1 <?xml version="1.0"?>
\r
2 <!----------------------------------------------------------------------------
\r
4 Contributed by Oscar Deniz Suarez
\r
5 More information can be found at http://visilab.etsii.uclm.es/personas/oscar/oscar.html
\r
7 //////////////////////////////////////////////////////////////////////////
\r
8 | Contributors License Agreement
\r
9 | IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
\r
10 | By downloading, copying, installing or using the software you agree
\r
12 | If you do not agree to this license, do not download, install,
\r
13 | copy or use the software.
\r
15 | Copyright (c) 2011, Modesto Castrillon-Santana (IUSIANI, Universidad de
\r
16 | Las Palmas de Gran Canaria, Spain).
\r
17 | All rights reserved.
\r
19 | Redistribution and use in source and binary forms, with or without
\r
20 | modification, are permitted provided that the following conditions are
\r
23 | * Redistributions of source code must retain the above copyright
\r
24 | notice, this list of conditions and the following disclaimer.
\r
25 | * Redistributions in binary form must reproduce the above
\r
26 | copyright notice, this list of conditions and the following
\r
27 | disclaimer in the documentation and/or other materials provided
\r
28 | with the distribution.
\r
29 | * The name of Contributor may not used to endorse or promote products
\r
30 | derived from this software without specific prior written permission.
\r
32 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
\r
33 | "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
\r
34 | LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
\r
35 | A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
\r
36 | CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
\r
37 | EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
\r
38 | PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
\r
39 | PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
\r
40 | LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
\r
41 | NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
\r
42 | SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Back to
\r
44 //////////////////////////////////////////////////////////////////////////
\r
46 ------------------------------------------------------------------------>
\r
48 <!-- Automatically converted from data/classifier, window size = 36x18 -->
\r
49 <SmileDetector type_id="opencv-haar-classifier">
\r
65 0 2 2 2 2.</_></rects>
\r
66 <tilted>0</tilted></feature>
\r
67 <threshold>-4.8783610691316426e-004</threshold>
\r
68 <left_val>0.5921934843063355</left_val>
\r
69 <right_val>-0.4416360855102539</right_val></_></_>
\r
79 34 14 2 4 2.</_></rects>
\r
80 <tilted>0</tilted></feature>
\r
81 <threshold>-4.2209611274302006e-004</threshold>
\r
82 <left_val>0.3031865060329437</left_val>
\r
83 <right_val>-0.3291291892528534</right_val></_></_>
\r
93 0 14 2 4 2.</_></rects>
\r
94 <tilted>0</tilted></feature>
\r
95 <threshold>-4.9940118333324790e-004</threshold>
\r
96 <left_val>0.4856331050395966</left_val>
\r
97 <right_val>-0.4292306005954742</right_val></_></_>
\r
109 15 5 9 5 2.</_></rects>
\r
110 <tilted>0</tilted></feature>
\r
111 <threshold>0.0372891984879971</threshold>
\r
112 <left_val>-0.2866730093955994</left_val>
\r
113 <right_val>0.5997999906539917</right_val></_></_>
\r
123 7 0 2 4 2.</_></rects>
\r
124 <tilted>1</tilted></feature>
\r
125 <threshold>1.4334049774333835e-003</threshold>
\r
126 <left_val>-0.3489313125610352</left_val>
\r
127 <right_val>0.4048275053501129</right_val></_></_>
\r
137 15 6 6 2 2.</_></rects>
\r
138 <tilted>0</tilted></feature>
\r
139 <threshold>-7.7213020995259285e-003</threshold>
\r
140 <left_val>0.7571418881416321</left_val>
\r
141 <right_val>-0.1222594976425171</right_val></_></_>
\r
151 13 7 8 1 3.</_></rects>
\r
152 <tilted>0</tilted></feature>
\r
153 <threshold>8.1067271530628204e-003</threshold>
\r
154 <left_val>-0.1665772050619125</left_val>
\r
155 <right_val>0.7509614825248718</right_val></_></_>
\r
165 14 7 8 2 2.</_></rects>
\r
166 <tilted>0</tilted></feature>
\r
167 <threshold>-7.7238711528480053e-003</threshold>
\r
168 <left_val>0.6266279220581055</left_val>
\r
169 <right_val>-0.1912745982408524</right_val></_></_>
\r
179 0 14 2 4 2.</_></rects>
\r
180 <tilted>0</tilted></feature>
\r
181 <threshold>4.4225031160749495e-004</threshold>
\r
182 <left_val>-0.2394447028636932</left_val>
\r
183 <right_val>0.4484061896800995</right_val></_></_>
\r
195 34 8 1 8 2.</_></rects>
\r
196 <tilted>0</tilted></feature>
\r
197 <threshold>-1.6867710510268807e-003</threshold>
\r
198 <left_val>-0.1843906939029694</left_val>
\r
199 <right_val>0.0917824134230614</right_val></_></_>
\r
209 3 0 2 7 2.</_></rects>
\r
210 <tilted>0</tilted></feature>
\r
211 <threshold>0.0146256200969219</threshold>
\r
212 <left_val>0.1616805940866470</left_val>
\r
213 <right_val>-0.8150117993354797</right_val></_></_></trees>
\r
214 <stage_threshold>-1.2678639888763428</stage_threshold>
\r
215 <parent>-1</parent>
\r
216 <next>-1</next></_>
\r
229 11 7 14 3 2.</_></rects>
\r
230 <tilted>0</tilted></feature>
\r
231 <threshold>0.0381411388516426</threshold>
\r
232 <left_val>-0.3327588140964508</left_val>
\r
233 <right_val>0.7783334255218506</right_val></_></_>
\r
243 34 1 2 1 2.</_></rects>
\r
244 <tilted>0</tilted></feature>
\r
245 <threshold>-1.3136120105627924e-004</threshold>
\r
246 <left_val>0.3635309040546417</left_val>
\r
247 <right_val>-0.3204346895217896</right_val></_></_>
\r
257 0 15 4 3 2.</_></rects>
\r
258 <tilted>0</tilted></feature>
\r
259 <threshold>-3.8757019210606813e-003</threshold>
\r
260 <left_val>0.7135239243507385</left_val>
\r
261 <right_val>-0.3518598973751068</right_val></_></_>
\r
271 34 1 2 1 2.</_></rects>
\r
272 <tilted>0</tilted></feature>
\r
273 <threshold>1.4266290236264467e-003</threshold>
\r
274 <left_val>0.0681008473038673</left_val>
\r
275 <right_val>-0.6172732710838318</right_val></_></_>
\r
285 0 1 2 1 2.</_></rects>
\r
286 <tilted>0</tilted></feature>
\r
287 <threshold>-2.4605958606116474e-004</threshold>
\r
288 <left_val>0.5727149844169617</left_val>
\r
289 <right_val>-0.3786099851131439</right_val></_></_>
\r
299 20 5 3 12 3.</_></rects>
\r
300 <tilted>0</tilted></feature>
\r
301 <threshold>-0.0318226404488087</threshold>
\r
302 <left_val>-0.6348456144332886</left_val>
\r
303 <right_val>0.1164183989167213</right_val></_></_>
\r
313 13 5 3 12 3.</_></rects>
\r
314 <tilted>0</tilted></feature>
\r
315 <threshold>-0.0171309504657984</threshold>
\r
316 <left_val>-0.6279314756393433</left_val>
\r
317 <right_val>0.3247947096824646</right_val></_></_>
\r
327 4 0 16 1 2.</_></rects>
\r
328 <tilted>0</tilted></feature>
\r
329 <threshold>-9.3903783708810806e-003</threshold>
\r
330 <left_val>-0.2757895886898041</left_val>
\r
331 <right_val>0.2233072966337204</right_val></_></_>
\r
341 1 0 1 3 3.</_></rects>
\r
342 <tilted>0</tilted></feature>
\r
343 <threshold>2.2802520543336868e-003</threshold>
\r
344 <left_val>0.1897764056921005</left_val>
\r
345 <right_val>-0.6881762146949768</right_val></_></_>
\r
355 33 8 2 7 2.</_></rects>
\r
356 <tilted>1</tilted></feature>
\r
357 <threshold>2.6840099599212408e-003</threshold>
\r
358 <left_val>-0.2235050052404404</left_val>
\r
359 <right_val>0.1372579932212830</right_val></_></_>
\r
371 11 3 4 3 2.</_></rects>
\r
372 <tilted>0</tilted></feature>
\r
373 <threshold>0.0106046395376325</threshold>
\r
374 <left_val>-0.2142623066902161</left_val>
\r
375 <right_val>0.5620787143707275</right_val></_></_></trees>
\r
376 <stage_threshold>-1.5844069719314575</stage_threshold>
\r
378 <next>-1</next></_>
\r
391 0 1 2 1 2.</_></rects>
\r
392 <tilted>0</tilted></feature>
\r
393 <threshold>-3.1677199876867235e-004</threshold>
\r
394 <left_val>0.4659548103809357</left_val>
\r
395 <right_val>-0.3742581903934479</right_val></_></_>
\r
405 29 3 4 9 2.</_></rects>
\r
406 <tilted>1</tilted></feature>
\r
407 <threshold>-0.0551206283271313</threshold>
\r
408 <left_val>0.5417978763580322</left_val>
\r
409 <right_val>-0.2265765070915222</right_val></_></_>
\r
419 1 14 1 4 2.</_></rects>
\r
420 <tilted>0</tilted></feature>
\r
421 <threshold>-6.4742640824988484e-004</threshold>
\r
422 <left_val>0.3770307004451752</left_val>
\r
423 <right_val>-0.3348644077777863</right_val></_></_>
\r
433 13 9 10 3 9.</_></rects>
\r
434 <tilted>0</tilted></feature>
\r
435 <threshold>0.3950783908367157</threshold>
\r
436 <left_val>-0.1814441978931427</left_val>
\r
437 <right_val>0.8132591843605042</right_val></_></_>
\r
447 12 7 8 2 3.</_></rects>
\r
448 <tilted>0</tilted></feature>
\r
449 <threshold>0.0405094102025032</threshold>
\r
450 <left_val>-0.0953694134950638</left_val>
\r
451 <right_val>0.8059561848640442</right_val></_></_>
\r
461 16 5 6 1 3.</_></rects>
\r
462 <tilted>0</tilted></feature>
\r
463 <threshold>4.8735421150922775e-003</threshold>
\r
464 <left_val>-0.1402366012334824</left_val>
\r
465 <right_val>0.6164302825927734</right_val></_></_>
\r
477 1 9 1 9 2.</_></rects>
\r
478 <tilted>0</tilted></feature>
\r
479 <threshold>0.0105780400335789</threshold>
\r
480 <left_val>0.1293267011642456</left_val>
\r
481 <right_val>-0.7482334971427918</right_val></_></_>
\r
493 34 9 1 7 2.</_></rects>
\r
494 <tilted>0</tilted></feature>
\r
495 <threshold>9.2986393719911575e-003</threshold>
\r
496 <left_val>0.0589406006038189</left_val>
\r
497 <right_val>-0.4410730004310608</right_val></_></_>
\r
509 1 9 1 7 2.</_></rects>
\r
510 <tilted>0</tilted></feature>
\r
511 <threshold>-5.0301607698202133e-003</threshold>
\r
512 <left_val>-0.6630973219871521</left_val>
\r
513 <right_val>0.1810476928949356</right_val></_></_>
\r
523 35 2 1 2 2.</_></rects>
\r
524 <tilted>0</tilted></feature>
\r
525 <threshold>-1.0947990085696802e-004</threshold>
\r
526 <left_val>0.2211259007453919</left_val>
\r
527 <right_val>-0.2730903923511505</right_val></_></_>
\r
539 17 9 12 9 2.</_></rects>
\r
540 <tilted>0</tilted></feature>
\r
541 <threshold>-0.1168550997972488</threshold>
\r
542 <left_val>-0.7720596790313721</left_val>
\r
543 <right_val>0.1248165965080261</right_val></_></_>
\r
553 35 17 1 1 2.</_></rects>
\r
554 <tilted>0</tilted></feature>
\r
555 <threshold>-4.3603649828583002e-005</threshold>
\r
556 <left_val>0.1367060989141464</left_val>
\r
557 <right_val>-0.1612793952226639</right_val></_></_>
\r
567 0 17 1 1 2.</_></rects>
\r
568 <tilted>0</tilted></feature>
\r
569 <threshold>-1.5056360280141234e-004</threshold>
\r
570 <left_val>0.4486046135425568</left_val>
\r
571 <right_val>-0.2171128988265991</right_val></_></_>
\r
581 19 6 4 12 2.</_></rects>
\r
582 <tilted>0</tilted></feature>
\r
583 <threshold>-0.0163946095854044</threshold>
\r
584 <left_val>-0.6582735180854797</left_val>
\r
585 <right_val>0.1674550026655197</right_val></_></_>
\r
595 13 5 4 13 2.</_></rects>
\r
596 <tilted>0</tilted></feature>
\r
597 <threshold>-0.0144828604534268</threshold>
\r
598 <left_val>-0.6834514737129211</left_val>
\r
599 <right_val>0.1345615983009338</right_val></_></_>
\r
609 35 17 1 1 2.</_></rects>
\r
610 <tilted>0</tilted></feature>
\r
611 <threshold>3.9269471017178148e-005</threshold>
\r
612 <left_val>-0.1499813944101334</left_val>
\r
613 <right_val>0.1601772010326386</right_val></_></_>
\r
623 10 10 12 1 3.</_></rects>
\r
624 <tilted>0</tilted></feature>
\r
625 <threshold>7.4323131702840328e-003</threshold>
\r
626 <left_val>-0.1684845983982086</left_val>
\r
627 <right_val>0.5396398901939392</right_val></_></_></trees>
\r
628 <stage_threshold>-1.3820559978485107</stage_threshold>
\r
630 <next>-1</next></_>
\r
643 0 14 1 4 2.</_></rects>
\r
644 <tilted>0</tilted></feature>
\r
645 <threshold>-4.3472499237395823e-004</threshold>
\r
646 <left_val>0.4394924044609070</left_val>
\r
647 <right_val>-0.4224875867366791</right_val></_></_>
\r
659 20 5 5 5 2.</_></rects>
\r
660 <tilted>0</tilted></feature>
\r
661 <threshold>0.0329953208565712</threshold>
\r
662 <left_val>-0.1979825049638748</left_val>
\r
663 <right_val>0.5953487157821655</right_val></_></_>
\r
673 0 2 1 2 2.</_></rects>
\r
674 <tilted>0</tilted></feature>
\r
675 <threshold>-4.1011828579939902e-004</threshold>
\r
676 <left_val>0.4440306127071381</left_val>
\r
677 <right_val>-0.3074846863746643</right_val></_></_>
\r
687 19 9 13 9 2.</_></rects>
\r
688 <tilted>0</tilted></feature>
\r
689 <threshold>-0.0819697380065918</threshold>
\r
690 <left_val>-0.5333436727523804</left_val>
\r
691 <right_val>0.1671810001134872</right_val></_></_>
\r
703 11 3 7 3 2.</_></rects>
\r
704 <tilted>0</tilted></feature>
\r
705 <threshold>0.0177787002176046</threshold>
\r
706 <left_val>-0.2045017927885056</left_val>
\r
707 <right_val>0.5144413113594055</right_val></_></_>
\r
717 16 7 6 2 3.</_></rects>
\r
718 <tilted>0</tilted></feature>
\r
719 <threshold>0.0228346996009350</threshold>
\r
720 <left_val>-0.1484607011079788</left_val>
\r
721 <right_val>0.5624278783798218</right_val></_></_>
\r
731 13 9 7 4 2.</_></rects>
\r
732 <tilted>0</tilted></feature>
\r
733 <threshold>0.0386043414473534</threshold>
\r
734 <left_val>-0.1273147016763687</left_val>
\r
735 <right_val>0.8149448037147522</right_val></_></_>
\r
745 34 0 1 1 3.</_></rects>
\r
746 <tilted>0</tilted></feature>
\r
