876cd3d1bd04ce0aa99308603c1d81eb999a9a99
[platform/upstream/nodejs.git] / deps / v8 / src / arm / assembler-arm-inl.h
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2012 the V8 project authors. All rights reserved.
36
37 #ifndef V8_ARM_ASSEMBLER_ARM_INL_H_
38 #define V8_ARM_ASSEMBLER_ARM_INL_H_
39
40 #include "src/arm/assembler-arm.h"
41
42 #include "src/assembler.h"
43 #include "src/debug.h"
44
45
46 namespace v8 {
47 namespace internal {
48
49
50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(VFP3); }
51
52
53 int Register::NumAllocatableRegisters() {
54   return kMaxNumAllocatableRegisters;
55 }
56
57
58 int DwVfpRegister::NumRegisters() {
59   return CpuFeatures::IsSupported(VFP32DREGS) ? 32 : 16;
60 }
61
62
63 int DwVfpRegister::NumReservedRegisters() {
64   return kNumReservedRegisters;
65 }
66
67
68 int DwVfpRegister::NumAllocatableRegisters() {
69   return NumRegisters() - kNumReservedRegisters;
70 }
71
72
73 // static
74 int DwVfpRegister::NumAllocatableAliasedRegisters() {
75   return LowDwVfpRegister::kMaxNumLowRegisters - kNumReservedRegisters;
76 }
77
78
79 int DwVfpRegister::ToAllocationIndex(DwVfpRegister reg) {
80   DCHECK(!reg.is(kDoubleRegZero));
81   DCHECK(!reg.is(kScratchDoubleReg));
82   if (reg.code() > kDoubleRegZero.code()) {
83     return reg.code() - kNumReservedRegisters;
84   }
85   return reg.code();
86 }
87
88
89 DwVfpRegister DwVfpRegister::FromAllocationIndex(int index) {
90   DCHECK(index >= 0 && index < NumAllocatableRegisters());
91   DCHECK(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
92          kNumReservedRegisters - 1);
93   if (index >= kDoubleRegZero.code()) {
94     return from_code(index + kNumReservedRegisters);
95   }
96   return from_code(index);
97 }
98
99
100 void RelocInfo::apply(intptr_t delta, ICacheFlushMode icache_flush_mode) {
101   if (RelocInfo::IsInternalReference(rmode_)) {
102     // absolute code pointer inside code object moves with the code object.
103     int32_t* p = reinterpret_cast<int32_t*>(pc_);
104     *p += delta;  // relocate entry
105   }
106   // We do not use pc relative addressing on ARM, so there is
107   // nothing else to do.
108 }
109
110
111 Address RelocInfo::target_address() {
112   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
113   return Assembler::target_address_at(pc_, host_);
114 }
115
116
117 Address RelocInfo::target_address_address() {
118   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
119                               || rmode_ == EMBEDDED_OBJECT
120                               || rmode_ == EXTERNAL_REFERENCE);
121   if (FLAG_enable_ool_constant_pool ||
122       Assembler::IsMovW(Memory::int32_at(pc_))) {
123     // We return the PC for ool constant pool since this function is used by the
124     // serializerer and expects the address to reside within the code object.
