Handle<Code> code,
334 const ParameterCount& expected,
335 const ParameterCount& actual,
336 RelocInfo::Mode rmode,
338 const CallWrapper& call_wrapper,
341 // Invoke the JavaScript function in the given register. Changes the
342 // current context to the context in the function before invoking.
343 void InvokeFunction(Register function,
344 const ParameterCount& actual,
346 const CallWrapper& call_wrapper,
349 void InvokeFunction(Handle<JSFunction> function,
350 const ParameterCount& expected,
351 const ParameterCount& actual,
353 const CallWrapper& call_wrapper,
356 // Invoke specified builtin JavaScript function. Adds an entry to
357 // the unresolved list if the name does not resolve.
358 void InvokeBuiltin(Builtins::JavaScript id,
360 const CallWrapper& call_wrapper = NullCallWrapper());
362 // Store the function for the given builtin in the target register.
363 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
365 // Store the code object for the given builtin in the target register.
366 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
368 // Expression support
369 void Set(Register dst, const Immediate& x);
370 void Set(const Operand& dst, const Immediate& x);
372 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
373 // hinders register renaming and makes dependence chains longer. So we use
374 // xorps to clear the dst register before cvtsi2sd to solve this issue.
375 void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
376 void Cvtsi2sd(XMMRegister dst, const Operand& src);
378 // Support for constant splitting.
379 bool IsUnsafeImmediate(const Immediate& x);
380 void SafeSet(Register dst, const Immediate& x);
381 void SafePush(const Immediate& x);
383 // Compare object type for heap object.
384 // Incoming register is heap_object and outgoing register is map.
385 void CmpObjectType(Register heap_object, InstanceType type, Register map);
387 // Compare instance type for map.
388 void CmpInstanceType(Register map, InstanceType type);
390 // Check if a map for a JSObject indicates that the object has fast elements.
391 // Jump to the specified label if it does not.
392 void CheckFastElements(Register map,
394 Label::Distance distance = Label::kFar);
396 // Check if a map for a JSObject indicates that the object can have both smi
397 // and HeapObject elements. Jump to the specified label if it does not.
398 void CheckFastObjectElements(Register map,
400 Label::Distance distance = Label::kFar);
402 // Check if a map for a JSObject indicates that the object has fast smi only
403 // elements. Jump to the specified label if it does not.
404 void CheckFastSmiElements(Register map,
406 Label::Distance distance = Label::kFar);
408 // Check to see if maybe_number can be stored as a double in
409 // FastDoubleElements. If it can, store it at the index specified by key in
410 // the FastDoubleElements array elements, otherwise jump to fail.
411 void StoreNumberToDoubleElements(Register maybe_number,
415 XMMRegister scratch2,
417 bool specialize_for_processor,
420 // Compare an object's map with the specified map and its transitioned
421 // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with
422 // result of map compare. If multiple map compares are required, the compare
423 // sequences branches to early_success.
424 void CompareMap(Register obj,
426 Label* early_success);
428 // Check if the map of an object is equal to a specified map and branch to
429 // label if not. Skip the smi check if not required (object is known to be a
430 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
431 // against maps that are ElementsKind transition maps of the specified map.
432 void CheckMap(Register obj,
435 SmiCheckType smi_check_type);
437 // Check if the map of an object is equal to a specified map and branch to a
438 // specified target if equal. Skip the smi check if not required (object is
439 // known to be a heap object)
440 void DispatchMap(Register obj,
443 Handle<Code> success,
444 SmiCheckType smi_check_type);
446 // Check if the object in register heap_object is a string. Afterwards the
447 // register map contains the object map and the register instance_type
448 // contains the instance_type. The registers map and instance_type can be the
449 // same in which case it contains the instance type afterwards. Either of the
450 // registers map and instance_type can be the same as heap_object.