747 <threshold>-7.3286908445879817e-004</threshold>
\r
748 <left_val>-0.3719344139099121</left_val>
\r
749 <right_val>0.0676164999604225</right_val></_></_>
\r
759 6 2 10 2 2.</_></rects>
\r
760 <tilted>1</tilted></feature>
\r
761 <threshold>-0.0232290402054787</threshold>
\r
762 <left_val>0.7123206257820129</left_val>
\r
763 <right_val>-0.1158939003944397</right_val></_></_>
\r
775 15 10 3 8 2.</_></rects>
\r
776 <tilted>0</tilted></feature>
\r
777 <threshold>-0.0195753592997789</threshold>
\r
778 <left_val>-0.6899073123931885</left_val>
\r
779 <right_val>0.1399950981140137</right_val></_></_>
\r
789 0 14 1 4 2.</_></rects>
\r
790 <tilted>0</tilted></feature>
\r
791 <threshold>4.1991271427832544e-004</threshold>
\r
792 <left_val>-0.1835464984178543</left_val>
\r
793 <right_val>0.4943555891513825</right_val></_></_>
\r
803 29 6 2 6 3.</_></rects>
\r
804 <tilted>1</tilted></feature>
\r
805 <threshold>-0.0570897497236729</threshold>
\r
806 <left_val>0.6260784864425659</left_val>
\r
807 <right_val>-0.0785768479108810</right_val></_></_>
\r
817 16 5 4 8 2.</_></rects>
\r
818 <tilted>0</tilted></feature>
\r
819 <threshold>0.0256996992975473</threshold>
\r
820 <left_val>0.1155714020133019</left_val>
\r
821 <right_val>-0.8193519115447998</right_val></_></_>
\r
831 29 7 2 6 3.</_></rects>
\r
832 <tilted>1</tilted></feature>
\r
833 <threshold>0.0325796194374561</threshold>
\r
834 <left_val>-0.1176773980259895</left_val>
\r
835 <right_val>0.4277622103691101</right_val></_></_>
\r
845 7 7 6 2 3.</_></rects>
\r
846 <tilted>1</tilted></feature>
\r
847 <threshold>-0.0205922499299049</threshold>
\r
848 <left_val>0.4868524074554443</left_val>
\r
849 <right_val>-0.2131853997707367</right_val></_></_>
\r
859 15 5 6 9 2.</_></rects>
\r
860 <tilted>0</tilted></feature>
\r
861 <threshold>-0.0174852795898914</threshold>
\r
862 <left_val>-0.5228734016418457</left_val>
\r
863 <right_val>0.1339704990386963</right_val></_></_>
\r
873 1 0 1 1 3.</_></rects>
\r
874 <tilted>0</tilted></feature>
\r
875 <threshold>8.9153228327631950e-004</threshold>
\r
876 <left_val>0.0963044911623001</left_val>
\r
877 <right_val>-0.6886307001113892</right_val></_></_>
\r
887 15 6 18 2 3.</_></rects>
\r
888 <tilted>0</tilted></feature>
\r
889 <threshold>0.0575339011847973</threshold>
\r
890 <left_val>-0.0870805233716965</left_val>
\r
891 <right_val>0.4048064947128296</right_val></_></_></trees>
\r
892 <stage_threshold>-1.3879380226135254</stage_threshold>
\r
894 <next>-1</next></_>
\r
907 0 13 1 3 2.</_></rects>
\r
908 <tilted>0</tilted></feature>
\r
909 <threshold>-4.6606198884546757e-004</threshold>
\r
910 <left_val>0.4277374148368835</left_val>
\r
911 <right_val>-0.3542076945304871</right_val></_></_>
\r
921 13 8 10 2 9.</_></rects>
\r
922 <tilted>0</tilted></feature>
\r
923 <threshold>0.3055455982685089</threshold>
\r
924 <left_val>-0.1639281064271927</left_val>
\r
925 <right_val>0.8606523275375366</right_val></_></_>
\r
935 11 8 12 2 2.</_></rects>
\r
936 <tilted>0</tilted></feature>
\r
937 <threshold>-0.0114494003355503</threshold>
\r
938 <left_val>0.5972732901573181</left_val>
\r
939 <right_val>-0.2323434054851532</right_val></_></_>
\r
949 14 9 9 1 3.</_></rects>
\r
950 <tilted>0</tilted></feature>
\r
951 <threshold>6.3891541212797165e-003</threshold>
\r
952 <left_val>-0.1291541010141373</left_val>
\r
953 <right_val>0.6105204224586487</right_val></_></_>
\r
963 14 9 7 2 2.</_></rects>
\r
964 <tilted>0</tilted></feature>
\r
965 <threshold>-8.4334248676896095e-003</threshold>
\r
966 <left_val>0.4792853891849518</left_val>
\r
967 <right_val>-0.1900272965431213</right_val></_></_>
\r
977 12 9 18 2 3.</_></rects>
\r
978 <tilted>0</tilted></feature>
\r
979 <threshold>0.0538089312613010</threshold>
\r
980 <left_val>-0.1149377003312111</left_val>
\r
981 <right_val>0.5339453816413879</right_val></_></_>
\r
991 7 13 3 5 2.</_></rects>
\r
992 <tilted>0</tilted></feature>
\r
993 <threshold>-4.7580219688825309e-004</threshold>
\r
994 <left_val>-0.3459854125976563</left_val>
\r
995 <right_val>0.2548804879188538</right_val></_></_>
\r
1005 35 13 1 3 2.</_></rects>
\r
1006 <tilted>0</tilted></feature>
\r
1007 <threshold>-1.3450840197037905e-004</threshold>
\r
1008 <left_val>0.2241459041833878</left_val>
\r
1009 <right_val>-0.1955007016658783</right_val></_></_>
\r
1013 <!-- root node -->
\r
1019 0 13 1 3 2.</_></rects>
\r
1020 <tilted>0</tilted></feature>
\r
1021 <threshold>5.0016911700367928e-004</threshold>
\r
1022 <left_val>-0.1972054988145828</left_val>
\r
1023 <right_val>0.4967764019966126</right_val></_></_>
\r
1027 <!-- root node -->
\r
1033 21 13 3 5 3.</_></rects>
\r
1034 <tilted>0</tilted></feature>
\r
1035 <threshold>0.0150632699951530</threshold>
\r
1036 <left_val>0.1063077002763748</left_val>
\r
1037 <right_val>-0.4113821089267731</right_val></_></_>
\r
1041 <!-- root node -->
\r
1047 15 10 6 2 2.</_></rects>
\r
1048 <tilted>0</tilted></feature>
\r
1049 <threshold>7.7588870190083981e-003</threshold>
\r
1050 <left_val>-0.1537311971187592</left_val>
\r
1051 <right_val>0.4893161952495575</right_val></_></_>
\r
1055 <!-- root node -->
\r
1061 16 6 18 4 2.</_></rects>
\r
1062 <tilted>0</tilted></feature>
\r
1063 <threshold>0.0454101189970970</threshold>
\r
1064 <left_val>-0.0735593065619469</left_val>
\r
1065 <right_val>0.2773792147636414</right_val></_></_>
\r
1069 <!-- root node -->
\r
1075 12 14 3 3 3.</_></rects>
\r
1076 <tilted>0</tilted></feature>
\r
1077 <threshold>-0.0145996697247028</threshold>
\r
1078 <left_val>-0.7096682786941528</left_val>
\r
1079 <right_val>0.0975155606865883</right_val></_></_>
\r
1083 <!-- root node -->
\r
1089 32 0 2 6 2.</_></rects>
\r
1090 <tilted>0</tilted></feature>
\r
1091 <threshold>0.0172360707074404</threshold>
\r
1092 <left_val>0.0168695393949747</left_val>
\r
1093 <right_val>-0.5738832950592041</right_val></_></_>
\r
1097 <!-- root node -->
\r
1103 2 0 2 6 2.</_></rects>
\r
1104 <tilted>0</tilted></feature>
\r
1105 <threshold>0.0142307104542851</threshold>
\r
1106 <left_val>0.0947145000100136</left_val>
\r
1107 <right_val>-0.7839525938034058</right_val></_></_>
\r
1111 <!-- root node -->
\r
1117 29 2 2 7 3.</_></rects>
\r
1118 <tilted>1</tilted></feature>
\r
1119 <threshold>-0.0437068603932858</threshold>
\r
1120 <left_val>0.6097965240478516</left_val>
\r
1121 <right_val>-0.1560188978910446</right_val></_></_>
\r
1125 <!-- root node -->
\r
1131 0 2 1 2 2.</_></rects>
\r
1132 <tilted>0</tilted></feature>
\r
1133 <threshold>-6.2343222089111805e-004</threshold>
\r
1134 <left_val>0.3485119044780731</left_val>
\r
1135 <right_val>-0.2170491069555283</right_val></_></_>
\r
1139 <!-- root node -->
\r
1145 29 10 2 4 3.</_></rects>
\r
1146 <tilted>1</tilted></feature>
\r
1147 <threshold>0.0192450508475304</threshold>
\r
1148 <left_val>-0.1171097978949547</left_val>
\r
1149 <right_val>0.3070116043090820</right_val></_></_>
\r
1153 <!-- root node -->
\r
1159 13 11 9 2 9.</_></rects>
\r
1160 <tilted>0</tilted></feature>
\r
1161 <threshold>0.2703577876091003</threshold>
\r
1162 <left_val>-0.0900964364409447</left_val>
\r
1163 <right_val>0.7665696144104004</right_val></_></_>
\r
1167 <!-- root node -->
\r
1173 31 14 1 3 2.</_></rects>
\r
1174 <tilted>0</tilted></feature>
\r
1175 <threshold>-3.5394480801187456e-004</threshold>
\r
1176 <left_val>-0.2002478986978531</left_val>
\r
1177 <right_val>0.1249336004257202</right_val></_></_>
\r
1181 <!-- root node -->
\r
1187 8 2 5 2 3.</_></rects>
\r
1188 <tilted>1</tilted></feature>
\r
1189 <threshold>-0.0360139608383179</threshold>
\r
1190 <left_val>0.6702855825424194</left_val>
\r
1191 <right_val>-0.1057187989354134</right_val></_></_>
\r
1195 <!-- root node -->
\r
1201 14 8 11 1 3.</_></rects>
\r
1202 <tilted>0</tilted></feature>
\r
1203 <threshold>9.2952791601419449e-003</threshold>
\r
1204 <left_val>-0.1057471036911011</left_val>
\r
1205 <right_val>0.4509387910366058</right_val></_></_>
\r
1209 <!-- root node -->
\r
1215 0 15 2 3 2.</_></rects>
\r
1216 <tilted>0</tilted></feature>
\r
1217 <threshold>-3.3304709359072149e-004</threshold>
\r
1218 <left_val>0.2793382108211517</left_val>
\r
1219 <right_val>-0.2457676976919174</right_val></_></_>
\r
1223 <!-- root node -->
\r
1229 34 15 2 2 2.</_></rects>
\r
1230 <tilted>0</tilted></feature>
\r
1231 <threshold>-2.9147620807634667e-005</threshold>
\r
1232 <left_val>0.0858138129115105</left_val>
\r
1233 <right_val>-0.0954695865511894</right_val></_></_>
\r
1237 <!-- root node -->
\r
1243 0 15 2 2 2.</_></rects>
\r
1244 <tilted>0</tilted></feature>
\r
1245 <threshold>4.4382669148035347e-004</threshold>
\r
1246 <left_val>-0.2022008001804352</left_val>
\r
1247 <right_val>0.5454357862472534</right_val></_></_></trees>
\r
1248 <stage_threshold>-1.3538850545883179</stage_threshold>
\r
1249 <parent>3</parent>
\r
1250 <next>-1</next></_>
\r
1257 <!-- root node -->
\r
1263 3 10 4 4 3.</_></rects>
\r
1264 <tilted>0</tilted></feature>
\r
1265 <threshold>7.9610757529735565e-003</threshold>
\r
1266 <left_val>-0.3672207891941071</left_val>
\r
1267 <right_val>0.4315434992313385</right_val></_></_>
\r
1271 <!-- root node -->
\r
1275 14 0 22 12 -1.</_>
\r
1279 14 6 11 6 2.</_></rects>
\r
1280 <tilted>0</tilted></feature>
\r
1281 <threshold>0.0633948296308517</threshold>
\r
1282 <left_val>-0.2073971033096314</left_val>
\r
1283 <right_val>0.5742601752281189</right_val></_></_>
\r
1287 <!-- root node -->
\r
1293 6 3 7 2 3.</_></rects>
\r
1294 <tilted>1</tilted></feature>
\r
1295 <threshold>-0.0531933493912220</threshold>
\r
1296 <left_val>0.7255092263221741</left_val>
\r
1297 <right_val>-0.1434202045202255</right_val></_></_>
\r
1301 <!-- root node -->
\r
1307 12 6 14 1 3.</_></rects>
\r
1308 <tilted>0</tilted></feature>
\r
1309 <threshold>0.0154607696458697</threshold>
\r
1310 <left_val>-0.0960538163781166</left_val>
\r
1311 <right_val>0.7578523755073547</right_val></_></_>
\r
1315 <!-- root node -->
\r
1321 6 7 7 2 2.</_></rects>
\r
1322 <tilted>1</tilted></feature>
\r
1323 <threshold>-0.0176431406289339</threshold>
\r
1324 <left_val>0.6681562066078186</left_val>
\r
1325 <right_val>-0.1417672932147980</right_val></_></_>
\r
1329 <!-- root node -->
\r
1335 18 4 6 2 2.</_></rects>
\r
1336 <tilted>0</tilted></feature>
\r
1337 <threshold>9.5065636560320854e-003</threshold>
\r
1338 <left_val>-0.0962597429752350</left_val>
\r
1339 <right_val>0.4699633121490479</right_val></_></_>
\r
1343 <!-- root node -->
\r
1349 4 7 5 2 3.</_></rects>
\r
1350 <tilted>0</tilted></feature>
\r
1351 <threshold>4.0446049533784389e-003</threshold>
\r
1352 <left_val>-0.1973251998424530</left_val>
\r
1353 <right_val>0.4283801019191742</right_val></_></_>
\r
1357 <!-- root node -->
\r
1363 34 0 1 4 3.</_></rects>
\r
1364 <tilted>0</tilted></feature>
\r
1365 <threshold>3.2312041148543358e-003</threshold>
\r
1366 <left_val>0.1186169013381004</left_val>
\r
1367 <right_val>-0.6103963255882263</right_val></_></_>
\r
1371 <!-- root node -->
\r
1377 9 9 6 9 2.</_></rects>
\r
1378 <tilted>0</tilted></feature>
\r
1379 <threshold>-0.0401590503752232</threshold>
\r
1380 <left_val>-0.4166434109210968</left_val>
\r
1381 <right_val>0.2167232930660248</right_val></_></_>
\r
1385 <!-- root node -->
\r
1391 14 8 8 2 9.</_></rects>
\r
1392 <tilted>0</tilted></feature>
\r
1393 <threshold>0.2852425873279572</threshold>
\r
1394 <left_val>-0.1043575033545494</left_val>
\r
1395 <right_val>0.8573396801948547</right_val></_></_>
\r
1399 <!-- root node -->
\r
1405 16 9 4 2 2.</_></rects>
\r
1406 <tilted>0</tilted></feature>
\r
1407 <threshold>-4.9264221452176571e-003</threshold>
\r
1408 <left_val>0.4706046879291534</left_val>
\r
1409 <right_val>-0.1399745941162109</right_val></_></_>
\r
1413 <!-- root node -->
\r
1419 13 9 13 2 2.</_></rects>
\r
1420 <tilted>0</tilted></feature>
\r
1421 <threshold>0.0137817002832890</threshold>
\r
1422 <left_val>-0.1271356940269470</left_val>
\r
1423 <right_val>0.4461891949176788</right_val></_></_>
\r
1427 <!-- root node -->
\r
1433 0 17 2 1 2.</_></rects>
\r
1434 <tilted>0</tilted></feature>
\r
1435 <threshold>-4.9873598618432879e-004</threshold>
\r
1436 <left_val>0.4702663123607636</left_val>
\r
1437 <right_val>-0.1548373997211456</right_val></_></_>
\r
1441 <!-- root node -->
\r
1447 35 15 1 2 2.</_></rects>
\r
1448 <tilted>0</tilted></feature>
\r
1449 <threshold>-1.5621389320585877e-004</threshold>
\r
1450 <left_val>0.1885481029748917</left_val>
\r
1451 <right_val>-0.0778397768735886</right_val></_></_>
\r
1455 <!-- root node -->
\r
1461 0 15 1 2 2.</_></rects>
\r
1462 <tilted>0</tilted></feature>
\r
1463 <threshold>-3.7597760092467070e-004</threshold>
\r
1464 <left_val>0.5769770145416260</left_val>
\r
1465 <right_val>-0.1335622072219849</right_val></_></_>
\r
1469 <!-- root node -->
\r
1475 18 6 3 7 3.</_></rects>
\r
1476 <tilted>0</tilted></feature>
\r
1477 <threshold>-0.0106659103184938</threshold>
\r
1478 <left_val>-0.4106529951095581</left_val>
\r
1479 <right_val>0.1556212007999420</right_val></_></_>
\r
1483 <!-- root node -->
\r
1489 1 0 1 4 3.</_></rects>
\r
1490 <tilted>0</tilted></feature>
\r
1491 <threshold>-3.4135230816900730e-003</threshold>
\r
1492 <left_val>-0.7636343240737915</left_val>
\r
1493 <right_val>0.1020964980125427</right_val></_></_>
\r
1497 <!-- root node -->
\r