125     return reinterpret_cast<Address>(pc_);
126   } else {
127     DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc_)));
128     return constant_pool_entry_address();
129   }
130 }
131
132
133 Address RelocInfo::constant_pool_entry_address() {
134   DCHECK(IsInConstantPool());
135   return Assembler::constant_pool_entry_address(pc_, host_->constant_pool());
136 }
137
138
139 int RelocInfo::target_address_size() {
140   return kPointerSize;
141 }
142
143
144 void RelocInfo::set_target_address(Address target,
145                                    WriteBarrierMode write_barrier_mode,
146                                    ICacheFlushMode icache_flush_mode) {
147   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
148   Assembler::set_target_address_at(pc_, host_, target, icache_flush_mode);
149   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
150       host() != NULL && IsCodeTarget(rmode_)) {
151     Object* target_code = Code::GetCodeFromTargetAddress(target);
152     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
153         host(), this, HeapObject::cast(target_code));
154   }
155 }
156
157
158 Object* RelocInfo::target_object() {
159   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
160   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
161 }
162
163
164 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
165   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
166   return Handle<Object>(reinterpret_cast<Object**>(
167       Assembler::target_address_at(pc_, host_)));
168 }
169
170
171 void RelocInfo::set_target_object(Object* target,
172                                   WriteBarrierMode write_barrier_mode,
173                                   ICacheFlushMode icache_flush_mode) {
174   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
175   Assembler::set_target_address_at(pc_, host_,
176                                    reinterpret_cast<Address>(target),
177                                    icache_flush_mode);
178   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
179       host() != NULL &&
180       target->IsHeapObject()) {
181     host()->GetHeap()->incremental_marking()->RecordWrite(
182         host(), &Memory::Object_at(pc_), HeapObject::cast(target));
183   }
184 }
185
186
187 Address RelocInfo::target_reference() {
188   DCHECK(rmode_ == EXTERNAL_REFERENCE);
189   return Assembler::target_address_at(pc_, host_);
190 }
191
192
193 Address RelocInfo::target_runtime_entry(Assembler* origin) {
194   DCHECK(IsRuntimeEntry(rmode_));
195   return target_address();
196 }
197
198
199 void RelocInfo::set_target_runtime_entry(Address target,
200                                          WriteBarrierMode write_barrier_mode,
201                                          ICacheFlushMode icache_flush_mode) {
202   DCHECK(IsRuntimeEntry(rmode_));
203   if (target_address() != target)
204     set_target_address(target, write_barrier_mode, icache_flush_mode);
205 }
206
207
208 Handle<Cell> RelocInfo::target_cell_handle() {
209   DCHECK(rmode_ == RelocInfo::CELL);
210   Address address = Memory::Address_at(pc_);
211   return Handle<Cell>(reinterpret_cast<Cell**>(address));
212 }
213
214
215 Cell* RelocInfo::target_cell() {
216   DCHECK(rmode_ == RelocInfo::CELL);
217   return Cell::FromValueAddress(Memory::Address_at(pc_));
218 }
219
220
221 void RelocInfo::set_target_cell(Cell* cell,
222                                 WriteBarrierMode write_barrier_mode,
223                                 ICacheFlushMode icache_flush_mode) {
224   DCHECK(rmode_ == RelocInfo::CELL);
225   Address address = cell->address() + Cell::kValueOffset;
226   Memory::Address_at(pc_) = address;
227   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
228     // TODO(1550) We are passing NULL as a slot because cell can never be on
229     // evacuation candidate.
230     host()->GetHeap()->incremental_marking()->RecordWrite(
231         host(), NULL, cell);
232   }
233 }
234
235
236 static const int kNoCodeAgeSequenceLength = 3 * Assembler::kInstrSize;
237
238
239 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
240   UNREACHABLE();  // This should never be reached on Arm.
241   return Handle<Object>();
242 }
243
244
245 Code* RelocInfo::code_age_stub() {
246   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
247   return Code::GetCodeFromTargetAddress(
248       Memory::Address_at(pc_ +
249                          (kNoCodeAgeSequenceLength - Assembler::kInstrSize)));
250 }
251
252
253 void RelocInfo::set_code_age_stub(Code* stub,
254                                   ICacheFlushMode icache_flush_mode) {
255   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
256   Memory::Address_at(pc_ +
257                      (kNoCodeAgeSequenceLength - Assembler::kInstrSize)) =
258       stub->instruction_start();
259 }
260
261
262 Address RelocInfo::call_address() {
263   // The 2 instructions offset assumes patched debug break slot or return
264   // sequence.