451 Condition IsObjectStringType(Register heap_object,
453 Register instance_type);
455 // Check if the object in register heap_object is a name. Afterwards the
456 // register map contains the object map and the register instance_type
457 // contains the instance_type. The registers map and instance_type can be the
458 // same in which case it contains the instance type afterwards. Either of the
459 // registers map and instance_type can be the same as heap_object.
460 Condition IsObjectNameType(Register heap_object,
462 Register instance_type);
464 // Check if a heap object's type is in the JSObject range, not including
465 // JSFunction. The object's map will be loaded in the map register.
466 // Any or all of the three registers may be the same.
467 // The contents of the scratch register will always be overwritten.
468 void IsObjectJSObjectType(Register heap_object,
473 // The contents of the scratch register will be overwritten.
474 void IsInstanceJSObjectType(Register map, Register scratch, Label* fail);
476 // FCmp is similar to integer cmp, but requires unsigned
477 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
480 void ClampUint8(Register reg);
482 void ClampDoubleToUint8(XMMRegister input_reg,
483 XMMRegister scratch_reg,
484 Register result_reg);
486 void SlowTruncateToI(Register result_reg, Register input_reg,
487 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
489 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
490 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
491 void TruncateX87TOSToI(Register result_reg);
493 void DoubleToI(Register result_reg, XMMRegister input_reg,
494 XMMRegister scratch, MinusZeroMode minus_zero_mode,
495 Label* conversion_failed, Label::Distance dst = Label::kFar);
496 void X87TOSToI(Register result_reg, MinusZeroMode minus_zero_mode,
497 Label* conversion_failed, Label::Distance dst = Label::kFar);
499 void TaggedToI(Register result_reg, Register input_reg, XMMRegister temp,
500 MinusZeroMode minus_zero_mode, Label* lost_precision);
502 // Smi tagging support.
503 void SmiTag(Register reg) {
504 STATIC_ASSERT(kSmiTag == 0);
505 STATIC_ASSERT(kSmiTagSize == 1);
508 void SmiUntag(Register reg) {
509 sar(reg, kSmiTagSize);
512 // Modifies the register even if it does not contain a Smi!
513 void SmiUntag(Register reg, Label* is_smi) {
514 STATIC_ASSERT(kSmiTagSize == 1);
515 sar(reg, kSmiTagSize);
516 STATIC_ASSERT(kSmiTag == 0);
517 j(not_carry, is_smi);
520 void LoadUint32(XMMRegister dst, Register src, XMMRegister scratch);
521 void LoadUint32NoSSE2(Register src);
523 // Jump the register contains a smi.
524 inline void JumpIfSmi(Register value,
526 Label::Distance distance = Label::kFar) {
527 test(value, Immediate(kSmiTagMask));
528 j(zero, smi_label, distance);
530 // Jump if the operand is a smi.
531 inline void JumpIfSmi(Operand value,
533 Label::Distance distance = Label::kFar) {
534 test(value, Immediate(kSmiTagMask));
535 j(zero, smi_label, distance);
537 // Jump if register contain a non-smi.
538 inline void JumpIfNotSmi(Register value,
539 Label* not_smi_label,
540 Label::Distance distance = Label::kFar) {
541 test(value, Immediate(kSmiTagMask));
542 j(not_zero, not_smi_label, distance);
545 void LoadInstanceDescriptors(Register map, Register descriptors);
546 void EnumLength(Register dst, Register map);
547 void NumberOfOwnDescriptors(Register dst, Register map);
549 template<typename Field>
550 void DecodeField(Register reg) {
551 static const int shift = Field::kShift;
552 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
554 and_(reg, Immediate(mask));
556 void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
558 // Abort execution if argument is not a number, enabled via --debug-code.
559 void AssertNumber(Register object);
561 // Abort execution if argument is not a smi, enabled via --debug-code.
562 void AssertSmi(Register object);
564 // Abort execution if argument is a smi, enabled via --debug-code.
565 void AssertNotSmi(Register object);
567 // Abort execution if argument is not a string, enabled via --debug-code.