1505 34 17 1 1 2.</_></rects>
\r
1506 <tilted>0</tilted></feature>
\r
1507 <threshold>5.6471868447260931e-005</threshold>
\r
1508 <left_val>-0.1644393056631088</left_val>
\r
1509 <right_val>0.2290841937065125</right_val></_></_>
\r
1513 <!-- root node -->
\r
1521 1 17 1 1 2.</_></rects>
\r
1522 <tilted>0</tilted></feature>
\r
1523 <threshold>2.1611599368043244e-004</threshold>
\r
1524 <left_val>-0.1629032939672470</left_val>
\r
1525 <right_val>0.4575636088848114</right_val></_></_>
\r
1529 <!-- root node -->
\r
1535 22 0 5 4 2.</_></rects>
\r
1536 <tilted>1</tilted></feature>
\r
1537 <threshold>-0.0108227198943496</threshold>
\r
1538 <left_val>-0.2446253001689911</left_val>
\r
1539 <right_val>0.1388894021511078</right_val></_></_>
\r
1543 <!-- root node -->
\r
1551 18 11 3 7 2.</_></rects>
\r
1552 <tilted>0</tilted></feature>
\r
1553 <threshold>-0.0150849102064967</threshold>
\r
1554 <left_val>-0.5781347751617432</left_val>
\r
1555 <right_val>0.1156411990523338</right_val></_></_>
\r
1559 <!-- root node -->
\r
1565 17 3 4 10 2.</_></rects>
\r
1566 <tilted>0</tilted></feature>
\r
1567 <threshold>0.0257159601897001</threshold>
\r
1568 <left_val>0.0396311990916729</left_val>
\r
1569 <right_val>-0.6527001261711121</right_val></_></_>
\r
1573 <!-- root node -->
\r
1579 1 0 1 5 2.</_></rects>
\r
1580 <tilted>0</tilted></feature>
\r
1581 <threshold>2.6093570049852133e-003</threshold>
\r
1582 <left_val>0.1142188981175423</left_val>
\r
1583 <right_val>-0.5680108070373535</right_val></_></_></trees>
\r
1584 <stage_threshold>-1.3707510232925415</stage_threshold>
\r
1585 <parent>4</parent>
\r
1586 <next>-1</next></_>
\r
1593 <!-- root node -->
\r
1599 5 3 8 2 3.</_></rects>
\r
1600 <tilted>1</tilted></feature>
\r
1601 <threshold>-0.0518619008362293</threshold>
\r
1602 <left_val>0.7043117284774780</left_val>
\r
1603 <right_val>-0.2214370071887970</right_val></_></_>
\r
1607 <!-- root node -->
\r
1611 19 0 11 18 -1.</_>
\r
1613 19 9 11 9 2.</_></rects>
\r
1614 <tilted>0</tilted></feature>
\r
1615 <threshold>-0.0503416284918785</threshold>
\r
1616 <left_val>-0.4639782905578613</left_val>
\r
1617 <right_val>0.2804746031761169</right_val></_></_>
\r
1621 <!-- root node -->
\r
1627 14 10 8 2 9.</_></rects>
\r
1628 <tilted>0</tilted></feature>
\r
1629 <threshold>0.2570973038673401</threshold>
\r
1630 <left_val>-0.1312427967786789</left_val>
\r
1631 <right_val>0.8239594101905823</right_val></_></_>
\r
1635 <!-- root node -->
\r
1641 14 7 10 1 3.</_></rects>
\r
1642 <tilted>0</tilted></feature>
\r
1643 <threshold>0.0110318996012211</threshold>
\r
1644 <left_val>-0.1425814032554627</left_val>
\r
1645 <right_val>0.6382390260696411</right_val></_></_>
\r
1649 <!-- root node -->
\r
1655 12 8 11 2 2.</_></rects>
\r
1656 <tilted>0</tilted></feature>
\r
1657 <threshold>0.0185650903731585</threshold>
\r
1658 <left_val>-0.1512387990951538</left_val>
\r
1659 <right_val>0.5988119244575501</right_val></_></_>
\r
1663 <!-- root node -->
\r
1671 18 3 8 3 2.</_></rects>
\r
1672 <tilted>0</tilted></feature>
\r
1673 <threshold>0.0175023507326841</threshold>
\r
1674 <left_val>-0.1261979937553406</left_val>
\r
1675 <right_val>0.3817803859710693</right_val></_></_>
\r
1679 <!-- root node -->
\r
1685 4 4 7 1 3.</_></rects>
\r
1686 <tilted>1</tilted></feature>
\r
1687 <threshold>7.2723729535937309e-003</threshold>
\r
1688 <left_val>-0.1510328948497772</left_val>
\r
1689 <right_val>0.5812842249870300</right_val></_></_>
\r
1693 <!-- root node -->
\r
1699 18 5 4 2 2.</_></rects>
\r
1700 <tilted>0</tilted></feature>
\r
1701 <threshold>8.1504750996828079e-003</threshold>
\r
1702 <left_val>-0.0654647573828697</left_val>
\r
1703 <right_val>0.5639755129814148</right_val></_></_>
\r
1707 <!-- root node -->
\r
1713 4 4 10 2 2.</_></rects>
\r
1714 <tilted>1</tilted></feature>
\r
1715 <threshold>-0.0185527391731739</threshold>
\r
1716 <left_val>0.5315709710121155</left_val>
\r
1717 <right_val>-0.1252657026052475</right_val></_></_>
\r
1721 <!-- root node -->
\r
1729 14 13 4 5 2.</_></rects>
\r
1730 <tilted>0</tilted></feature>
\r
1731 <threshold>-0.0231014806777239</threshold>
\r
1732 <left_val>-0.6794939041137695</left_val>
\r
1733 <right_val>0.1104625985026360</right_val></_></_>
\r
1737 <!-- root node -->
\r
1743 5 0 2 1 2.</_></rects>
\r
1744 <tilted>0</tilted></feature>
\r
1745 <threshold>-1.8539339362177998e-004</threshold>
\r
1746 <left_val>0.3010003864765167</left_val>
\r
1747 <right_val>-0.2120669931173325</right_val></_></_>
\r
1751 <!-- root node -->
\r
1759 20 4 5 4 2.</_></rects>
\r
1760 <tilted>0</tilted></feature>
\r
1761 <threshold>0.0173191204667091</threshold>
\r
1762 <left_val>-0.0937381312251091</left_val>
\r
1763 <right_val>0.2100856006145477</right_val></_></_>
\r
1767 <!-- root node -->
\r
1775 18 4 5 4 2.</_></rects>
\r
1776 <tilted>0</tilted></feature>
\r
1777 <threshold>0.0143056204542518</threshold>
\r
1778 <left_val>0.1800594925880432</left_val>
\r
1779 <right_val>-0.3977671861648560</right_val></_></_>
\r
1783 <!-- root node -->
\r
1789 23 5 2 13 3.</_></rects>
\r
1790 <tilted>0</tilted></feature>
\r
1791 <threshold>0.0257633402943611</threshold>
\r
1792 <left_val>8.7056998163461685e-003</left_val>
\r
1793 <right_val>-0.6289495229721069</right_val></_></_>
\r
1797 <!-- root node -->
\r
1803 11 5 2 13 3.</_></rects>
\r
1804 <tilted>0</tilted></feature>
\r
1805 <threshold>-0.0153833404183388</threshold>
\r
1806 <left_val>-0.5341547131538391</left_val>
\r
1807 <right_val>0.1038073003292084</right_val></_></_>
\r
1811 <!-- root node -->
\r
1817 27 6 5 1 3.</_></rects>
\r
1818 <tilted>0</tilted></feature>
\r
1819 <threshold>1.0605469578877091e-003</threshold>
\r
1820 <left_val>-0.0901285186409950</left_val>
\r
1821 <right_val>0.1679212003946304</right_val></_></_>
\r
1825 <!-- root node -->
\r
1831 10 2 3 2 3.</_></rects>
\r
1832 <tilted>0</tilted></feature>
\r
1833 <threshold>3.5230729263275862e-003</threshold>
\r
1834 <left_val>-0.1711069047451019</left_val>
\r
1835 <right_val>0.3259654045104981</right_val></_></_>
\r
1839 <!-- root node -->
\r
1845 26 8 3 2 3.</_></rects>
\r
1846 <tilted>0</tilted></feature>
\r
1847 <threshold>-0.0107892798259854</threshold>
\r
1848 <left_val>0.3610992133617401</left_val>
\r
1849 <right_val>-0.0663391500711441</right_val></_></_>
\r
1853 <!-- root node -->
\r
1859 18 11 18 7 2.</_></rects>
\r
1860 <tilted>0</tilted></feature>
\r
1861 <threshold>0.2795093953609467</threshold>
\r
1862 <left_val>-0.0746058970689774</left_val>
\r
1863 <right_val>0.7336987853050232</right_val></_></_>
\r
1867 <!-- root node -->
\r
1873 27 6 5 1 3.</_></rects>
\r
1874 <tilted>0</tilted></feature>
\r
1875 <threshold>3.8369540125131607e-003</threshold>
\r
1876 <left_val>0.0448735393583775</left_val>
\r
1877 <right_val>-0.1860270053148270</right_val></_></_>
\r
1881 <!-- root node -->
\r
1887 4 6 5 1 3.</_></rects>
\r
1888 <tilted>0</tilted></feature>
\r
1889 <threshold>1.6195949865505099e-003</threshold>
\r
1890 <left_val>-0.1392249017953873</left_val>
\r
1891 <right_val>0.4343700110912323</right_val></_></_>
\r
1895 <!-- root node -->
\r
1901 29 7 2 4 2.</_></rects>
\r
1902 <tilted>1</tilted></feature>
\r
1903 <threshold>0.0116479499265552</threshold>
\r
1904 <left_val>-0.0743575915694237</left_val>
\r
1905 <right_val>0.5420144200325012</right_val></_></_>
\r
1909 <!-- root node -->
\r
1915 16 15 4 2 2.</_></rects>
\r
1916 <tilted>0</tilted></feature>
\r
1917 <threshold>-5.9066400863230228e-003</threshold>
\r
1918 <left_val>-0.7055758833885193</left_val>
\r
1919 <right_val>0.0864336192607880</right_val></_></_>
\r
1923 <!-- root node -->
\r
1929 13 7 10 2 9.</_></rects>
\r
1930 <tilted>0</tilted></feature>
\r
1931 <threshold>0.3968684077262878</threshold>
\r
1932 <left_val>-0.0748983696103096</left_val>
\r
1933 <right_val>0.9406285881996155</right_val></_></_>
\r
1937 <!-- root node -->
\r
1943 6 9 16 2 3.</_></rects>
\r
1944 <tilted>0</tilted></feature>
\r
1945 <threshold>0.0576637797057629</threshold>
\r
1946 <left_val>-0.0965584069490433</left_val>
\r
1947 <right_val>0.5418242812156677</right_val></_></_>
\r
1951 <!-- root node -->
\r
1955 14 10 12 6 -1.</_>
\r
1957 14 12 12 2 3.</_></rects>
\r
1958 <tilted>0</tilted></feature>
\r
1959 <threshold>0.0603195689618587</threshold>
\r
1960 <left_val>-0.0665010735392571</left_val>
\r
1961 <right_val>0.6402354836463928</right_val></_></_></trees>
\r
1962 <stage_threshold>-1.3303329944610596</stage_threshold>
\r
1963 <parent>5</parent>
\r
1964 <next>-1</next></_>
\r
1971 <!-- root node -->
\r
1979 12 5 6 5 2.</_></rects>
\r
1980 <tilted>0</tilted></feature>
\r
1981 <threshold>0.0190502498298883</threshold>
\r
1982 <left_val>-0.4443340897560120</left_val>
\r
1983 <right_val>0.4394856989383698</right_val></_></_>
\r
1987 <!-- root node -->
\r
1993 25 10 7 8 2.</_></rects>
\r
1994 <tilted>0</tilted></feature>
\r
1995 <threshold>-0.0201983004808426</threshold>
\r
1996 <left_val>-0.3170621991157532</left_val>
\r
1997 <right_val>0.1043293029069901</right_val></_></_>
\r
2001 <!-- root node -->
\r
2007 15 6 6 7 3.</_></rects>
\r
2008 <tilted>0</tilted></feature>
\r
2009 <threshold>0.0214780308306217</threshold>
\r
2010 <left_val>-0.3502483963966370</left_val>
\r
2011 <right_val>0.2635537087917328</right_val></_></_>
\r
2015 <!-- root node -->
\r
2023 5 9 13 9 2.</_></rects>
\r
2024 <tilted>0</tilted></feature>
\r
2025 <threshold>-0.1018775999546051</threshold>
\r
2026 <left_val>-0.5988957881927490</left_val>
\r
2027 <right_val>0.1768579930067062</right_val></_></_>
\r
2031 <!-- root node -->
\r
2037 10 7 10 1 3.</_></rects>
\r
2038 <tilted>0</tilted></feature>
\r
2039 <threshold>0.0109741603955626</threshold>
\r
2040 <left_val>-0.1489523947238922</left_val>
\r
2041 <right_val>0.6011521816253662</right_val></_></_>
\r
2045 <!-- root node -->
\r
2051 17 7 6 2 2.</_></rects>
\r
2052 <tilted>0</tilted></feature>
\r
2053 <threshold>-0.0114767104387283</threshold>
\r
2054 <left_val>0.4066570997238159</left_val>
\r
2055 <right_val>-0.1240468993782997</right_val></_></_>
\r
2059 <!-- root node -->
\r
2065 18 6 3 7 2.</_></rects>
\r
2066 <tilted>0</tilted></feature>
\r
2067 <threshold>-0.0234311502426863</threshold>
\r
2068 <left_val>-0.7148783206939697</left_val>
\r
2069 <right_val>0.1427811980247498</right_val></_></_>
\r
2073 <!-- root node -->
\r
2079 26 7 5 2 2.</_></rects>
\r
2080 <tilted>0</tilted></feature>
\r
2081 <threshold>1.4963559806346893e-003</threshold>
\r
2082 <left_val>-0.1704585999250412</left_val>
\r
2083 <right_val>0.1719308048486710</right_val></_></_>
\r
2087 <!-- root node -->
\r
2093 0 15 1 3 2.</_></rects>
\r
2094 <tilted>0</tilted></feature>
\r
2095 <threshold>-5.4855772759765387e-004</threshold>
\r
2096 <left_val>0.3155323863029480</left_val>
\r
2097 <right_val>-0.2144445031881332</right_val></_></_>
\r
2101 <!-- root node -->
\r
2109 9 11 9 7 2.</_></rects>
\r
2110 <tilted>0</tilted></feature>
\r
2111 <threshold>0.0749126300215721</threshold>
\r
2112 <left_val>0.0912405624985695</left_val>
\r
2113 <right_val>-0.6395121216773987</right_val></_></_>
\r
2117 <!-- root node -->
\r
2123 6 6 6 1 3.</_></rects>
\r
2124 <tilted>1</tilted></feature>
\r
2125 <threshold>6.8816398270428181e-003</threshold>
\r
2126 <left_val>-0.1490440964698792</left_val>
\r
2127 <right_val>0.4795236885547638</right_val></_></_>
\r
2131 <!-- root node -->
\r
2137 29 7 2 3 3.</_></rects>
\r
2138 <tilted>1</tilted></feature>
\r
2139 <threshold>-0.0382125787436962</threshold>
\r
2140 <left_val>0.5288773775100708</left_val>
\r
2141 <right_val>-0.0618947297334671</right_val></_></_>
\r
2145 <!-- root node -->
\r
2151 6 9 3 1 3.</_></rects>
\r
2152 <tilted>1</tilted></feature>
\r
2153 <threshold>4.4051730073988438e-003</threshold>
\r
2154 <left_val>-0.1193412989377976</left_val>
\r
2155 <right_val>0.5061342120170593</right_val></_></_>
\r
2159 <!-- root node -->
\r
2165 30 7 2 5 3.</_></rects>
\r
2166 <tilted>1</tilted></feature>
\r
2167 <threshold>0.0239668991416693</threshold>
\r
2168 <left_val>-0.0897205099463463</left_val>
\r
2169 <right_val>0.3315277993679047</right_val></_></_>
\r
2173 <!-- root node -->
\r
2179 6 7 5 2 3.</_></rects>
\r
2180 <tilted>1</tilted></feature>
\r
2181 <threshold>-0.0341629907488823</threshold>
\r
2182 <left_val>0.5313478112220764</left_val>
\r
2183 <right_val>-0.1466650068759918</right_val></_></_>
\r
2187 <!-- root node -->
\r
2193 31 0 2 1 2.</_></rects>
\r
2194 <tilted>0</tilted></feature>
\r
2195 <threshold>1.9642219413071871e-003</threshold>
\r
2196 <left_val>0.0907835885882378</left_val>
\r
2197 <right_val>-0.4303255975246429</right_val></_></_>
\r
2201 <!-- root node -->
\r
2207 3 0 2 1 2.</_></rects>
\r
2208 <tilted>0</tilted></feature>
\r
2209 <threshold>9.6757910796441138e-005</threshold>
\r
2210 <left_val>0.2255253940820694</left_val>
\r
2211 <right_val>-0.2822071015834808</right_val></_></_>
\r
2215 <!-- root node -->
\r
2221 17 12 4 1 3.</_></rects>
\r
2222 <tilted>0</tilted></feature>
\r
2223 <threshold>-3.2862399239093065e-003</threshold>
\r
2224 <left_val>0.4051502048969269</left_val>
\r
2225 <right_val>-0.1177619993686676</right_val></_></_>
\r
2229 <!-- root node -->
\r
2235 12 4 7 2 2.</_></rects>
\r
2236 <tilted>0</tilted></feature>
\r