265   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
266          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
267   return Memory::Address_at(pc_ + 2 * Assembler::kInstrSize);
268 }
269
270
271 void RelocInfo::set_call_address(Address target) {
272   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
273          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
274   Memory::Address_at(pc_ + 2 * Assembler::kInstrSize) = target;
275   if (host() != NULL) {
276     Object* target_code = Code::GetCodeFromTargetAddress(target);
277     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
278         host(), this, HeapObject::cast(target_code));
279   }
280 }
281
282
283 Object* RelocInfo::call_object() {
284   return *call_object_address();
285 }
286
287
288 void RelocInfo::set_call_object(Object* target) {
289   *call_object_address() = target;
290 }
291
292
293 Object** RelocInfo::call_object_address() {
294   DCHECK((IsJSReturn(rmode()) && IsPatchedReturnSequence()) ||
295          (IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence()));
296   return reinterpret_cast<Object**>(pc_ + 2 * Assembler::kInstrSize);
297 }
298
299
300 void RelocInfo::WipeOut() {
301   DCHECK(IsEmbeddedObject(rmode_) ||
302          IsCodeTarget(rmode_) ||
303          IsRuntimeEntry(rmode_) ||
304          IsExternalReference(rmode_));
305   Assembler::set_target_address_at(pc_, host_, NULL);
306 }
307
308
309 bool RelocInfo::IsPatchedReturnSequence() {
310   Instr current_instr = Assembler::instr_at(pc_);
311   Instr next_instr = Assembler::instr_at(pc_ + Assembler::kInstrSize);
312   // A patched return sequence is:
313   //  ldr ip, [pc, #0]
314   //  blx ip
315   return Assembler::IsLdrPcImmediateOffset(current_instr) &&
316          Assembler::IsBlxReg(next_instr);
317 }
318
319
320 bool RelocInfo::IsPatchedDebugBreakSlotSequence() {
321   Instr current_instr = Assembler::instr_at(pc_);
322   return !Assembler::IsNop(current_instr, Assembler::DEBUG_BREAK_NOP);
323 }
324
325
326 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
327   RelocInfo::Mode mode = rmode();
328   if (mode == RelocInfo::EMBEDDED_OBJECT) {
329     visitor->VisitEmbeddedPointer(this);
330   } else if (RelocInfo::IsCodeTarget(mode)) {
331     visitor->VisitCodeTarget(this);
332   } else if (mode == RelocInfo::CELL) {
333     visitor->VisitCell(this);
334   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
335     visitor->VisitExternalReference(this);
336   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
337     visitor->VisitCodeAgeSequence(this);
338   } else if (((RelocInfo::IsJSReturn(mode) &&
339               IsPatchedReturnSequence()) ||
340              (RelocInfo::IsDebugBreakSlot(mode) &&
341               IsPatchedDebugBreakSlotSequence())) &&
342              isolate->debug()->has_break_points()) {
343     visitor->VisitDebugTarget(this);
344   } else if (RelocInfo::IsRuntimeEntry(mode)) {
345     visitor->VisitRuntimeEntry(this);
346   }
347 }
348
349
350 template<typename StaticVisitor>
351 void RelocInfo::Visit(Heap* heap) {
352   RelocInfo::Mode mode = rmode();
353   if (mode == RelocInfo::EMBEDDED_OBJECT) {
354     StaticVisitor::VisitEmbeddedPointer(heap, this);
355   } else if (RelocInfo::IsCodeTarget(mode)) {
356     StaticVisitor::VisitCodeTarget(heap, this);
357   } else if (mode == RelocInfo::CELL) {
358     StaticVisitor::VisitCell(heap, this);
359   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
360     StaticVisitor::VisitExternalReference(this);
361   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
362     StaticVisitor::VisitCodeAgeSequence(heap, this);
363   } else if (heap->isolate()->debug()->has_break_points() &&
364              ((RelocInfo::IsJSReturn(mode) &&
365               IsPatchedReturnSequence()) ||
366              (RelocInfo::IsDebugBreakSlot(mode) &&
367               IsPatchedDebugBreakSlotSequence()))) {
368     StaticVisitor::VisitDebugTarget(heap, this);
369   } else if (RelocInfo::IsRuntimeEntry(mode)) {
370     StaticVisitor::VisitRuntimeEntry(this);
371   }
372 }
373
374
375 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
376   rm_ = no_reg;
377   imm32_ = immediate;
378   rmode_ = rmode;
379 }
380
381
382 Operand::Operand(const ExternalReference& f)  {
383   rm_ = no_reg;
384   imm32_ = reinterpret_cast<int32_t>(f.address());
385   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
386 }
387
388
389 Operand::Operand(Smi* value) {
390   rm_ = no_reg;
391   imm32_ =  reinterpret_cast<intptr_t>(value);
392   rmode_ = RelocInfo::NONE32;
393 }
394
395
396 Operand::Operand(Register rm) {
397   rm_ = rm;
398   rs_ = no_reg;
399   shift_op_ = LSL;
400   shift_imm_ = 0;
401 }
402
403
404 bool Operand::is_reg() const {
405   return rm_.is_valid() &&
406          rs_.is(no_reg) &&
407          shift_op_ == LSL &&
408          shift_imm_ == 0;
409 }
410
411
412 void Assembler::CheckBuffer() {
413   if (buffer_space() <= kGap) {
414     GrowBuffer();
415   }
416   if (pc_offset() >= next_buffer_check_) {
417     CheckConstPool(false, true);
418   }
419 }
420
421
422 void Assembler::emit(Instr x) {
423   CheckBuffer();
424   *reinterpret_cast<Instr*>(pc_) = x;
425   pc_ += kInstrSize;
426 }
427
428
429 Address Assembler::target_address_from_return_address(Address pc) {
430   // Returns the address of the call target from the return address that will
431   // be returned to after a call.