568 void AssertString(Register object);
570 // Abort execution if argument is not a name, enabled via --debug-code.
571 void AssertName(Register object);
573 // ---------------------------------------------------------------------------
574 // Exception handling
576 // Push a new try handler and link it into try handler chain.
577 void PushTryHandler(StackHandler::Kind kind, int handler_index);
579 // Unlink the stack handler on top of the stack from the try handler chain.
580 void PopTryHandler();
582 // Throw to the top handler in the try hander chain.
583 void Throw(Register value);
585 // Throw past all JS frames to the top JS entry frame.
586 void ThrowUncatchable(Register value);
588 // ---------------------------------------------------------------------------
589 // Inline caching support
591 // Generate code for checking access rights - used for security checks
592 // on access to global objects across environments. The holder register
593 // is left untouched, but the scratch register is clobbered.
594 void CheckAccessGlobalProxy(Register holder_reg,
599 void GetNumberHash(Register r0, Register scratch);
601 void LoadFromNumberDictionary(Label* miss,
610 // ---------------------------------------------------------------------------
611 // Allocation support
613 // Allocate an object in new space or old pointer space. If the given space
614 // is exhausted control continues at the gc_required label. The allocated
615 // object is returned in result and end of the new object is returned in
616 // result_end. The register scratch can be passed as no_reg in which case
617 // an additional object reference will be added to the reloc info. The
618 // returned pointers in result and result_end have not yet been tagged as
619 // heap objects. If result_contains_top_on_entry is true the content of
620 // result is known to be the allocation top on entry (could be result_end
621 // from a previous call). If result_contains_top_on_entry is true scratch
622 // should be no_reg as it is never used.
623 void Allocate(int object_size,
628 AllocationFlags flags);
630 void Allocate(int header_size,
631 ScaleFactor element_size,
632 Register element_count,
633 RegisterValueType element_count_type,
638 AllocationFlags flags);
640 void Allocate(Register object_size,
645 AllocationFlags flags);
647 // Undo allocation in new space. The object passed and objects allocated after
648 // it will no longer be allocated. Make sure that no pointers are left to the
649 // object(s) no longer allocated as they would be invalid when allocation is
651 void UndoAllocationInNewSpace(Register object);
653 // Allocate a heap number in new space with undefined value. The
654 // register scratch2 can be passed as no_reg; the others must be
655 // valid registers. Returns tagged pointer in result register, or
656 // jumps to gc_required if new space is full.
657 void AllocateHeapNumber(Register result,
662 // Allocate a sequential string. All the header fields of the string object
664 void AllocateTwoByteString(Register result,
670 void AllocateAsciiString(Register result,
676 void AllocateAsciiString(Register result,
682 // Allocate a raw cons string object. Only the map field of the result is
684 void AllocateTwoByteConsString(Register result,
688 void AllocateAsciiConsString(Register result,
693 // Allocate a raw sliced string object. Only the map field of the result is
695 void AllocateTwoByteSlicedString(Register result,
699 void AllocateAsciiSlicedString(Register result,
704 // Copy memory, byte-by-byte, from source to destination. Not optimized for
705 // long or aligned copies.
706 // The contents of index and scratch are destroyed.
707 void CopyBytes(Register source,
708 Register destination,
712 // Initialize fields with filler values. Fields starting at |start_offset|
713 // not including end_offset are overwritten with the value in |filler|. At
714 // the end the loop, |start_offset| takes the value of |end_offset|.
715 void InitializeFieldsWithFiller(Register start_offset,
719 // ---------------------------------------------------------------------------
720 // Support functions.
722 // Check a boolean-bit of a Smi field.
723 void BooleanBitTest(Register object, int field_offset, int bit_index);
725 // Check if result is zero and op is negative.
726 void NegativeZeroTest(Register result, Register op, Label* then_label);
728 // Check if result is zero and any of op1 and op2 are negative.
729 // Register scratch is destroyed, and it must be different from op2.