2237 <threshold>0.0116883097216487</threshold>
\r
2238 <left_val>-0.0918571278452873</left_val>
\r
2239 <right_val>0.6283488869667053</right_val></_></_>
\r
2243 <!-- root node -->
\r
2249 14 10 9 1 3.</_></rects>
\r
2250 <tilted>0</tilted></feature>
\r
2251 <threshold>-6.0287420637905598e-003</threshold>
\r
2252 <left_val>0.3926180899143219</left_val>
\r
2253 <right_val>-0.1228715032339096</right_val></_></_>
\r
2257 <!-- root node -->
\r
2263 8 17 7 1 3.</_></rects>
\r
2264 <tilted>0</tilted></feature>
\r
2265 <threshold>-0.0137213403359056</threshold>
\r
2266 <left_val>-0.5529879927635193</left_val>
\r
2267 <right_val>0.0910412818193436</right_val></_></_>
\r
2271 <!-- root node -->
\r
2277 12 9 10 4 2.</_></rects>
\r
2278 <tilted>0</tilted></feature>
\r
2279 <threshold>0.0756266415119171</threshold>
\r
2280 <left_val>-0.0449295900762081</left_val>
\r
2281 <right_val>0.1744275987148285</right_val></_></_>
\r
2285 <!-- root node -->
\r
2291 14 9 11 4 2.</_></rects>
\r
2292 <tilted>0</tilted></feature>
\r
2293 <threshold>0.0934344828128815</threshold>
\r
2294 <left_val>-0.0845939517021179</left_val>
\r
2295 <right_val>0.6013116240501404</right_val></_></_>
\r
2299 <!-- root node -->
\r
2305 26 1 1 3 3.</_></rects>
\r
2306 <tilted>1</tilted></feature>
\r
2307 <threshold>5.8748829178512096e-003</threshold>
\r
2308 <left_val>-0.0441314987838268</left_val>
\r
2309 <right_val>0.3956570923328400</right_val></_></_>
\r
2313 <!-- root node -->
\r
2319 14 10 4 1 3.</_></rects>
\r
2320 <tilted>0</tilted></feature>
\r
2321 <threshold>4.0064537897706032e-003</threshold>
\r
2322 <left_val>-0.1141439974308014</left_val>
\r
2323 <right_val>0.3792538046836853</right_val></_></_>
\r
2327 <!-- root node -->
\r
2333 22 4 3 3 3.</_></rects>
\r
2334 <tilted>0</tilted></feature>
\r
2335 <threshold>0.0229454599320889</threshold>
\r
2336 <left_val>0.0246731899678707</left_val>
\r
2337 <right_val>-0.4152199923992157</right_val></_></_>
\r
2341 <!-- root node -->
\r
2347 11 4 3 3 3.</_></rects>
\r
2348 <tilted>0</tilted></feature>
\r
2349 <threshold>-0.0128104602918029</threshold>
\r
2350 <left_val>-0.5155742764472961</left_val>
\r
2351 <right_val>0.0913196131587029</right_val></_></_>
\r
2355 <!-- root node -->
\r
2361 12 16 12 1 9.</_></rects>
\r
2362 <tilted>0</tilted></feature>
\r
2363 <threshold>0.2042552977800369</threshold>
\r
2364 <left_val>-0.0659275427460670</left_val>
\r
2365 <right_val>0.7594249248504639</right_val></_></_>
\r
2369 <!-- root node -->
\r
2375 2 0 4 1 2.</_></rects>
\r
2376 <tilted>1</tilted></feature>
\r
2377 <threshold>4.9796327948570251e-003</threshold>
\r
2378 <left_val>0.1080627962946892</left_val>
\r
2379 <right_val>-0.5001627206802368</right_val></_></_>
\r
2383 <!-- root node -->
\r
2389 19 12 2 3 3.</_></rects>
\r
2390 <tilted>0</tilted></feature>
\r
2391 <threshold>0.0283976309001446</threshold>
\r
2392 <left_val>-0.0371529608964920</left_val>
\r
2393 <right_val>0.5401064753532410</right_val></_></_>
\r
2397 <!-- root node -->
\r
2403 13 8 8 1 3.</_></rects>
\r
2404 <tilted>0</tilted></feature>
\r
2405 <threshold>6.0867150314152241e-003</threshold>
\r
2406 <left_val>-0.1197860985994339</left_val>
\r
2407 <right_val>0.3569226861000061</right_val></_></_>
\r
2411 <!-- root node -->
\r
2419 30 5 1 1 2.</_></rects>
\r
2420 <tilted>0</tilted></feature>
\r
2421 <threshold>-2.1456899412441999e-004</threshold>
\r
2422 <left_val>0.1874015033245087</left_val>
\r
2423 <right_val>-0.0884172022342682</right_val></_></_>
\r
2427 <!-- root node -->
\r
2435 5 5 1 1 2.</_></rects>
\r
2436 <tilted>0</tilted></feature>
\r
2437 <threshold>2.8941858909092844e-004</threshold>
\r
2438 <left_val>-0.1259797960519791</left_val>
\r
2439 <right_val>0.3998227119445801</right_val></_></_>
\r
2443 <!-- root node -->
\r
2449 18 8 4 1 3.</_></rects>
\r
2450 <tilted>0</tilted></feature>
\r
2451 <threshold>-1.3047619722783566e-003</threshold>
\r
2452 <left_val>0.1549997031688690</left_val>
\r
2453 <right_val>-0.0753860473632813</right_val></_></_>
\r
2457 <!-- root node -->
\r
2463 9 0 1 4 2.</_></rects>
\r
2464 <tilted>1</tilted></feature>
\r
2465 <threshold>-0.0129750100895762</threshold>
\r
2466 <left_val>-0.5534411072731018</left_val>
\r
2467 <right_val>0.0823542475700378</right_val></_></_>
\r
2471 <!-- root node -->
\r
2477 25 7 10 1 3.</_></rects>
\r
2478 <tilted>0</tilted></feature>
\r
2479 <threshold>7.7442410401999950e-003</threshold>
\r
2480 <left_val>0.0276998002082109</left_val>
\r
2481 <right_val>-0.3483599126338959</right_val></_></_>
\r
2485 <!-- root node -->
\r
2491 1 7 10 1 3.</_></rects>
\r
2492 <tilted>0</tilted></feature>
\r
2493 <threshold>2.4850629270076752e-003</threshold>
\r
2494 <left_val>-0.1297612935304642</left_val>
\r
2495 <right_val>0.3790883123874664</right_val></_></_></trees>
\r
2496 <stage_threshold>-1.5300060510635376</stage_threshold>
\r
2497 <parent>6</parent>
\r
2498 <next>-1</next></_>
\r
2505 <!-- root node -->
\r
2513 13 12 7 6 2.</_></rects>
\r
2514 <tilted>0</tilted></feature>
\r
2515 <threshold>-0.0403868816792965</threshold>
\r
2516 <left_val>0.5960354804992676</left_val>
\r
2517 <right_val>-0.3574176132678986</right_val></_></_>
\r
2521 <!-- root node -->
\r
2527 31 16 3 2 2.</_></rects>
\r
2528 <tilted>0</tilted></feature>
\r
2529 <threshold>-6.6068649175576866e-005</threshold>
\r
2530 <left_val>0.4462898075580597</left_val>
\r
2531 <right_val>-0.3595947027206421</right_val></_></_>
\r
2535 <!-- root node -->
\r
2541 1 14 2 2 2.</_></rects>
\r
2542 <tilted>0</tilted></feature>
\r
2543 <threshold>3.7622239906340837e-003</threshold>
\r
2544 <left_val>0.1794701963663101</left_val>
\r
2545 <right_val>-0.7563151121139526</right_val></_></_>
\r
2549 <!-- root node -->
\r
2555 19 0 4 5 3.</_></rects>
\r
2556 <tilted>0</tilted></feature>
\r
2557 <threshold>-0.0309677198529243</threshold>
\r
2558 <left_val>-0.2884705066680908</left_val>
\r
2559 <right_val>0.0768705308437347</right_val></_></_>
\r
2563 <!-- root node -->
\r
2569 12 0 4 14 2.</_></rects>
\r
2570 <tilted>0</tilted></feature>
\r
2571 <threshold>0.0305665601044893</threshold>
\r
2572 <left_val>0.1400360018014908</left_val>
\r
2573 <right_val>-0.7175536751747131</right_val></_></_>
\r
2577 <!-- root node -->
\r
2583 30 3 4 7 2.</_></rects>
\r
2584 <tilted>1</tilted></feature>
\r
2585 <threshold>9.9054910242557526e-004</threshold>
\r
2586 <left_val>0.0829155892133713</left_val>
\r
2587 <right_val>-0.2919717133045197</right_val></_></_>
\r
2591 <!-- root node -->
\r
2599 18 16 10 2 2.</_></rects>
\r
2600 <tilted>0</tilted></feature>
\r
2601 <threshold>0.0125777004286647</threshold>
\r
2602 <left_val>0.1538071930408478</left_val>
\r
2603 <right_val>-0.4688293039798737</right_val></_></_>
\r
2607 <!-- root node -->
\r
2613 14 12 8 1 9.</_></rects>
\r
2614 <tilted>0</tilted></feature>
\r
2615 <threshold>0.1239292025566101</threshold>
\r
2616 <left_val>-0.0908238589763641</left_val>
\r
2617 <right_val>0.7383757233619690</right_val></_></_>
\r
2621 <!-- root node -->
\r
2627 13 7 9 2 9.</_></rects>
\r
2628 <tilted>0</tilted></feature>
\r
2629 <threshold>0.3773748874664307</threshold>
\r
2630 <left_val>-0.0542329512536526</left_val>
\r
2631 <right_val>0.9229121804237366</right_val></_></_>
\r
2635 <!-- root node -->
\r
2643 7 9 11 9 2.</_></rects>
\r
2644 <tilted>0</tilted></feature>
\r
2645 <threshold>0.1099637001752853</threshold>
\r
2646 <left_val>0.0915962681174278</left_val>
\r
2647 <right_val>-0.6597716808319092</right_val></_></_>
\r
2651 <!-- root node -->
\r
2657 16 1 3 1 2.</_></rects>
\r
2658 <tilted>0</tilted></feature>
\r
2659 <threshold>-1.2721329694613814e-003</threshold>
\r
2660 <left_val>0.3347575068473816</left_val>
\r
2661 <right_val>-0.1829068958759308</right_val></_></_>
\r
2665 <!-- root node -->
\r
2671 9 17 18 1 2.</_></rects>
\r
2672 <tilted>0</tilted></feature>
\r
2673 <threshold>0.0469062514603138</threshold>
\r
2674 <left_val>-0.0839710533618927</left_val>
\r
2675 <right_val>0.6984758973121643</right_val></_></_>
\r
2679 <!-- root node -->
\r
2685 5 5 6 1 2.</_></rects>
\r
2686 <tilted>1</tilted></feature>
\r
2687 <threshold>3.2869930146262050e-004</threshold>
\r
2688 <left_val>0.1879463046789169</left_val>
\r
2689 <right_val>-0.2929005920886993</right_val></_></_>
\r
2693 <!-- root node -->
\r
2699 34 15 1 1 2.</_></rects>
\r
2700 <tilted>1</tilted></feature>
\r
2701 <threshold>1.7333080177195370e-004</threshold>
\r
2702 <left_val>-0.2696416079998016</left_val>
\r
2703 <right_val>0.3494757115840912</right_val></_></_>
\r
2707 <!-- root node -->
\r
2713 7 9 16 2 2.</_></rects>
\r
2714 <tilted>0</tilted></feature>
\r
2715 <threshold>0.0198009591549635</threshold>
\r
2716 <left_val>-0.1467922925949097</left_val>
\r
2717 <right_val>0.4399561882019043</right_val></_></_>
\r
2721 <!-- root node -->
\r
2727 35 12 1 2 3.</_></rects>
\r
2728 <tilted>0</tilted></feature>
\r
2729 <threshold>2.0056760695297271e-004</threshold>
\r
2730 <left_val>-0.1372741013765335</left_val>
\r
2731 <right_val>0.2221331000328064</right_val></_></_>
\r
2735 <!-- root node -->
\r
2741 13 9 3 2 2.</_></rects>
\r
2742 <tilted>0</tilted></feature>
\r
2743 <threshold>-1.4923149719834328e-003</threshold>
\r
2744 <left_val>0.3473525941371918</left_val>
\r
2745 <right_val>-0.1594821065664291</right_val></_></_>
\r
2749 <!-- root node -->
\r
2755 35 12 1 2 3.</_></rects>
\r
2756 <tilted>0</tilted></feature>
\r
2757 <threshold>-4.2736999603221193e-005</threshold>
\r
2758 <left_val>0.3152787089347839</left_val>
\r
2759 <right_val>-0.2306694984436035</right_val></_></_>
\r
2763 <!-- root node -->
\r
2769 11 1 1 2 2.</_></rects>
\r
2770 <tilted>1</tilted></feature>
\r
2771 <threshold>6.6625140607357025e-004</threshold>
\r
2772 <left_val>-0.2013110071420670</left_val>
\r
2773 <right_val>0.2869189083576202</right_val></_></_>
\r
2777 <!-- root node -->
\r
2783 35 12 1 2 3.</_></rects>
\r
2784 <tilted>0</tilted></feature>
\r
2785 <threshold>1.3850460163666867e-005</threshold>
\r
2786 <left_val>-0.2021923959255219</left_val>
\r
2787 <right_val>0.2307330965995789</right_val></_></_>
\r
2791 <!-- root node -->
\r
2797 18 0 1 7 2.</_></rects>
\r
2798 <tilted>1</tilted></feature>
\r
2799 <threshold>0.0409726314246655</threshold>
\r
2800 <left_val>0.0795431807637215</left_val>
\r
2801 <right_val>-0.8079563975334168</right_val></_></_></trees>
\r
2802 <stage_threshold>-1.4114329814910889</stage_threshold>
\r
2803 <parent>7</parent>
\r
2804 <next>-1</next></_>
\r
2811 <!-- root node -->
\r
2819 13 12 8 6 2.</_></rects>
\r
2820 <tilted>0</tilted></feature>
\r
2821 <threshold>-0.0469829291105270</threshold>
\r
2822 <left_val>0.7082253098487854</left_val>
\r
2823 <right_val>-0.3703424036502838</right_val></_></_>
\r
2827 <!-- root node -->
\r
2833 16 3 7 4 2.</_></rects>
\r
2834 <tilted>1</tilted></feature>
\r
2835 <threshold>-7.5753079727292061e-004</threshold>
\r
2836 <left_val>-0.1255030930042267</left_val>
\r
2837 <right_val>0.1394442021846771</right_val></_></_>
\r
2841 <!-- root node -->
\r
2849 18 9 4 5 2.</_></rects>
\r
2850 <tilted>0</tilted></feature>
\r
2851 <threshold>0.0153272999450564</threshold>
\r
2852 <left_val>0.2161353975534439</left_val>
\r
2853 <right_val>-0.5629395246505737</right_val></_></_>
\r
2857 <!-- root node -->
\r
2863 25 0 3 3 3.</_></rects>
\r
2864 <tilted>0</tilted></feature>
\r
2865 <threshold>0.0181470401585102</threshold>
\r
2866 <left_val>-0.0320796482264996</left_val>
\r
2867 <right_val>0.3234755992889404</right_val></_></_>
\r
2871 <!-- root node -->
\r
2879 13 14 13 4 2.</_></rects>
\r
2880 <tilted>0</tilted></feature>
\r
2881 <threshold>0.0473471917212009</threshold>
\r
2882 <left_val>-0.1738158017396927</left_val>
\r
2883 <right_val>0.5758044719696045</right_val></_></_>
\r
2887 <!-- root node -->
\r
2891 15 10 16 8 -1.</_>
\r
2895 15 14 8 4 2.</_></rects>
\r
2896 <tilted>0</tilted></feature>
\r
2897 <threshold>-0.0598379410803318</threshold>
\r
2898 <left_val>0.4779787063598633</left_val>
\r
2899 <right_val>-0.1026028022170067</right_val></_></_>
\r
2903 <!-- root node -->
\r
2911 18 9 12 9 2.</_></rects>
\r
2912 <tilted>0</tilted></feature>
\r
2913 <threshold>-0.0527967996895313</threshold>
\r
2914 <left_val>-0.4798848927021027</left_val>
\r
2915 <right_val>0.1878775954246521</right_val></_></_>
\r
2919 <!-- root node -->
\r
2925 21 0 3 6 3.</_></rects>
\r
2926 <tilted>0</tilted></feature>
\r
2927 <threshold>-0.0243854299187660</threshold>
\r
2928 <left_val>-0.3084166944026947</left_val>
\r
2929 <right_val>8.7605630978941917e-003</right_val></_></_>
\r
2933 <!-- root node -->
\r
2939 12 0 3 6 3.</_></rects>
\r
2940 <tilted>0</tilted></feature>
\r
2941 <threshold>0.0252883005887270</threshold>
\r
2942 <left_val>0.1391403973102570</left_val>
\r
2943 <right_val>-0.7109494209289551</right_val></_></_>
\r
2947 <!-- root node -->
\r
2953 30 8 5 7 2.</_></rects>
\r
2954 <tilted>0</tilted></feature>
\r
2955 <threshold>-0.0216124504804611</threshold>
\r
2956 <left_val>-0.2328253984451294</left_val>
\r
2957 <right_val>0.0809946805238724</right_val></_></_>
\r
2961 <!-- root node -->
\r
2967 1 8 5 7 2.</_></rects>
\r
2968 <tilted>0</tilted></feature>
\r
2969 <threshold>3.4023479092866182e-003</threshold>
\r
2970 <left_val>-0.2298990041017532</left_val>
\r