432   // Call sequence on V7 or later is:
433   //  movw  ip, #... @ call address low 16
434   //  movt  ip, #... @ call address high 16
435   //  blx   ip
436   //                      @ return address
437   // For V6 when the constant pool is unavailable, it is:
438   //  mov  ip, #...     @ call address low 8
439   //  orr  ip, ip, #... @ call address 2nd 8
440   //  orr  ip, ip, #... @ call address 3rd 8
441   //  orr  ip, ip, #... @ call address high 8
442   //  blx   ip
443   //                      @ return address
444   // In cases that need frequent patching, the address is in the
445   // constant pool.  It could be a small constant pool load:
446   //  ldr   ip, [pc / pp, #...] @ call address
447   //  blx   ip
448   //                      @ return address
449   // Or an extended constant pool load (ARMv7):
450   //  movw  ip, #...
451   //  movt  ip, #...
452   //  ldr   ip, [pc, ip]  @ call address
453   //  blx   ip
454   //                      @ return address
455   // Or an extended constant pool load (ARMv6):
456   //  mov  ip, #...
457   //  orr  ip, ip, #...
458   //  orr  ip, ip, #...
459   //  orr  ip, ip, #...
460   //  ldr   ip, [pc, ip]  @ call address
461   //  blx   ip
462   //                      @ return address
463   Address candidate = pc - 2 * Assembler::kInstrSize;
464   Instr candidate_instr(Memory::int32_at(candidate));
465   if (IsLdrPcImmediateOffset(candidate_instr) |
466       IsLdrPpImmediateOffset(candidate_instr)) {
467     return candidate;
468   } else {
469     if (IsLdrPpRegOffset(candidate_instr)) {
470       candidate -= Assembler::kInstrSize;
471     }
472     if (CpuFeatures::IsSupported(ARMv7)) {
473       candidate -= 1 * Assembler::kInstrSize;
474       DCHECK(IsMovW(Memory::int32_at(candidate)) &&
475              IsMovT(Memory::int32_at(candidate + Assembler::kInstrSize)));
476     } else {
477       candidate -= 3 * Assembler::kInstrSize;
478       DCHECK(
479           IsMovImmed(Memory::int32_at(candidate)) &&
480           IsOrrImmed(Memory::int32_at(candidate + Assembler::kInstrSize)) &&
481           IsOrrImmed(Memory::int32_at(candidate + 2 * Assembler::kInstrSize)) &&
482           IsOrrImmed(Memory::int32_at(candidate + 3 * Assembler::kInstrSize)));
483     }
484     return candidate;
485   }
486 }
487
488
489 Address Assembler::break_address_from_return_address(Address pc) {
490   return pc - Assembler::kPatchDebugBreakSlotReturnOffset;
491 }
492
493
494 Address Assembler::return_address_from_call_start(Address pc) {
495   if (IsLdrPcImmediateOffset(Memory::int32_at(pc)) |
496       IsLdrPpImmediateOffset(Memory::int32_at(pc))) {
497     // Load from constant pool, small section.