730 void NegativeZeroTest(Register result, Register op1, Register op2,
731 Register scratch, Label* then_label);
733 // Try to get function prototype of a function and puts the value in
734 // the result register. Checks that the function really is a
735 // function and jumps to the miss label if the fast checks fail. The
736 // function register will be untouched; the other registers may be
738 void TryGetFunctionPrototype(Register function,
742 bool miss_on_bound_function = false);
744 // Generates code for reporting that an illegal operation has
746 void IllegalOperation(int num_arguments);
748 // Picks out an array index from the hash field.
750 // hash - holds the index's hash. Clobbered.
751 // index - holds the overwritten index on exit.
752 void IndexFromHash(Register hash, Register index);
754 // ---------------------------------------------------------------------------
757 // Call a code stub. Generate the code if necessary.
758 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
760 // Tail call a code stub (jump). Generate the code if necessary.
761 void TailCallStub(CodeStub* stub);
763 // Return from a code stub after popping its arguments.
764 void StubReturn(int argc);
766 // Call a runtime routine.
767 void CallRuntime(const Runtime::Function* f,
769 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
770 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
771 const Runtime::Function* function = Runtime::FunctionForId(id);
772 CallRuntime(function, function->nargs, kSaveFPRegs);
775 // Convenience function: Same as above, but takes the fid instead.
776 void CallRuntime(Runtime::FunctionId id, int num_arguments) {
777 CallRuntime(Runtime::FunctionForId(id), num_arguments);
780 // Convenience function: call an external reference.
781 void CallExternalReference(ExternalReference ref, int num_arguments);
783 // Tail call of a runtime routine (jump).
784 // Like JumpToExternalReference, but also takes care of passing the number
786 void TailCallExternalReference(const ExternalReference& ext,
790 // Convenience function: tail call a runtime routine (jump).
791 void TailCallRuntime(Runtime::FunctionId fid,
795 // Before calling a C-function from generated code, align arguments on stack.
796 // After aligning the frame, arguments must be stored in esp[0], esp[4],
797 // etc., not pushed. The argument count assumes all arguments are word sized.
798 // Some compilers/platforms require the stack to be aligned when calling
800 // Needs a scratch register to do some arithmetic. This register will be
802 void PrepareCallCFunction(int num_arguments, Register scratch);
804 // Calls a C function and cleans up the space for arguments allocated
805 // by PrepareCallCFunction. The called function is not allowed to trigger a
806 // garbage collection, since that might move the code and invalidate the
807 // return address (unless this is somehow accounted for by the called
809 void CallCFunction(ExternalReference function, int num_arguments);
810 void CallCFunction(Register function, int num_arguments);
812 // Prepares stack to put arguments (aligns and so on). Reserves
813 // space for return value if needed (assumes the return value is a handle).
814 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
815 // etc. Saves context (esi). If space was reserved for return value then
816 // stores the pointer to the reserved slot into esi.
817 void PrepareCallApiFunction(int argc);
819 // Calls an API function. Allocates HandleScope, extracts returned value
820 // from handle and propagates exceptions. Clobbers ebx, edi and
821 // caller-save registers. Restores context. On return removes
822 // stack_space * kPointerSize (GCed).
823 void CallApiFunctionAndReturn(Address function_address,
824 Address thunk_address,
825 Operand thunk_last_arg,
827 Operand return_value_operand,
828 Operand* context_restore_operand);
830 // Jump to a runtime routine.
831 void JumpToExternalReference(const ExternalReference& ext);
833 // ---------------------------------------------------------------------------
838 // Return and drop arguments from stack, where the number of arguments
839 // may be bigger than 2^16 - 1. Requires a scratch register.
840 void Ret(int bytes_dropped, Register scratch);
842 // Emit code to discard a non-negative number of pointer-sized elements
843 // from the stack, clobbering only the esp register.
844 void Drop(int element_count);
846 void Call(Label* target) { call(target); }
847 void Push(Register src) { push(src); }
848 void Pop(Register dst) { pop(dst); }
850 // Emit call to the code we are currently generating.