2971 <right_val>0.3788951039314270</right_val></_></_>
\r
2975 <!-- root node -->
\r
2983 10 11 13 3 2.</_></rects>
\r
2984 <tilted>0</tilted></feature>
\r
2985 <threshold>0.1127460002899170</threshold>
\r
2986 <left_val>-0.0154747096821666</left_val>
\r
2987 <right_val>0.5703054070472717</right_val></_></_>
\r
2991 <!-- root node -->
\r
2999 14 11 14 3 2.</_></rects>
\r
3000 <tilted>0</tilted></feature>
\r
3001 <threshold>0.0345168709754944</threshold>
\r
3002 <left_val>-0.1230008006095886</left_val>
\r
3003 <right_val>0.5677536725997925</right_val></_></_>
\r
3007 <!-- root node -->
\r
3011 12 0 24 12 -1.</_>
\r
3015 12 6 12 6 2.</_></rects>
\r
3016 <tilted>0</tilted></feature>
\r
3017 <threshold>0.0789848119020462</threshold>
\r
3018 <left_val>-0.1424216926097870</left_val>
\r
3019 <right_val>0.4694185853004456</right_val></_></_>
\r
3023 <!-- root node -->
\r
3029 3 1 14 1 2.</_></rects>
\r
3030 <tilted>1</tilted></feature>
\r
3031 <threshold>-0.0153778595849872</threshold>
\r
3032 <left_val>0.6394686102867127</left_val>
\r
3033 <right_val>-0.1123619005084038</right_val></_></_>
\r
3037 <!-- root node -->
\r
3043 33 17 3 1 2.</_></rects>
\r
3044 <tilted>0</tilted></feature>
\r
3045 <threshold>-2.2373620595317334e-004</threshold>
\r
3046 <left_val>0.5558329820632935</left_val>
\r
3047 <right_val>-0.2724758088588715</right_val></_></_>
\r
3051 <!-- root node -->
\r
3057 15 0 3 14 3.</_></rects>
\r
3058 <tilted>0</tilted></feature>
\r
3059 <threshold>-0.0247623901814222</threshold>
\r
3060 <left_val>-0.5040485858917236</left_val>
\r
3061 <right_val>0.1407779008150101</right_val></_></_>
\r
3065 <!-- root node -->
\r
3073 28 17 4 1 2.</_></rects>
\r
3074 <tilted>0</tilted></feature>
\r
3075 <threshold>-9.4061157142277807e-005</threshold>
\r
3076 <left_val>0.3719528019428253</left_val>
\r
3077 <right_val>-0.2250299006700516</right_val></_></_>
\r
3081 <!-- root node -->
\r
3087 15 10 6 2 3.</_></rects>
\r
3088 <tilted>0</tilted></feature>
\r
3089 <threshold>-0.0202563591301441</threshold>
\r
3090 <left_val>0.5105100870132446</left_val>
\r
3091 <right_val>-0.1429875940084457</right_val></_></_>
\r
3095 <!-- root node -->
\r
3103 13 9 11 3 2.</_></rects>
\r
3104 <tilted>0</tilted></feature>
\r
3105 <threshold>0.0481228791177273</threshold>
\r
3106 <left_val>-0.0669795125722885</left_val>
\r
3107 <right_val>0.3662230968475342</right_val></_></_>
\r
3111 <!-- root node -->
\r
3119 13 12 13 2 2.</_></rects>
\r
3120 <tilted>0</tilted></feature>
\r
3121 <threshold>-0.0237878002226353</threshold>
\r
3122 <left_val>0.5081325173377991</left_val>
\r
3123 <right_val>-0.1290815025568008</right_val></_></_>
\r
3127 <!-- root node -->
\r
3133 24 17 4 1 2.</_></rects>
\r
3134 <tilted>0</tilted></feature>
\r
3135 <threshold>-1.0520319920033216e-003</threshold>
\r
3136 <left_val>-0.1560467034578323</left_val>
\r
3137 <right_val>0.0662133172154427</right_val></_></_>
\r
3141 <!-- root node -->
\r
3147 9 17 3 1 2.</_></rects>
\r
3148 <tilted>0</tilted></feature>
\r
3149 <threshold>-2.6640200521796942e-003</threshold>
\r
3150 <left_val>-0.7254558205604553</left_val>
\r
3151 <right_val>0.0823654532432556</right_val></_></_></trees>
\r
3152 <stage_threshold>-1.3777890205383301</stage_threshold>
\r
3153 <parent>8</parent>
\r
3154 <next>-1</next></_>
\r
3161 <!-- root node -->
\r
3169 12 11 9 4 2.</_></rects>
\r
3170 <tilted>0</tilted></feature>
\r
3171 <threshold>-0.0502246208488941</threshold>
\r
3172 <left_val>0.7084565758705139</left_val>
\r
3173 <right_val>-0.2558549940586090</right_val></_></_>
\r
3177 <!-- root node -->
\r
3183 23 0 4 4 2.</_></rects>
\r
3184 <tilted>0</tilted></feature>
\r
3185 <threshold>0.0140728699043393</threshold>
\r
3186 <left_val>0.0630331784486771</left_val>
\r
3187 <right_val>-0.0598385296761990</right_val></_></_>
\r
3191 <!-- root node -->
\r
3197 9 0 4 4 2.</_></rects>
\r
3198 <tilted>0</tilted></feature>
\r
3199 <threshold>0.0178040098398924</threshold>
\r
3200 <left_val>0.1941471993923187</left_val>
\r
3201 <right_val>-0.5844426751136780</right_val></_></_>
\r
3205 <!-- root node -->
\r
3211 14 11 8 1 9.</_></rects>
\r
3212 <tilted>0</tilted></feature>
\r
3213 <threshold>0.1304673999547958</threshold>
\r
3214 <left_val>-0.1151698008179665</left_val>
\r
3215 <right_val>0.8504030108451843</right_val></_></_>
\r
3219 <!-- root node -->
\r
3225 5 7 5 2 3.</_></rects>
\r
3226 <tilted>1</tilted></feature>
\r
3227 <threshold>0.0175068005919456</threshold>
\r
3228 <left_val>-0.2071896940469742</left_val>
\r
3229 <right_val>0.4643828868865967</right_val></_></_>
\r
3233 <!-- root node -->
\r
3241 5 17 13 1 2.</_></rects>
\r
3242 <tilted>0</tilted></feature>
\r
3243 <threshold>-7.4240020476281643e-003</threshold>
\r
3244 <left_val>-0.6656516790390015</left_val>
\r
3245 <right_val>0.1403498947620392</right_val></_></_>
\r
3249 <!-- root node -->
\r
3257 12 9 12 2 2.</_></rects>
\r
3258 <tilted>0</tilted></feature>
\r
3259 <threshold>-0.0345711186528206</threshold>
\r
3260 <left_val>0.6511297821998596</left_val>
\r
3261 <right_val>-0.1490191966295242</right_val></_></_>
\r
3265 <!-- root node -->
\r
3269 23 14 13 4 -1.</_>
\r
3271 23 15 13 2 2.</_></rects>
\r
3272 <tilted>0</tilted></feature>
\r
3273 <threshold>4.2270249687135220e-003</threshold>
\r
3274 <left_val>-1.6027219826355577e-003</left_val>
\r
3275 <right_val>0.3895606100559235</right_val></_></_>
\r
3279 <!-- root node -->
\r
3287 11 14 9 4 2.</_></rects>
\r
3288 <tilted>0</tilted></feature>
\r
3289 <threshold>-0.0506620407104492</threshold>
\r
3290 <left_val>0.5803576707839966</left_val>
\r
3291 <right_val>-0.1514143943786621</right_val></_></_>
\r
3295 <!-- root node -->
\r
3301 15 11 6 2 2.</_></rects>
\r
3302 <tilted>0</tilted></feature>
\r
3303 <threshold>-7.0715770125389099e-003</threshold>
\r
3304 <left_val>0.5300896763801575</left_val>
\r
3305 <right_val>-0.1449830979108810</right_val></_></_>
\r
3309 <!-- root node -->
\r
3317 12 7 12 1 2.</_></rects>
\r
3318 <tilted>0</tilted></feature>
\r
3319 <threshold>-0.0118635101243854</threshold>
\r
3320 <left_val>0.6729742288589478</left_val>
\r
3321 <right_val>-0.1106354966759682</right_val></_></_>
\r
3325 <!-- root node -->
\r
3329 17 0 18 18 -1.</_>
\r
3331 17 9 18 9 2.</_></rects>
\r
3332 <tilted>0</tilted></feature>
\r
3333 <threshold>-0.0605200305581093</threshold>
\r
3334 <left_val>-0.3316448926925659</left_val>
\r
3335 <right_val>0.2119556069374085</right_val></_></_>
\r
3339 <!-- root node -->
\r
3345 1 1 11 1 2.</_></rects>
\r
3346 <tilted>0</tilted></feature>
\r
3347 <threshold>-7.7340779826045036e-003</threshold>
\r
3348 <left_val>-0.6941440105438232</left_val>
\r
3349 <right_val>0.0727053135633469</right_val></_></_>
\r
3353 <!-- root node -->
\r
3361 15 12 4 6 2.</_></rects>
\r
3362 <tilted>0</tilted></feature>
\r
3363 <threshold>-0.0324861407279968</threshold>
\r
3364 <left_val>-0.5185081958770752</left_val>
\r
3365 <right_val>0.0592126213014126</right_val></_></_>
\r
3369 <!-- root node -->
\r
3377 18 7 16 6 2.</_></rects>
\r
3378 <tilted>0</tilted></feature>
\r
3379 <threshold>0.0832797065377235</threshold>
\r
3380 <left_val>0.1206794008612633</left_val>
\r
3381 <right_val>-0.5309563279151917</right_val></_></_>
\r
3385 <!-- root node -->
\r
3391 29 12 7 4 2.</_></rects>
\r
3392 <tilted>0</tilted></feature>
\r
3393 <threshold>7.8782817581668496e-004</threshold>
\r
3394 <left_val>-0.2737655937671661</left_val>
\r
3395 <right_val>0.2716251909732819</right_val></_></_>
\r
3399 <!-- root node -->
\r
3407 16 7 4 5 2.</_></rects>
\r
3408 <tilted>0</tilted></feature>
\r
3409 <threshold>-0.0175391808152199</threshold>
\r
3410 <left_val>-0.5690230131149292</left_val>
\r
3411 <right_val>0.1228737011551857</right_val></_></_>
\r
3415 <!-- root node -->
\r
3421 15 13 6 2 2.</_></rects>
\r
3422 <tilted>0</tilted></feature>
\r
3423 <threshold>-5.8226347900927067e-003</threshold>
\r
3424 <left_val>0.4386585950851440</left_val>
\r
3425 <right_val>-0.1493742018938065</right_val></_></_>
\r
3429 <!-- root node -->
\r
3435 0 14 8 2 3.</_></rects>
\r
3436 <tilted>0</tilted></feature>
\r
3437 <threshold>-0.0100575601682067</threshold>
\r
3438 <left_val>-0.6616886258125305</left_val>
\r
3439 <right_val>0.1144542992115021</right_val></_></_>
\r
3443 <!-- root node -->
\r
3451 10 13 13 4 2.</_></rects>
\r
3452 <tilted>0</tilted></feature>
\r
3453 <threshold>0.0903454273939133</threshold>
\r
3454 <left_val>-0.0666652470827103</left_val>
\r
3455 <right_val>0.2870647907257080</right_val></_></_>
\r
3459 <!-- root node -->
\r
3467 18 13 11 5 2.</_></rects>
\r
3468 <tilted>0</tilted></feature>
\r
3469 <threshold>-0.0675872936844826</threshold>
\r
3470 <left_val>-0.5363761186599731</left_val>
\r
3471 <right_val>0.1123751997947693</right_val></_></_>
\r
3475 <!-- root node -->
\r
3481 14 10 8 1 3.</_></rects>
\r
3482 <tilted>0</tilted></feature>
\r
3483 <threshold>-8.1747528165578842e-003</threshold>
\r
3484 <left_val>0.4434241950511932</left_val>
\r
3485 <right_val>-0.1297765970230103</right_val></_></_>
\r
3489 <!-- root node -->
\r
3495 11 6 4 3 3.</_></rects>
\r
3496 <tilted>0</tilted></feature>
\r
3497 <threshold>-0.0115505503490567</threshold>
\r
3498 <left_val>0.3273158073425293</left_val>
\r
3499 <right_val>-0.1700761020183563</right_val></_></_>
\r
3503 <!-- root node -->
\r
3509 29 14 2 1 2.</_></rects>
\r
3510 <tilted>1</tilted></feature>
\r
3511 <threshold>-1.7406829283572733e-004</threshold>
\r
3512 <left_val>0.1327867954969406</left_val>
\r
3513 <right_val>-0.1081293970346451</right_val></_></_>
\r
3517 <!-- root node -->
\r
3523 14 14 8 1 3.</_></rects>
\r
3524 <tilted>0</tilted></feature>
\r
3525 <threshold>4.6040047891438007e-003</threshold>
\r
3526 <left_val>-0.1226582005620003</left_val>
\r
3527 <right_val>0.4412580132484436</right_val></_></_></trees>
\r
3528 <stage_threshold>-1.3266400098800659</stage_threshold>
\r
3529 <parent>9</parent>
\r
3530 <next>-1</next></_>
\r
3537 <!-- root node -->
\r
3543 9 5 7 4 2.</_></rects>
\r
3544 <tilted>1</tilted></feature>
\r
3545 <threshold>-0.0469432808458805</threshold>
\r
3546 <left_val>0.6094344258308411</left_val>
\r
3547 <right_val>-0.2637800872325897</right_val></_></_>
\r
3551 <!-- root node -->
\r
3557 28 13 1 2 2.</_></rects>
\r
3558 <tilted>1</tilted></feature>
\r
3559 <threshold>-1.6899159527383745e-004</threshold>
\r
3560 <left_val>0.1665875017642975</left_val>
\r
3561 <right_val>-0.1254196017980576</right_val></_></_>
\r
3565 <!-- root node -->
\r
3571 8 13 2 1 2.</_></rects>
\r
3572 <tilted>1</tilted></feature>
\r
3573 <threshold>2.7983370237052441e-003</threshold>
\r
3574 <left_val>0.1905744969844818</left_val>
\r
3575 <right_val>-0.6568077206611633</right_val></_></_>
\r
3579 <!-- root node -->
\r
3585 16 10 4 1 3.</_></rects>
\r
3586 <tilted>0</tilted></feature>
\r
3587 <threshold>4.0413960814476013e-003</threshold>
\r
3588 <left_val>-0.1731746941804886</left_val>
\r
3589 <right_val>0.6362075209617615</right_val></_></_>
\r
3593 <!-- root node -->
\r
3599 13 9 10 2 2.</_></rects>
\r
3600 <tilted>0</tilted></feature>
\r
3601 <threshold>-8.6033362895250320e-003</threshold>
\r
3602 <left_val>0.6025841832160950</left_val>
\r
3603 <right_val>-0.2316936999559403</right_val></_></_>
\r
3607 <!-- root node -->
\r
3613 14 9 8 1 3.</_></rects>
\r
3614 <tilted>0</tilted></feature>
\r
3615 <threshold>8.8247945532202721e-003</threshold>
\r
3616 <left_val>-0.1756583005189896</left_val>
\r
3617 <right_val>0.7104166746139526</right_val></_></_>
\r
3621 <!-- root node -->
\r
3627 4 12 2 2 3.</_></rects>
\r
3628 <tilted>1</tilted></feature>
\r
3629 <threshold>-9.2786159366369247e-003</threshold>
\r
3630 <left_val>-0.6890857219696045</left_val>
\r
3631 <right_val>0.1789650022983551</right_val></_></_>
\r
3635 <!-- root node -->
\r
3641 16 11 6 1 3.</_></rects>
\r
3642 <tilted>0</tilted></feature>
\r
3643 <threshold>6.0826768167316914e-003</threshold>
\r
3644 <left_val>-0.1706372052431107</left_val>
\r
3645 <right_val>0.5375748276710510</right_val></_></_>
\r
3649 <!-- root node -->
\r
3655 12 5 4 13 2.</_></rects>
\r
3656 <tilted>0</tilted></feature>
\r
3657 <threshold>-0.0390073694288731</threshold>
\r
3658 <left_val>-0.6834635734558106</left_val>
\r
3659 <right_val>0.1441708058118820</right_val></_></_>
\r
3663 <!-- root node -->
\r
3671 0 4 18 4 2.</_></rects>
\r
3672 <tilted>0</tilted></feature>
\r
3673 <threshold>-0.0703379511833191</threshold>
\r
3674 <left_val>-0.6508566737174988</left_val>
\r
3675 <right_val>0.1008547991514206</right_val></_></_>
\r
3679 <!-- root node -->
\r
3687 5 11 4 6 2.</_></rects>
\r
3688 <tilted>0</tilted></feature>
\r
3689 <threshold>0.0331666991114616</threshold>
\r
3690 <left_val>-0.1932571977376938</left_val>
\r
3691 <right_val>0.4779865145683289</right_val></_></_>
\r
3695 <!-- root node -->
\r
3699 18 8 18 10 -1.</_>
\r
3703 18 13 9 5 2.</_></rects>
\r
3704 <tilted>0</tilted></feature>
\r
3705 <threshold>0.0752889066934586</threshold>
\r
3706 <left_val>-0.0695677325129509</left_val>
\r
3707 <right_val>0.4125064909458160</right_val></_></_>
\r
3711 <!-- root node -->
\r
3719 9 13 9 5 2.</_></rects>
\r
3720 <tilted>0</tilted></feature>
\r
3721 <threshold>-0.0705017298460007</threshold>
\r
3722 <left_val>0.7157300710678101</left_val>