498     return pc + kInstrSize * 2;
499   } else {
500     if (CpuFeatures::IsSupported(ARMv7)) {
501       DCHECK(IsMovW(Memory::int32_at(pc)));
502       DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
503       if (IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize))) {
504         // Load from constant pool, extended section.
505         return pc + kInstrSize * 4;
506       } else {
507         // A movw / movt load immediate.
508         return pc + kInstrSize * 3;
509       }
510     } else {
511       DCHECK(IsMovImmed(Memory::int32_at(pc)));
512       DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)));
513       DCHECK(IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)));
514       DCHECK(IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
515       if (IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize))) {
516         // Load from constant pool, extended section.
517         return pc + kInstrSize * 6;
518       } else {
519         // A mov / orr load immediate.
520         return pc + kInstrSize * 5;
521       }
522     }
523   }
524 }
525
526
527 void Assembler::deserialization_set_special_target_at(
528     Address constant_pool_entry, Code* code, Address target) {
529   if (FLAG_enable_ool_constant_pool) {
530     set_target_address_at(constant_pool_entry, code, target);
531   } else {
532     Memory::Address_at(constant_pool_entry) = target;
533   }
534 }
535
536
537 bool Assembler::is_constant_pool_load(Address pc) {
538   if (CpuFeatures::IsSupported(ARMv7)) {
539     return !Assembler::IsMovW(Memory::int32_at(pc)) ||
540            (FLAG_enable_ool_constant_pool &&
541             Assembler::IsLdrPpRegOffset(
542                 Memory::int32_at(pc + 2 * Assembler::kInstrSize)));
543   } else {
544     return !Assembler::IsMovImmed(Memory::int32_at(pc)) ||
545            (FLAG_enable_ool_constant_pool &&
546             Assembler::IsLdrPpRegOffset(
547                 Memory::int32_at(pc + 4 * Assembler::kInstrSize)));
548   }
549 }
550
551
552 Address Assembler::constant_pool_entry_address(
553     Address pc, ConstantPoolArray* constant_pool) {
554   if (FLAG_enable_ool_constant_pool) {
555     DCHECK(constant_pool != NULL);
556     int cp_offset;
557     if (!CpuFeatures::IsSupported(ARMv7) && IsMovImmed(Memory::int32_at(pc))) {
558       DCHECK(IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
559              IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
560              IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)) &&
561              IsLdrPpRegOffset(Memory::int32_at(pc + 4 * kInstrSize)));
562       // This is an extended constant pool lookup (ARMv6).
563       Instr mov_instr = instr_at(pc);
564       Instr orr_instr_1 = instr_at(pc + kInstrSize);
565       Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
566       Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
567       cp_offset = DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
568                   DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3);
569     } else if (IsMovW(Memory::int32_at(pc))) {
570       DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)) &&
571              IsLdrPpRegOffset(Memory::int32_at(pc + 2 * kInstrSize)));
572       // This is an extended constant pool lookup (ARMv7).
573       Instruction* movw_instr = Instruction::At(pc);
574       Instruction* movt_instr = Instruction::At(pc + kInstrSize);
575       cp_offset = (movt_instr->ImmedMovwMovtValue() << 16) |
576                   movw_instr->ImmedMovwMovtValue();
577     } else {
578       // This is a small constant pool lookup.
579       DCHECK(Assembler::IsLdrPpImmediateOffset(Memory::int32_at(pc)));
580       cp_offset = GetLdrRegisterImmediateOffset(Memory::int32_at(pc));
581     }
582     return reinterpret_cast<Address>(constant_pool) + cp_offset;
583   } else {
584     DCHECK(Assembler::IsLdrPcImmediateOffset(Memory::int32_at(pc)));
585     Instr instr = Memory::int32_at(pc);
586     return pc + GetLdrRegisterImmediateOffset(instr) + kPcLoadDelta;
587   }
588 }
589
590
591 Address Assembler::target_address_at(Address pc,
592                                      ConstantPoolArray* constant_pool) {
593   if (is_constant_pool_load(pc)) {
594     // This is a constant pool lookup. Return the value in the constant pool.
595     return Memory::Address_at(constant_pool_entry_address(pc, constant_pool));
596   } else if (CpuFeatures::IsSupported(ARMv7)) {
597     // This is an movw / movt immediate load. Return the immediate.