852 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
853 call(self, RelocInfo::CODE_TARGET);
856 // Move if the registers are not identical.
857 void Move(Register target, Register source);
859 // Push a handle value.
860 void Push(Handle<Object> handle) { push(Immediate(handle)); }
861 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
863 Handle<Object> CodeObject() {
864 ASSERT(!code_object_.is_null());
868 // Insert code to verify that the x87 stack has the specified depth (0-7)
869 void VerifyX87StackDepth(uint32_t depth);
871 // ---------------------------------------------------------------------------
872 // StatsCounter support
874 void SetCounter(StatsCounter* counter, int value);
875 void IncrementCounter(StatsCounter* counter, int value);
876 void DecrementCounter(StatsCounter* counter, int value);
877 void IncrementCounter(Condition cc, StatsCounter* counter, int value);
878 void DecrementCounter(Condition cc, StatsCounter* counter, int value);
881 // ---------------------------------------------------------------------------
884 // Calls Abort(msg) if the condition cc is not satisfied.
885 // Use --debug_code to enable.
886 void Assert(Condition cc, BailoutReason reason);
888 void AssertFastElements(Register elements);
890 // Like Assert(), but always enabled.
891 void Check(Condition cc, BailoutReason reason);
893 // Print a message to stdout and abort execution.
894 void Abort(BailoutReason reason);
896 // Check that the stack is aligned.
897 void CheckStackAlignment();
899 // Verify restrictions about code generated in stubs.
900 void set_generating_stub(bool value) { generating_stub_ = value; }
901 bool generating_stub() { return generating_stub_; }
902 void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
903 bool allow_stub_calls() { return allow_stub_calls_; }
904 void set_has_frame(bool value) { has_frame_ = value; }
905 bool has_frame() { return has_frame_; }
906 inline bool AllowThisStubCall(CodeStub* stub);
908 // ---------------------------------------------------------------------------
911 // Generate code to do a lookup in the number string cache. If the number in
912 // the register object is found in the cache the generated code falls through
913 // with the result in the result register. The object and the result register
914 // can be the same. If the number is not found in the cache the code jumps to
915 // the label not_found with only the content of register object unchanged.
916 void LookupNumberStringCache(Register object,
922 // Check whether the instance type represents a flat ASCII string. Jump to the
923 // label if not. If the instance type can be scratched specify same register
924 // for both instance type and scratch.
925 void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
927 Label* on_not_flat_ascii_string);
929 // Checks if both objects are sequential ASCII strings, and jumps to label
931 void JumpIfNotBothSequentialAsciiStrings(Register object1,
935 Label* on_not_flat_ascii_strings);
937 // Checks if the given register or operand is a unique name
938 void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
939 Label::Distance distance = Label::kFar) {
940 JumpIfNotUniqueName(Operand(reg), not_unique_name, distance);
943 void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
944 Label::Distance distance = Label::kFar);
946 static int SafepointRegisterStackIndex(Register reg) {
947 return SafepointRegisterStackIndex(reg.code());
950 // Activation support.
951 void EnterFrame(StackFrame::Type type);
952 void LeaveFrame(StackFrame::Type type);
954 // Expects object in eax and returns map with validated enum cache
955 // in eax. Assumes that any other register can be used as a scratch.
956 void CheckEnumCache(Label* call_runtime);
958 // AllocationMemento support. Arrays may have an associated
959 // AllocationMemento object that can be checked for in order to pretransition
961 // On entry, receiver_reg should point to the array object.
962 // scratch_reg gets clobbered.
963 // If allocation info is present, conditional code is set to equal.
964 void TestJSArrayForAllocationMemento(Register receiver_reg,
965 Register scratch_reg,
966 Label* no_memento_found);
968 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
969 Register scratch_reg,
970 Label* memento_found) {
971 Label no_memento_found;
972 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
974 j(equal, memento_found);
975 bind(&no_memento_found);
979 bool generating_stub_;
980 bool allow_stub_calls_;
982 // This handle will be patched with the code object on installation.