\r
3723 <right_val>-0.1022270023822784</right_val></_></_>
\r
3727 <!-- root node -->
\r
3733 11 6 14 1 3.</_></rects>
\r
3734 <tilted>0</tilted></feature>
\r
3735 <threshold>0.0122494902461767</threshold>
\r
3736 <left_val>-0.1061242967844009</left_val>
\r
3737 <right_val>0.6295958161354065</right_val></_></_>
\r
3741 <!-- root node -->
\r
3747 10 8 16 2 3.</_></rects>
\r
3748 <tilted>0</tilted></feature>
\r
3749 <threshold>0.0706446766853333</threshold>
\r
3750 <left_val>-0.0973746329545975</left_val>
\r
3751 <right_val>0.6762204170227051</right_val></_></_>
\r
3755 <!-- root node -->
\r
3763 7 10 12 8 2.</_></rects>
\r
3764 <tilted>0</tilted></feature>
\r
3765 <threshold>0.1624888032674789</threshold>
\r
3766 <left_val>0.0527133606374264</left_val>
\r
3767 <right_val>-0.8494657278060913</right_val></_></_>
\r
3771 <!-- root node -->
\r
3777 6 6 6 5 9.</_></rects>
\r
3778 <tilted>0</tilted></feature>
\r
3779 <threshold>0.1380825042724609</threshold>
\r
3780 <left_val>0.1406479030847549</left_val>
\r
3781 <right_val>-0.4764721095561981</right_val></_></_></trees>
\r
3782 <stage_threshold>-1.4497200250625610</stage_threshold>
\r
3783 <parent>10</parent>
\r
3784 <next>-1</next></_>
\r
3791 <!-- root node -->
\r
3797 12 5 8 6 2.</_></rects>
\r
3798 <tilted>0</tilted></feature>
\r
3799 <threshold>-0.0418823398649693</threshold>
\r
3800 <left_val>-0.8077452778816223</left_val>
\r
3801 <right_val>0.2640967071056366</right_val></_></_>
\r
3805 <!-- root node -->
\r
3811 31 2 2 11 3.</_></rects>
\r
3812 <tilted>1</tilted></feature>
\r
3813 <threshold>-0.0536229908466339</threshold>
\r
3814 <left_val>0.5580704212188721</left_val>
\r
3815 <right_val>-0.2498968988656998</right_val></_></_>
\r
3819 <!-- root node -->
\r
3825 5 11 3 1 3.</_></rects>
\r
3826 <tilted>1</tilted></feature>
\r
3827 <threshold>9.3709938228130341e-003</threshold>
\r
3828 <left_val>0.2650170028209686</left_val>
\r
3829 <right_val>-0.5990694761276245</right_val></_></_>
\r
3833 <!-- root node -->
\r
3839 10 7 17 1 3.</_></rects>
\r
3840 <tilted>0</tilted></feature>
\r
3841 <threshold>0.0139097301289439</threshold>
\r
3842 <left_val>-0.1470918059349060</left_val>
\r
3843 <right_val>0.7354667186737061</right_val></_></_>
\r
3847 <!-- root node -->
\r
3853 20 8 2 2 3.</_></rects>
\r
3854 <tilted>1</tilted></feature>
\r
3855 <threshold>0.0190035700798035</threshold>
\r
3856 <left_val>-0.1887511014938355</left_val>
\r
3857 <right_val>0.7487422227859497</right_val></_></_>
\r
3861 <!-- root node -->
\r
3865 13 11 12 3 -1.</_>
\r
3867 13 12 12 1 3.</_></rects>
\r
3868 <tilted>0</tilted></feature>
\r
3869 <threshold>5.9199850074946880e-003</threshold>
\r
3870 <left_val>-0.1599563956260681</left_val>
\r
3871 <right_val>0.5673577785491943</right_val></_></_>
\r
3875 <!-- root node -->
\r
3883 6 7 4 4 2.</_></rects>
\r
3884 <tilted>0</tilted></feature>
\r
3885 <threshold>-0.0247051399201155</threshold>
\r
3886 <left_val>0.7556992173194885</left_val>
\r
3887 <right_val>-0.1235088035464287</right_val></_></_>
\r
3891 <!-- root node -->
\r
3895 18 12 18 4 -1.</_>
\r
3899 18 14 9 2 2.</_></rects>
\r
3900 <tilted>0</tilted></feature>
\r
3901 <threshold>0.0160583592951298</threshold>
\r
3902 <left_val>-0.1282460987567902</left_val>
\r
3903 <right_val>0.5129454731941223</right_val></_></_>
\r
3907 <!-- root node -->
\r
3913 11 6 11 1 3.</_></rects>
\r
3914 <tilted>0</tilted></feature>
\r
3915 <threshold>8.8288700208067894e-003</threshold>
\r
3916 <left_val>-0.1686663925647736</left_val>
\r
3917 <right_val>0.6152185201644898</right_val></_></_>
\r
3921 <!-- root node -->
\r
3927 14 8 14 2 2.</_></rects>
\r
3928 <tilted>0</tilted></feature>
\r
3929 <threshold>0.0175563395023346</threshold>
\r
3930 <left_val>-0.1090169996023178</left_val>
\r
3931 <right_val>0.5803176164627075</right_val></_></_>
\r
3935 <!-- root node -->
\r
3943 17 13 8 5 2.</_></rects>
\r
3944 <tilted>0</tilted></feature>
\r
3945 <threshold>0.0421881191432476</threshold>
\r
3946 <left_val>0.1486624032258987</left_val>
\r
3947 <right_val>-0.6922233104705811</right_val></_></_>
\r
3951 <!-- root node -->
\r
3957 18 17 1 1 2.</_></rects>
\r
3958 <tilted>0</tilted></feature>
\r
3959 <threshold>5.0687207840383053e-004</threshold>
\r
3960 <left_val>0.0315808691084385</left_val>
\r
3961 <right_val>-0.3700995147228241</right_val></_></_>
\r
3965 <!-- root node -->
\r
3971 13 11 5 1 3.</_></rects>
\r
3972 <tilted>0</tilted></feature>
\r
3973 <threshold>2.7651190757751465e-003</threshold>
\r
3974 <left_val>-0.2133754044771195</left_val>
\r
3975 <right_val>0.4704301059246063</right_val></_></_>
\r
3979 <!-- root node -->
\r
3985 18 17 1 1 2.</_></rects>
\r
3986 <tilted>0</tilted></feature>
\r
3987 <threshold>-1.2231520377099514e-003</threshold>
\r
3988 <left_val>-0.7818967103958130</left_val>
\r
3989 <right_val>0.0209542606025934</right_val></_></_>
\r
3993 <!-- root node -->
\r
3999 6 6 8 1 3.</_></rects>
\r
4000 <tilted>1</tilted></feature>
\r
4001 <threshold>8.5432287305593491e-003</threshold>
\r
4002 <left_val>-0.1455352008342743</left_val>
\r
4003 <right_val>0.6789504289627075</right_val></_></_>
\r
4007 <!-- root node -->
\r
4013 18 17 1 1 2.</_></rects>
\r
4014 <tilted>0</tilted></feature>
\r
4015 <threshold>-2.0657219283748418e-004</threshold>
\r
4016 <left_val>0.2437624037265778</left_val>
\r
4017 <right_val>-0.0675588026642799</right_val></_></_>
\r
4021 <!-- root node -->
\r
4027 10 6 5 1 3.</_></rects>
\r
4028 <tilted>0</tilted></feature>
\r
4029 <threshold>-4.6798270195722580e-003</threshold>
\r
4030 <left_val>0.6684169769287109</left_val>
\r
4031 <right_val>-0.1388788074254990</right_val></_></_>
\r
4035 <!-- root node -->
\r
4043 2 10 17 5 2.</_></rects>
\r
4044 <tilted>0</tilted></feature>
\r
4045 <threshold>0.1220175996422768</threshold>
\r
4046 <left_val>0.1102816015481949</left_val>
\r
4047 <right_val>-0.7530742287635803</right_val></_></_>
\r
4051 <!-- root node -->
\r
4057 6 5 6 3 2.</_></rects>
\r
4058 <tilted>1</tilted></feature>
\r
4059 <threshold>0.0204043406993151</threshold>
\r
4060 <left_val>0.1645383983850479</left_val>
\r
4061 <right_val>-0.5223162174224854</right_val></_></_>
\r
4065 <!-- root node -->
\r
4071 35 8 1 2 3.</_></rects>
\r
4072 <tilted>0</tilted></feature>
\r
4073 <threshold>8.0343370791524649e-004</threshold>
\r
4074 <left_val>-0.1301285028457642</left_val>
\r
4075 <right_val>0.2635852992534638</right_val></_></_></trees>
\r
4076 <stage_threshold>-1.4622910022735596</stage_threshold>
\r
4077 <parent>11</parent>
\r
4078 <next>-1</next></_>
\r
4085 <!-- root node -->
\r
4091 10 8 13 2 3.</_></rects>
\r
4092 <tilted>0</tilted></feature>
\r
4093 <threshold>0.0727917104959488</threshold>
\r
4094 <left_val>-0.1372790038585663</left_val>
\r
4095 <right_val>0.8291574716567993</right_val></_></_>
\r
4099 <!-- root node -->
\r
4105 15 6 6 2 2.</_></rects>
\r
4106 <tilted>0</tilted></feature>
\r
4107 <threshold>7.5939209200441837e-003</threshold>
\r
4108 <left_val>-0.1678012013435364</left_val>
\r
4109 <right_val>0.5683972239494324</right_val></_></_>
\r
4113 <!-- root node -->
\r
4119 4 3 11 2 2.</_></rects>
\r
4120 <tilted>1</tilted></feature>
\r
4121 <threshold>-0.0235623903572559</threshold>
\r
4122 <left_val>0.6500560045242310</left_val>
\r
4123 <right_val>-0.1424535065889359</right_val></_></_>
\r
4127 <!-- root node -->
\r
4135 26 9 5 3 2.</_></rects>
\r
4136 <tilted>0</tilted></feature>
\r
4137 <threshold>0.0173929501324892</threshold>
\r
4138 <left_val>-0.1529144942760468</left_val>
\r
4139 <right_val>0.3425354063510895</right_val></_></_>
\r
4143 <!-- root node -->
\r
4149 10 9 11 4 2.</_></rects>
\r
4150 <tilted>0</tilted></feature>
\r
4151 <threshold>0.0718258023262024</threshold>
\r
4152 <left_val>-0.0991311371326447</left_val>
\r
4153 <right_val>0.8279678821563721</right_val></_></_>
\r
4157 <!-- root node -->
\r
4163 29 3 2 9 2.</_></rects>
\r
4164 <tilted>1</tilted></feature>
\r
4165 <threshold>0.0136738000437617</threshold>
\r
4166 <left_val>-0.0417872704565525</left_val>
\r
4167 <right_val>0.5078148245811462</right_val></_></_>
\r
4171 <!-- root node -->
\r
4177 7 3 10 2 2.</_></rects>
\r
4178 <tilted>1</tilted></feature>
\r
4179 <threshold>-0.0285859592258930</threshold>
\r
4180 <left_val>0.7011532187461853</left_val>
\r
4181 <right_val>-0.1314471065998077</right_val></_></_>
\r
4185 <!-- root node -->
\r
4191 31 1 5 1 2.</_></rects>
\r
4192 <tilted>0</tilted></feature>
\r
4193 <threshold>-4.1845720261335373e-004</threshold>
\r
4194 <left_val>0.2845467031002045</left_val>
\r
4195 <right_val>-0.3123202919960022</right_val></_></_>
\r
4199 <!-- root node -->
\r
4203 10 6 16 12 -1.</_>
\r
4205 10 10 16 4 3.</_></rects>
\r
4206 <tilted>0</tilted></feature>
\r
4207 <threshold>-0.0520956814289093</threshold>
\r
4208 <left_val>0.4181294143199921</left_val>
\r
4209 <right_val>-0.1699313074350357</right_val></_></_>
\r
4213 <!-- root node -->
\r
4219 18 5 4 1 3.</_></rects>
\r
4220 <tilted>0</tilted></feature>
\r
4221 <threshold>3.2256329432129860e-003</threshold>
\r
4222 <left_val>-0.0904662087559700</left_val>
\r
4223 <right_val>0.3008623123168945</right_val></_></_>
\r
4227 <!-- root node -->
\r
4233 11 12 6 2 3.</_></rects>
\r
4234 <tilted>0</tilted></feature>
\r
4235 <threshold>0.0347716398537159</threshold>
\r
4236 <left_val>-0.0842167884111404</left_val>
\r
4237 <right_val>0.7801663875579834</right_val></_></_>
\r
4241 <!-- root node -->
\r
4247 35 13 1 5 2.</_></rects>
\r
4248 <tilted>0</tilted></feature>
\r
4249 <threshold>-1.3356630224734545e-003</threshold>
\r
4250 <left_val>0.3316453099250794</left_val>
\r
4251 <right_val>-0.1696092039346695</right_val></_></_>
\r
4255 <!-- root node -->
\r
4261 18 10 18 8 2.</_></rects>
\r
4262 <tilted>0</tilted></feature>
\r
4263 <threshold>0.2510198056697846</threshold>
\r
4264 <left_val>-0.1392046958208084</left_val>
\r
4265 <right_val>0.6633893251419067</right_val></_></_>
\r
4269 <!-- root node -->
\r
4277 16 11 3 4 2.</_></rects>
\r
4278 <tilted>0</tilted></feature>
\r
4279 <threshold>-9.9689997732639313e-003</threshold>
\r
4280 <left_val>-0.3713817000389099</left_val>
\r
4281 <right_val>0.1290012001991272</right_val></_></_>
\r
4285 <!-- root node -->
\r
4291 7 6 4 4 2.</_></rects>
\r
4292 <tilted>1</tilted></feature>
\r
4293 <threshold>0.0143037298694253</threshold>
\r
4294 <left_val>0.1572919934988022</left_val>
\r
4295 <right_val>-0.5093821287155151</right_val></_></_>
\r
4299 <!-- root node -->
\r
4305 21 12 4 1 3.</_></rects>
\r
4306 <tilted>0</tilted></feature>
\r
4307 <threshold>-7.0856059901416302e-003</threshold>
\r
4308 <left_val>0.4656791090965271</left_val>
\r
4309 <right_val>-0.0662708207964897</right_val></_></_>
\r
4313 <!-- root node -->
\r
4319 0 13 1 4 2.</_></rects>
\r
4320 <tilted>0</tilted></feature>
\r
4321 <threshold>-4.6260809176601470e-004</threshold>
\r
4322 <left_val>0.2933731079101563</left_val>
\r
4323 <right_val>-0.2333986014127731</right_val></_></_>
\r
4327 <!-- root node -->
\r
4333 29 9 2 4 3.</_></rects>
\r
4334 <tilted>1</tilted></feature>
\r
4335 <threshold>-0.0344354808330536</threshold>
\r
4336 <left_val>0.7002474069595337</left_val>
\r
4337 <right_val>-0.1013351008296013</right_val></_></_>
\r
4341 <!-- root node -->
\r
4347 12 14 4 4 2.</_></rects>
\r
4348 <tilted>0</tilted></feature>
\r
4349 <threshold>-7.2570890188217163e-003</threshold>
\r
4350 <left_val>-0.5628641247749329</left_val>
\r
4351 <right_val>0.1314862072467804</right_val></_></_>
\r
4355 <!-- root node -->
\r
4361 18 17 1 1 2.</_></rects>
\r
4362 <tilted>0</tilted></feature>
\r
4363 <threshold>4.8352940939366817e-004</threshold>
\r
4364 <left_val>0.0262274891138077</left_val>
\r
4365 <right_val>-0.2605080008506775</right_val></_></_>
\r
4369 <!-- root node -->
\r
4375 10 5 11 2 2.</_></rects>
\r
4376 <tilted>0</tilted></feature>
\r
4377 <threshold>-0.0129999397322536</threshold>
\r
4378 <left_val>0.5311700105667114</left_val>
\r
4379 <right_val>-0.1202305033802986</right_val></_></_>
\r
4383 <!-- root node -->
\r
4389 17 13 2 2 2.</_></rects>
\r
4390 <tilted>0</tilted></feature>
\r
4391 <threshold>-1.0009329998865724e-003</threshold>
\r
4392 <left_val>0.3964129984378815</left_val>
\r
4393 <right_val>-0.1599515974521637</right_val></_></_>
\r
4397 <!-- root node -->
\r
4403 13 5 5 1 3.</_></rects>
\r
4404 <tilted>0</tilted></feature>
\r
4405 <threshold>4.1314200498163700e-003</threshold>
\r
4406 <left_val>-0.1492992043495178</left_val>
\r
4407 <right_val>0.4295912086963654</right_val></_></_>
\r
4411 <!-- root node -->
\r
4415 13 12 11 2 -1.</_>
\r
4417 13 13 11 1 2.</_></rects>
\r
4418 <tilted>0</tilted></feature>
\r
4419 <threshold>8.7364455685019493e-003</threshold>
\r
4420 <left_val>-0.1127102002501488</left_val>
\r
4421 <right_val>0.4945647120475769</right_val></_></_>
\r
4425 <!-- root node -->
\r
4433 2 17 1 1 2.</_></rects>
\r
4434 <tilted>0</tilted></feature>
\r
4435 <threshold>2.6352869463153183e-004</threshold>
\r
4436 <left_val>-0.1212491989135742</left_val>
\r
4437 <right_val>0.4943937957286835</right_val></_></_>
\r
4441 <!-- root node -->
\r
4447 29 9 2 4 3.</_></rects>
\r
4448 <tilted>1</tilted></feature>
\r
4449 <threshold>-0.0538859590888023</threshold>
\r