598     DCHECK(IsMovW(Memory::int32_at(pc)) &&
599            IsMovT(Memory::int32_at(pc + kInstrSize)));
600     Instruction* movw_instr = Instruction::At(pc);
601     Instruction* movt_instr = Instruction::At(pc + kInstrSize);
602     return reinterpret_cast<Address>(
603         (movt_instr->ImmedMovwMovtValue() << 16) |
604          movw_instr->ImmedMovwMovtValue());
605   } else {
606     // This is an mov / orr immediate load. Return the immediate.
607     DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
608            IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
609            IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
610            IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
611     Instr mov_instr = instr_at(pc);
612     Instr orr_instr_1 = instr_at(pc + kInstrSize);
613     Instr orr_instr_2 = instr_at(pc + 2 * kInstrSize);
614     Instr orr_instr_3 = instr_at(pc + 3 * kInstrSize);
615     Address ret = reinterpret_cast<Address>(
616         DecodeShiftImm(mov_instr) | DecodeShiftImm(orr_instr_1) |
617         DecodeShiftImm(orr_instr_2) | DecodeShiftImm(orr_instr_3));
618     return ret;
619   }
620 }
621
622
623 void Assembler::set_target_address_at(Address pc,
624                                       ConstantPoolArray* constant_pool,
625                                       Address target,
626                                       ICacheFlushMode icache_flush_mode) {
627   if (is_constant_pool_load(pc)) {
628     // This is a constant pool lookup. Update the entry in the constant pool.
629     Memory::Address_at(constant_pool_entry_address(pc, constant_pool)) = target;
630     // Intuitively, we would think it is necessary to always flush the
631     // instruction cache after patching a target address in the code as follows:
632     //   CpuFeatures::FlushICache(pc, sizeof(target));
633     // However, on ARM, no instruction is actually patched in the case
634     // of embedded constants of the form:
635     // ldr   ip, [pp, #...]
636     // since the instruction accessing this address in the constant pool remains
637     // unchanged.
638   } else if (CpuFeatures::IsSupported(ARMv7)) {
639     // This is an movw / movt immediate load. Patch the immediate embedded in
640     // the instructions.
641     DCHECK(IsMovW(Memory::int32_at(pc)));
642     DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
643     uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
644     uint32_t immediate = reinterpret_cast<uint32_t>(target);
645     instr_ptr[0] = PatchMovwImmediate(instr_ptr[0], immediate & 0xFFFF);
646     instr_ptr[1] = PatchMovwImmediate(instr_ptr[1], immediate >> 16);
647     DCHECK(IsMovW(Memory::int32_at(pc)));
648     DCHECK(IsMovT(Memory::int32_at(pc + kInstrSize)));
649     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
650       CpuFeatures::FlushICache(pc, 2 * kInstrSize);
651     }
652   } else {
653     // This is an mov / orr immediate load. Patch the immediate embedded in
654     // the instructions.
655     DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
656            IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
657            IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
658            IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
659     uint32_t* instr_ptr = reinterpret_cast<uint32_t*>(pc);
660     uint32_t immediate = reinterpret_cast<uint32_t>(target);
661     instr_ptr[0] = PatchShiftImm(instr_ptr[0], immediate & kImm8Mask);
662     instr_ptr[1] = PatchShiftImm(instr_ptr[1], immediate & (kImm8Mask << 8));
663     instr_ptr[2] = PatchShiftImm(instr_ptr[2], immediate & (kImm8Mask << 16));
664     instr_ptr[3] = PatchShiftImm(instr_ptr[3], immediate & (kImm8Mask << 24));
665     DCHECK(IsMovImmed(Memory::int32_at(pc)) &&
666            IsOrrImmed(Memory::int32_at(pc + kInstrSize)) &&
667            IsOrrImmed(Memory::int32_at(pc + 2 * kInstrSize)) &&
668            IsOrrImmed(Memory::int32_at(pc + 3 * kInstrSize)));
669     if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
670       CpuFeatures::FlushICache(pc, 4 * kInstrSize);
671     }
672   }
673 }
674
675
676 } }  // namespace v8::internal
677
678 #endif  // V8_ARM_ASSEMBLER_ARM_INL_H_