983 Handle<Object> code_object_;
985 // Helper functions for generating invokes.
986 void InvokePrologue(const ParameterCount& expected,
987 const ParameterCount& actual,
988 Handle<Code> code_constant,
989 const Operand& code_operand,
991 bool* definitely_mismatches,
993 Label::Distance done_distance,
994 const CallWrapper& call_wrapper = NullCallWrapper(),
995 CallKind call_kind = CALL_AS_METHOD);
997 void EnterExitFramePrologue();
998 void EnterExitFrameEpilogue(int argc, bool save_doubles);
1000 void LeaveExitFrameEpilogue(bool restore_context);
1002 // Allocation support helpers.
1003 void LoadAllocationTopHelper(Register result,
1005 AllocationFlags flags);
1007 void UpdateAllocationTopHelper(Register result_end,
1009 AllocationFlags flags);
1011 // Helper for PopHandleScope. Allowed to perform a GC and returns
1012 // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and
1013 // possibly returns a failure object indicating an allocation failure.
1014 MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved,
1018 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1019 void InNewSpace(Register object,
1022 Label* condition_met,
1023 Label::Distance condition_met_distance = Label::kFar);
1025 // Helper for finding the mark bits for an address. Afterwards, the
1026 // bitmap register points at the word with the mark bits and the mask
1027 // the position of the first bit. Uses ecx as scratch and leaves addr_reg
1029 inline void GetMarkBits(Register addr_reg,
1030 Register bitmap_reg,
1033 // Helper for throwing exceptions. Compute a handler address and jump to
1034 // it. See the implementation for register usage.
1035 void JumpToHandlerEntry();
1037 // Compute memory operands for safepoint stack slots.
1038 Operand SafepointRegisterSlot(Register reg);
1039 static int SafepointRegisterStackIndex(int reg_code);
1041 // Needs access to SafepointRegisterStackIndex for compiled frame
1043 friend class StandardFrame;
1047 // The code patcher is used to patch (typically) small parts of code e.g. for
1048 // debugging and other types of instrumentation. When using the code patcher
1049 // the exact number of bytes specified must be emitted. Is not legal to emit
1050 // relocation information. If any of these constraints are violated it causes
1054 CodePatcher(byte* address, int size);
1055 virtual ~CodePatcher();
1057 // Macro assembler to emit code.
1058 MacroAssembler* masm() { return &masm_; }
1061 byte* address_; // The address of the code being patched.
1062 int size_; // Number of bytes of the expected patch size.
1063 MacroAssembler masm_; // Macro assembler used to generate the code.
1067 // -----------------------------------------------------------------------------
1068 // Static helper functions.
1070 // Generate an Operand for loading a field from an object.
1071 inline Operand FieldOperand(Register object, int offset) {
1072 return Operand(object, offset - kHeapObjectTag);
1076 // Generate an Operand for loading an indexed field from an object.
1077 inline Operand FieldOperand(Register object,
1081 return Operand(object, index, scale, offset - kHeapObjectTag);
1085 inline Operand ContextOperand(Register context, int index) {
1086 return Operand(context, Context::SlotOffset(index));
1090 inline Operand GlobalObjectOperand() {
1091 return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX);
1095 // Generates an Operand for saving parameters after PrepareCallApiFunction.
1096 Operand ApiParameterOperand(int index);
1099 #ifdef GENERATED_CODE_COVERAGE
1100 extern void LogGeneratedCodeCoverage(const char* file_line);
1101 #define CODE_COVERAGE_STRINGIFY(x) #x
1102 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1103 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1104 #define ACCESS_MASM(masm) { \
1105 byte* ia32_coverage_function = \
1106 reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
1109 masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1110 masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
1117 #define ACCESS_MASM(masm) masm->
1121 } } // namespace v8::internal
1123 #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_