4450 <left_val>0.7035598754882813</left_val>
\r
4451 <right_val>-0.0132305501028895</right_val></_></_>
\r
4455 <!-- root node -->
\r
4461 4 9 6 2 3.</_></rects>
\r
4462 <tilted>0</tilted></feature>
\r
4463 <threshold>4.2885672301054001e-003</threshold>
\r
4464 <left_val>-0.1754055023193359</left_val>
\r
4465 <right_val>0.3567946851253510</right_val></_></_>
\r
4469 <!-- root node -->
\r
4475 31 7 2 5 2.</_></rects>
\r
4476 <tilted>1</tilted></feature>
\r
4477 <threshold>7.9539399594068527e-003</threshold>
\r
4478 <left_val>-0.0998840034008026</left_val>
\r
4479 <right_val>0.3137167096138001</right_val></_></_></trees>
\r
4480 <stage_threshold>-1.3885619640350342</stage_threshold>
\r
4481 <parent>12</parent>
\r
4482 <next>-1</next></_>
\r
4489 <!-- root node -->
\r
4495 13 5 10 7 2.</_></rects>
\r
4496 <tilted>0</tilted></feature>
\r
4497 <threshold>0.0567523688077927</threshold>
\r
4498 <left_val>-0.3257648050785065</left_val>
\r
4499 <right_val>0.3737593889236450</right_val></_></_>
\r
4503 <!-- root node -->
\r
4509 30 8 3 6 2.</_></rects>
\r
4510 <tilted>0</tilted></feature>
\r
4511 <threshold>7.0906039327383041e-003</threshold>
\r
4512 <left_val>-0.1391862928867340</left_val>
\r
4513 <right_val>0.1503984034061432</right_val></_></_>
\r
4517 <!-- root node -->
\r
4523 4 2 12 2 2.</_></rects>
\r
4524 <tilted>1</tilted></feature>
\r
4525 <threshold>-0.0412988215684891</threshold>
\r
4526 <left_val>0.4702607989311218</left_val>
\r
4527 <right_val>-0.1617936044931412</right_val></_></_>
\r
4531 <!-- root node -->
\r
4537 12 10 12 2 9.</_></rects>
\r
4538 <tilted>0</tilted></feature>
\r
4539 <threshold>0.4775018990039825</threshold>
\r
4540 <left_val>-0.1006157994270325</left_val>
\r
4541 <right_val>0.7635074257850647</right_val></_></_>
\r
4545 <!-- root node -->
\r
4551 13 7 10 2 9.</_></rects>
\r
4552 <tilted>0</tilted></feature>
\r
4553 <threshold>0.4226649105548859</threshold>
\r
4554 <left_val>-0.0351909101009369</left_val>
\r
4555 <right_val>0.8303126096725464</right_val></_></_>
\r
4559 <!-- root node -->
\r
4565 18 4 4 9 3.</_></rects>
\r
4566 <tilted>0</tilted></feature>
\r
4567 <threshold>-0.0330318994820118</threshold>
\r
4568 <left_val>-0.3750554919242859</left_val>
\r
4569 <right_val>0.0489026196300983</right_val></_></_>
\r
4573 <!-- root node -->
\r
4579 3 17 3 1 2.</_></rects>
\r
4580 <tilted>0</tilted></feature>
\r
4581 <threshold>1.1923770216526464e-004</threshold>
\r
4582 <left_val>-0.2661466896533966</left_val>
\r
4583 <right_val>0.2234652042388916</right_val></_></_>
\r
4587 <!-- root node -->
\r
4593 34 0 1 1 2.</_></rects>
\r
4594 <tilted>1</tilted></feature>
\r
4595 <threshold>4.2101400904357433e-003</threshold>
\r
4596 <left_val>8.7575968354940414e-003</left_val>
\r
4597 <right_val>-0.5938351750373840</right_val></_></_>
\r
4601 <!-- root node -->
\r
4607 2 0 1 1 2.</_></rects>
\r
4608 <tilted>1</tilted></feature>
\r
4609 <threshold>3.3337279455736279e-004</threshold>
\r
4610 <left_val>-0.2122765928506851</left_val>
\r
4611 <right_val>0.2473503947257996</right_val></_></_>
\r
4615 <!-- root node -->
\r
4621 32 4 1 8 3.</_></rects>
\r
4622 <tilted>1</tilted></feature>
\r
4623 <threshold>0.0117938900366426</threshold>
\r
4624 <left_val>-0.0689979493618011</left_val>
\r
4625 <right_val>0.5898082852363586</right_val></_></_>
\r
4629 <!-- root node -->
\r
4637 18 12 13 6 2.</_></rects>
\r
4638 <tilted>0</tilted></feature>
\r
4639 <threshold>-0.1143207997083664</threshold>
\r
4640 <left_val>-0.7733368277549744</left_val>
\r
4641 <right_val>0.0628622919321060</right_val></_></_>
\r
4645 <!-- root node -->
\r
4651 18 4 4 9 3.</_></rects>
\r
4652 <tilted>0</tilted></feature>
\r
4653 <threshold>0.0824010074138641</threshold>
\r
4654 <left_val>0.0168252792209387</left_val>
\r
4655 <right_val>-0.6170011758804321</right_val></_></_>
\r
4659 <!-- root node -->
\r
4663 13 7 10 10 -1.</_>
\r
4667 18 12 5 5 2.</_></rects>
\r
4668 <tilted>0</tilted></feature>
\r
4669 <threshold>0.0181261505931616</threshold>
\r
4670 <left_val>0.0995334684848785</left_val>
\r
4671 <right_val>-0.3830915987491608</right_val></_></_>
\r
4675 <!-- root node -->
\r
4681 31 6 2 6 2.</_></rects>
\r
4682 <tilted>1</tilted></feature>
\r
4683 <threshold>8.9282449334859848e-003</threshold>
\r
4684 <left_val>-0.1010973975062370</left_val>
\r
4685 <right_val>0.2948305010795593</right_val></_></_>
\r
4689 <!-- root node -->
\r
4695 5 6 6 2 2.</_></rects>
\r
4696 <tilted>1</tilted></feature>
\r
4697 <threshold>-0.0174371004104614</threshold>
\r
4698 <left_val>0.4614987075328827</left_val>
\r
4699 <right_val>-0.1050636023283005</right_val></_></_>
\r
4703 <!-- root node -->
\r
4709 30 6 2 5 2.</_></rects>
\r
4710 <tilted>1</tilted></feature>
\r
4711 <threshold>-0.0112803103402257</threshold>
\r
4712 <left_val>0.4561164975166321</left_val>
\r
4713 <right_val>-0.1013116016983986</right_val></_></_>
\r
4717 <!-- root node -->
\r
4723 6 6 5 2 2.</_></rects>
\r
4724 <tilted>1</tilted></feature>
\r
4725 <threshold>7.0190089754760265e-003</threshold>
\r
4726 <left_val>-0.1368626952171326</left_val>
\r
4727 <right_val>0.4173265993595123</right_val></_></_>
\r
4731 <!-- root node -->
\r
4737 12 0 12 1 3.</_></rects>
\r
4738 <tilted>0</tilted></feature>
\r
4739 <threshold>-3.2439709175378084e-003</threshold>
\r
4740 <left_val>0.2321648001670837</left_val>
\r
4741 <right_val>-0.1791536957025528</right_val></_></_>
\r
4745 <!-- root node -->
\r
4751 14 5 8 2 9.</_></rects>
\r
4752 <tilted>0</tilted></feature>
\r
4753 <threshold>0.3561589121818543</threshold>
\r
4754 <left_val>-0.0486268103122711</left_val>
\r
4755 <right_val>0.9537345767021179</right_val></_></_>
\r
4759 <!-- root node -->
\r
4765 15 13 6 1 3.</_></rects>
\r
4766 <tilted>0</tilted></feature>
\r
4767 <threshold>3.8440749049186707e-003</threshold>
\r
4768 <left_val>-0.1028828024864197</left_val>
\r
4769 <right_val>0.3671778142452240</right_val></_></_>
\r
4773 <!-- root node -->
\r
4779 14 1 3 17 3.</_></rects>
\r
4780 <tilted>0</tilted></feature>
\r
4781 <threshold>0.0609500296413898</threshold>
\r
4782 <left_val>0.0561417415738106</left_val>
\r
4783 <right_val>-0.6458569765090942</right_val></_></_>
\r
4787 <!-- root node -->
\r
4791 18 1 18 10 -1.</_>
\r
4793 18 1 9 10 2.</_></rects>
\r
4794 <tilted>0</tilted></feature>
\r
4795 <threshold>0.1814922988414764</threshold>
\r
4796 <left_val>0.0308063905686140</left_val>
\r
4797 <right_val>-0.4604896008968353</right_val></_></_>
\r
4801 <!-- root node -->
\r
4807 9 1 9 10 2.</_></rects>
\r
4808 <tilted>0</tilted></feature>
\r
4809 <threshold>-0.0923592597246170</threshold>
\r
4810 <left_val>-0.4524821043014526</left_val>
\r
4811 <right_val>0.0881522372364998</right_val></_></_>
\r
4815 <!-- root node -->
\r
4821 31 8 2 5 2.</_></rects>
\r
4822 <tilted>1</tilted></feature>
\r
4823 <threshold>7.6072998344898224e-003</threshold>
\r
4824 <left_val>-0.0971223264932632</left_val>
\r
4825 <right_val>0.2155224978923798</right_val></_></_>
\r
4829 <!-- root node -->
\r
4835 0 11 1 1 3.</_></rects>
\r
4836 <tilted>0</tilted></feature>
\r
4837 <threshold>-4.6946710790507495e-004</threshold>
\r
4838 <left_val>-0.4089371860027313</left_val>
\r
4839 <right_val>0.0800421908497810</right_val></_></_>
\r
4843 <!-- root node -->
\r
4851 33 17 1 1 2.</_></rects>
\r
4852 <tilted>0</tilted></feature>
\r
4853 <threshold>1.0301820293534547e-004</threshold>
\r
4854 <left_val>-0.1153035983443260</left_val>
\r
4855 <right_val>0.2795535027980804</right_val></_></_>
\r
4859 <!-- root node -->
\r
4867 2 17 1 1 2.</_></rects>
\r
4868 <tilted>0</tilted></feature>
\r
4869 <threshold>2.7936851256527007e-004</threshold>
\r
4870 <left_val>-0.1139610037207604</left_val>
\r
4871 <right_val>0.2931660115718842</right_val></_></_>
\r
4875 <!-- root node -->
\r
4881 12 9 12 1 9.</_></rects>
\r
4882 <tilted>0</tilted></feature>
\r
4883 <threshold>0.2467595934867859</threshold>
\r
4884 <left_val>-0.0385956317186356</left_val>
\r
4885 <right_val>0.8264998197555542</right_val></_></_>
\r
4889 <!-- root node -->
\r
4895 14 8 8 2 2.</_></rects>
\r
4896 <tilted>0</tilted></feature>
\r
4897 <threshold>-8.4232958033680916e-003</threshold>
\r
4898 <left_val>0.3299596905708313</left_val>
\r
4899 <right_val>-0.1164536997675896</right_val></_></_>
\r
4903 <!-- root node -->
\r
4909 17 10 5 1 3.</_></rects>
\r
4910 <tilted>0</tilted></feature>
\r
4911 <threshold>-4.2311567813158035e-003</threshold>
\r
4912 <left_val>0.2714211940765381</left_val>
\r
4913 <right_val>-0.1081148013472557</right_val></_></_>
\r
4917 <!-- root node -->
\r
4923 4 0 1 1 2.</_></rects>
\r
4924 <tilted>1</tilted></feature>
\r
4925 <threshold>1.5653009759262204e-003</threshold>
\r
4926 <left_val>0.0782537832856178</left_val>
\r
4927 <right_val>-0.5209766030311585</right_val></_></_>
\r
4931 <!-- root node -->
\r
4937 31 0 3 1 2.</_></rects>
\r
4938 <tilted>1</tilted></feature>
\r
4939 <threshold>-5.0341398455202579e-003</threshold>
\r
4940 <left_val>0.2948805987834930</left_val>
\r
4941 <right_val>-0.0469605103135109</right_val></_></_>
\r
4945 <!-- root node -->
\r
4951 5 0 1 3 2.</_></rects>
\r
4952 <tilted>1</tilted></feature>
\r
4953 <threshold>1.4283140189945698e-003</threshold>
\r
4954 <left_val>-0.1379459947347641</left_val>
\r
4955 <right_val>0.2432370930910111</right_val></_></_>
\r
4959 <!-- root node -->
\r
4965 0 13 18 5 2.</_></rects>
\r
4966 <tilted>0</tilted></feature>
\r
4967 <threshold>0.1903136968612671</threshold>
\r
4968 <left_val>-0.0520935095846653</left_val>
\r
4969 <right_val>0.6870803236961365</right_val></_></_>
\r
4973 <!-- root node -->
\r
4979 5 4 4 1 3.</_></rects>
\r
4980 <tilted>1</tilted></feature>
\r
4981 <threshold>8.1368777900934219e-003</threshold>
\r
4982 <left_val>-0.0533115193247795</left_val>
\r
4983 <right_val>0.5827271938323975</right_val></_></_>
\r
4987 <!-- root node -->
\r
4993 30 9 2 3 3.</_></rects>
\r
4994 <tilted>1</tilted></feature>
\r
4995 <threshold>-0.0467283688485622</threshold>
\r
4996 <left_val>0.3552536070346832</left_val>
\r
4997 <right_val>-0.0178062599152327</right_val></_></_>
\r
5001 <!-- root node -->
\r
5007 6 9 3 2 3.</_></rects>
\r
5008 <tilted>1</tilted></feature>
\r
5009 <threshold>0.0143171697854996</threshold>
\r
5010 <left_val>-0.1262664049863815</left_val>
\r
5011 <right_val>0.2696101069450378</right_val></_></_>
\r
5015 <!-- root node -->
\r
5019 14 5 18 10 -1.</_>
\r
5023 14 10 9 5 2.</_></rects>
\r
5024 <tilted>0</tilted></feature>
\r
5025 <threshold>-0.0961097329854965</threshold>
\r
5026 <left_val>0.3411748111248016</left_val>
\r
5027 <right_val>-0.0392176099121571</right_val></_></_>
\r
5031 <!-- root node -->
\r
5039 13 10 9 5 2.</_></rects>
\r
5040 <tilted>0</tilted></feature>
\r
5041 <threshold>0.0748788118362427</threshold>
\r
5042 <left_val>-0.0648199021816254</left_val>
\r
5043 <right_val>0.5671138167381287</right_val></_></_>
\r
5047 <!-- root node -->
\r
5053 33 17 1 1 3.</_></rects>
\r
5054 <tilted>0</tilted></feature>
\r
5055 <threshold>-5.1972299843328074e-005</threshold>
\r
5056 <left_val>0.2874209880828857</left_val>
\r
5057 <right_val>-0.1642889976501465</right_val></_></_>
\r
5061 <!-- root node -->
\r
5067 2 17 1 1 3.</_></rects>
\r
5068 <tilted>0</tilted></feature>
\r
5069 <threshold>-2.0099039829801768e-004</threshold>
\r
5070 <left_val>0.2659021019935608</left_val>
\r
5071 <right_val>-0.1299035996198654</right_val></_></_>
\r
5075 <!-- root node -->
\r
5083 5 1 13 1 2.</_></rects>
\r
5084 <tilted>0</tilted></feature>
\r
5085 <threshold>0.0155834900215268</threshold>
\r
5086 <left_val>0.0363226197659969</left_val>
\r
5087 <right_val>-0.8874331712722778</right_val></_></_>
\r
5091 <!-- root node -->
\r
5097 9 6 9 3 9.</_></rects>
\r
5098 <tilted>0</tilted></feature>
\r
5099 <threshold>6.7313341423869133e-003</threshold>
\r
5100 <left_val>0.1628185957670212</left_val>
\r
5101 <right_val>-0.1971620023250580</right_val></_></_>
\r
5105 <!-- root node -->
\r
5109 13 0 18 12 -1.</_>
\r
5111 13 6 18 6 2.</_></rects>
\r
5112 <tilted>0</tilted></feature>
\r
5113 <threshold>-0.0452514104545116</threshold>
\r
5114 <left_val>-0.2031500935554504</left_val>
\r
5115 <right_val>0.1573408991098404</right_val></_></_>
\r
5119 <!-- root node -->
\r
5125 1 17 2 1 2.</_></rects>
\r
5126 <tilted>0</tilted></feature>
\r
5127 <threshold>2.8729529003612697e-004</threshold>
\r
5128 <left_val>-0.1244959011673927</left_val>
\r
5129 <right_val>0.2565822899341583</right_val></_></_>
\r
5133 <!-- root node -->
\r
5139 28 14 1 1 3.</_></rects>
\r
5140 <tilted>1</tilted></feature>
\r
5141 <threshold>-2.1028579212725163e-003</threshold>
\r
5142 <left_val>-0.5088729262351990</left_val>
\r
5143 <right_val>0.0340831801295280</right_val></_></_>
\r
5147 <!-- root node -->
\r
5153 0 14 8 2 3.</_></rects>
\r
5154 <tilted>0</tilted></feature>
\r
5155 <threshold>-3.9328099228441715e-003</threshold>
\r
5156 <left_val>-0.3393375873565674</left_val>
\r
5157 <right_val>0.0930555686354637</right_val></_></_>
\r
5161 <!-- root node -->
\r
5167 24 7 1 3 3.</_></rects>
\r
5168 <tilted>0</tilted></feature>
\r
5169 <threshold>3.1205590348690748e-003</threshold>
\r
5170 <left_val>-0.0227940604090691</left_val>
\r
5171 <right_val>0.2379353046417236</right_val></_></_>
\r
5175 <!-- root node -->
\r
5181 11 3 12 2 3.</_></rects>
\r
5182 <tilted>0</tilted></feature>
\r
5183 <threshold>0.0780286788940430</threshold>
\r
5184 <left_val>-0.0445036217570305</left_val>
\r
5185 <right_val>0.6776394248008728</right_val></_></_>
\r
5189 <!-- root node -->
\r
5197 5 14 13 4 2.</_></rects>
\r
5198 <tilted>0</tilted></feature>
\r
5199 <threshold>0.0424769781529903</threshold>
\r
5200 <left_val>0.0925821065902710</left_val>
\r
5201 <right_val>-0.3536301851272583</right_val></_></_>
\r
5205 <!-- root node -->
\r
5211 14 12 3 6 3.</_></rects>
\r
5212 <tilted>0</tilted></feature>
\r
5213 <threshold>-0.0257683005183935</threshold>
\r
5214 <left_val>-0.9091991186141968</left_val>
\r
5215 <right_val>0.0266928393393755</right_val></_></_>
\r
5219 <!-- root node -->
\r
5223 14 12 12 3 -1.</_>
\r
5225 18 13 4 1 9.</_></rects>
\r
5226 <tilted>0</tilted></feature>
\r
5227 <threshold>0.0614446699619293</threshold>
\r
5228 <left_val>-0.0249543990939856</left_val>
\r
5229 <right_val>0.7212049961090088</right_val></_></_>
\r
5233 <!-- root node -->
\r
5237 10 12 12 3 -1.</_>
\r
5239 14 13 4 1 9.</_></rects>
\r
5240 <tilted>0</tilted></feature>
\r
5241 <threshold>3.5776318982243538e-003</threshold>
\r
5242 <left_val>0.1772899031639099</left_val>
\r
5243 <right_val>-0.1972344964742661</right_val></_></_></trees>
\r
5244 <stage_threshold>-1.2766569852828979</stage_threshold>
\r
5245 <parent>13</parent>
\r
5246 <next>-1</next></_>
\r
5253 <!-- root node -->
\r
5259 13 8 9 2 9.</_></rects>
\r
5260 <tilted>0</tilted></feature>
\r
5261 <threshold>0.2858596146106720</threshold>
\r
5262 <left_val>-0.1539604961872101</left_val>
\r
5263 <right_val>0.6624677181243897</right_val></_></_>
\r
5267 <!-- root node -->
\r
5273 17 10 5 2 2.</_></rects>
\r
5274 <tilted>0</tilted></feature>
\r
5275 <threshold>9.2271259054541588e-003</threshold>
\r
5276 <left_val>-0.1074633970856667</left_val>
\r
5277 <right_val>0.4311806857585907</right_val></_></_>
\r
5281 <!-- root node -->
\r
5289 8 1 8 1 2.</_></rects>
\r
5290 <tilted>0</tilted></feature>
\r
5291 <threshold>2.2924109362065792e-003</threshold>
\r
5292 <left_val>-0.1983013004064560</left_val>
\r
5293 <right_val>0.3842228949069977</right_val></_></_>
\r
5297 <!-- root node -->
\r
5305 22 4 4 4 2.</_></rects>
\r
5306 <tilted>0</tilted></feature>
\r
5307 <threshold>0.0140045098960400</threshold>
\r
5308 <left_val>-0.1924948990345001</left_val>
\r
5309 <right_val>0.3442491888999939</right_val></_></_>
\r
5313 <!-- root node -->
\r
5321 17 6 16 6 2.</_></rects>
\r
5322 <tilted>0</tilted></feature>
\r
5323 <threshold>0.0960232019424438</threshold>
\r
5324 <left_val>0.1299059987068176</left_val>
\r
5325 <right_val>-0.6065304875373840</right_val></_></_>
\r
5329 <!-- root node -->
\r
5337 28 12 3 5 2.</_></rects>
\r
5338 <tilted>0</tilted></feature>
\r
5339 <threshold>6.1803720891475677e-003</threshold>
\r
5340 <left_val>-0.1904646009206772</left_val>
\r
5341 <right_val>0.1891862004995346</right_val></_></_>
\r
5345 <!-- root node -->
\r
5353 5 12 3 5 2.</_></rects>
\r
5354 <tilted>0</tilted></feature>
\r
5355 <threshold>8.2172285765409470e-003</threshold>
\r
5356 <left_val>-0.2518267929553986</left_val>
\r
5357 <right_val>0.2664459049701691</right_val></_></_>
\r
5361 <!-- root node -->
\r
5367 20 11 3 1 3.</_></rects>
\r
5368 <tilted>0</tilted></feature>
\r
5369 <threshold>-1.4542760327458382e-003</threshold>
\r
5370 <left_val>0.2710269093513489</left_val>
\r
5371 <right_val>-0.1204148977994919</right_val></_></_>
\r
5375 <!-- root node -->
\r
5381 13 11 3 1 3.</_></rects>
\r
5382 <tilted>0</tilted></feature>
\r
5383 <threshold>3.0185449868440628e-003</threshold>
\r
5384 <left_val>-0.1353860944509506</left_val>
\r
5385 <right_val>0.4733603000640869</right_val></_></_>
\r
5389 <!-- root node -->
\r
5395 19 16 2 2 3.</_></rects>
\r
5396 <tilted>0</tilted></feature>
\r
5397 <threshold>-3.4214779734611511e-003</threshold>
\r
5398 <left_val>-0.5049971938133240</left_val>
\r
5399 <right_val>0.1042480990290642</right_val></_></_>
\r
5403 <!-- root node -->
\r
5409 13 12 7 1 3.</_></rects>
\r
5410 <tilted>0</tilted></feature>
\r
5411 <threshold>9.5980763435363770e-003</threshold>
\r
5412 <left_val>-0.1034729033708572</left_val>
\r
5413 <right_val>0.5837283730506897</right_val></_></_>
\r
5417 <!-- root node -->
\r
5423 25 13 3 1 2.</_></rects>
\r
5424 <tilted>1</tilted></feature>
\r
5425 <threshold>4.1849957779049873e-003</threshold>
\r
5426 <left_val>0.0588967092335224</left_val>
\r
5427 <right_val>-0.4623228907585144</right_val></_></_>
\r
5431 <!-- root node -->
\r
5437 13 11 4 2 2.</_></rects>
\r
5438 <tilted>0</tilted></feature>
\r
5439 <threshold>-4.6107750385999680e-003</threshold>
\r
5440 <left_val>0.3783561885356903</left_val>
\r
5441 <right_val>-0.1259022951126099</right_val></_></_>
\r
5445 <!-- root node -->
\r
5449 17 16 18 2 -1.</_>
\r
5453 17 17 9 1 2.</_></rects>
\r
5454 <tilted>0</tilted></feature>
\r
5455 <threshold>2.8978679329156876e-003</threshold>
\r
5456 <left_val>-0.1369954943656921</left_val>
\r
5457 <right_val>0.2595148086547852</right_val></_></_>
\r
5461 <!-- root node -->
\r
5467 9 13 2 1 2.</_></rects>
\r
5468 <tilted>1</tilted></feature>
\r
5469 <threshold>4.2606070637702942e-003</threshold>
\r
5470 <left_val>0.0882339626550674</left_val>
\r
5471 <right_val>-0.6390284895896912</right_val></_></_>
\r
5475 <!-- root node -->
\r
5481 34 1 1 1 2.</_></rects>
\r
5482 <tilted>1</tilted></feature>
\r
5483 <threshold>-4.2996238917112350e-003</threshold>
\r
5484 <left_val>-0.7953972816467285</left_val>
\r
5485 <right_val>0.0170935597270727</right_val></_></_>
\r
5489 <!-- root node -->
\r
5495 13 6 8 2 9.</_></rects>
\r
5496 <tilted>0</tilted></feature>
\r
5497 <threshold>0.3542361855506897</threshold>
\r
5498 <left_val>-0.0593450404703617</left_val>
\r
5499 <right_val>0.8557919859886169</right_val></_></_>
\r
5503 <!-- root node -->
\r
5509 33 17 3 1 2.</_></rects>
\r
5510 <tilted>0</tilted></feature>
\r
5511 <threshold>-3.0245838570408523e-004</threshold>
\r
5512 <left_val>0.3147065043449402</left_val>
\r
5513 <right_val>-0.1448609977960587</right_val></_></_>
\r
5517 <!-- root node -->
\r
5523 18 17 18 1 2.</_></rects>
\r
5524 <tilted>0</tilted></feature>
\r
5525 <threshold>0.0271694902330637</threshold>
\r
5526 <left_val>-0.1249295026063919</left_val>
\r
5527 <right_val>0.4280903935432434</right_val></_></_>
\r
5531 <!-- root node -->
\r
5537 34 1 1 1 2.</_></rects>
\r
5538 <tilted>1</tilted></feature>
\r
5539 <threshold>3.4571529831737280e-003</threshold>
\r
5540 <left_val>0.0397093296051025</left_val>
\r
5541 <right_val>-0.7089157104492188</right_val></_></_>
\r
5545 <!-- root node -->
\r
5551 2 1 1 1 2.</_></rects>
\r
5552 <tilted>1</tilted></feature>
\r
5553 <threshold>2.1742798853665590e-003</threshold>
\r
5554 <left_val>0.0658724531531334</left_val>
\r
5555 <right_val>-0.6949694156646729</right_val></_></_>
\r
5559 <!-- root node -->
\r
5565 24 2 4 10 2.</_></rects>
\r
5566 <tilted>1</tilted></feature>
\r
5567 <threshold>0.0252638105303049</threshold>
\r
5568 <left_val>-0.1169395968317986</left_val>
\r
5569 <right_val>0.1904976963996887</right_val></_></_>
\r
5573 <!-- root node -->
\r
5581 16 10 4 6 2.</_></rects>
\r
5582 <tilted>0</tilted></feature>
\r
5583 <threshold>-0.0247209891676903</threshold>
\r
5584 <left_val>-0.4965795874595642</left_val>
\r
5585 <right_val>0.1017538011074066</right_val></_></_>
\r
5589 <!-- root node -->
\r
5597 26 9 3 3 2.</_></rects>
\r
5598 <tilted>0</tilted></feature>
\r
5599 <threshold>0.0103848800063133</threshold>
\r
5600 <left_val>-0.1148673966526985</left_val>
\r
5601 <right_val>0.3374153077602387</right_val></_></_>
\r
5605 <!-- root node -->
\r
5613 7 9 2 3 2.</_></rects>
\r
5614 <tilted>0</tilted></feature>
\r
5615 <threshold>5.0045028328895569e-003</threshold>
\r
5616 <left_val>-0.1096355020999908</left_val>
\r
5617 <right_val>0.3925519883632660</right_val></_></_>
\r
5621 <!-- root node -->
\r
5627 29 5 1 4 2.</_></rects>
\r
5628 <tilted>1</tilted></feature>
\r
5629 <threshold>7.1279620751738548e-003</threshold>
\r
5630 <left_val>-0.0649081915616989</left_val>
\r
5631 <right_val>0.4042040109634399</right_val></_></_>
\r
5635 <!-- root node -->
\r
5641 7 5 18 1 3.</_></rects>
\r
5642 <tilted>0</tilted></feature>
\r
5643 <threshold>0.0197004191577435</threshold>
\r
5644 <left_val>-0.0793758779764175</left_val>
\r
5645 <right_val>0.5308234095573425</right_val></_></_>
\r
5649 <!-- root node -->
\r
5655 28 14 2 1 3.</_></rects>
\r
5656 <tilted>1</tilted></feature>
\r
5657 <threshold>4.2097331024706364e-003</threshold>
\r
5658 <left_val>0.0407970212399960</left_val>
\r
5659 <right_val>-0.6044098734855652</right_val></_></_>
\r
5663 <!-- root node -->
\r
5669 8 6 3 1 3.</_></rects>
\r
5670 <tilted>1</tilted></feature>
\r
5671 <threshold>4.4459570199251175e-003</threshold>
\r
5672 <left_val>-0.1038623005151749</left_val>
\r
5673 <right_val>0.4093598127365112</right_val></_></_>
\r
5677 <!-- root node -->
\r
5685 7 17 11 1 2.</_></rects>
\r
5686 <tilted>0</tilted></feature>
\r
5687 <threshold>-5.9610428288578987e-003</threshold>
\r
5688 <left_val>-0.5291494727134705</left_val>
\r
5689 <right_val>0.0805394500494003</right_val></_></_>
\r
5693 <!-- root node -->
\r
5699 0 3 1 1 3.</_></rects>
\r
5700 <tilted>0</tilted></feature>
\r
5701 <threshold>5.7519221445545554e-004</threshold>
\r
5702 <left_val>0.0638044029474258</left_val>
\r
5703 <right_val>-0.5863661766052246</right_val></_></_>
\r
5707 <!-- root node -->
\r
5715 16 6 10 3 2.</_></rects>
\r
5716 <tilted>0</tilted></feature>
\r
5717 <threshold>0.0605248510837555</threshold>
\r
5718 <left_val>-0.0337128005921841</left_val>
\r
5719 <right_val>0.2631115913391113</right_val></_></_>
\r
5723 <!-- root node -->
\r
5729 12 5 4 6 2.</_></rects>
\r
5730 <tilted>0</tilted></feature>
\r
5731 <threshold>-0.0103538101539016</threshold>
\r
5732 <left_val>-0.4792002141475678</left_val>
\r
5733 <right_val>0.0800439566373825</right_val></_></_>
\r
5737 <!-- root node -->
\r
5745 1 12 17 4 2.</_></rects>
\r
5746 <tilted>0</tilted></feature>
\r
5747 <threshold>-0.0227775108069181</threshold>
\r
5748 <left_val>-0.3116275072097778</left_val>
\r
5749 <right_val>0.1189998015761375</right_val></_></_>
\r
5753 <!-- root node -->
\r
5761 18 13 4 4 2.</_></rects>
\r
5762 <tilted>0</tilted></feature>
\r
5763 <threshold>-0.0224688798189163</threshold>
\r
5764 <left_val>-0.6608346104621887</left_val>
\r
5765 <right_val>0.0522344894707203</right_val></_></_>
\r
5769 <!-- root node -->
\r
5775 35 1 1 1 3.</_></rects>
\r
5776 <tilted>0</tilted></feature>
\r
5777 <threshold>5.8432162040844560e-004</threshold>
\r
5778 <left_val>0.0546303391456604</left_val>
\r
5779 <right_val>-0.4639565944671631</right_val></_></_>
\r
5783 <!-- root node -->
\r
5789 16 8 1 5 3.</_></rects>
\r
5790 <tilted>0</tilted></feature>
\r
5791 <threshold>-3.6177870351821184e-003</threshold>
\r
5792 <left_val>0.6744704246520996</left_val>
\r
5793 <right_val>-0.0587895289063454</right_val></_></_>
\r
5797 <!-- root node -->
\r
5803 19 0 5 1 2.</_></rects>
\r
5804 <tilted>1</tilted></feature>
\r
5805 <threshold>0.0300888605415821</threshold>
\r
5806 <left_val>0.0331335216760635</left_val>
\r
5807 <right_val>-0.4646137058734894</right_val></_></_></trees>
\r
5808 <stage_threshold>-1.4061349630355835</stage_threshold>
\r
5809 <parent>14</parent>
\r
5810 <next>-1</next></_>
\r
5817 <!-- root node -->
\r
5823 7 5 9 2 3.</_></rects>
\r
5824 <tilted>1</tilted></feature>
\r
5825 <threshold>-0.0726009905338287</threshold>
\r
5826 <left_val>0.6390709280967712</left_val>
\r
5827 <right_val>-0.1512455046176910</right_val></_></_>
\r
5831 <!-- root node -->
\r
5837 14 8 8 2 9.</_></rects>
\r
5838 <tilted>0</tilted></feature>
\r
5839 <threshold>0.3471255898475647</threshold>
\r
5840 <left_val>-0.0790246576070786</left_val>
\r
5841 <right_val>0.7955042123794556</right_val></_></_>
\r
5845 <!-- root node -->
\r
5851 13 10 9 2 9.</_></rects>
\r
5852 <tilted>0</tilted></feature>
\r
5853 <threshold>0.3429723083972931</threshold>
\r
5854 <left_val>-0.1230095997452736</left_val>
\r
5855 <right_val>0.6572809815406799</right_val></_></_>
\r
5859 <!-- root node -->
\r
5865 14 6 9 2 9.</_></rects>
\r
5866 <tilted>0</tilted></feature>
\r
5867 <threshold>0.3561694025993347</threshold>
\r
5868 <left_val>-0.0537334382534027</left_val>
\r
5869 <right_val>0.8285108208656311</right_val></_></_>
\r
5873 <!-- root node -->
\r
5879 5 8 5 2 3.</_></rects>
\r
5880 <tilted>0</tilted></feature>
\r
5881 <threshold>6.0840700753033161e-003</threshold>
\r
5882 <left_val>-0.1284721046686173</left_val>
\r
5883 <right_val>0.3382267951965332</right_val></_></_>
\r
5887 <!-- root node -->
\r
5893 35 1 1 1 2.</_></rects>
\r
5894 <tilted>0</tilted></feature>
\r
5895 <threshold>-1.6281309945043176e-004</threshold>
\r
5896 <left_val>0.3035660982131958</left_val>
\r
5897 <right_val>-0.2518202960491180</right_val></_></_>
\r
5901 <!-- root node -->
\r
5907 3 4 10 1 3.</_></rects>
\r
5908 <tilted>1</tilted></feature>
\r
5909 <threshold>0.0112819001078606</threshold>
\r
5910 <left_val>-0.0839143469929695</left_val>
\r
5911 <right_val>0.4347592890262604</right_val></_></_>
\r
5915 <!-- root node -->
\r
5921 29 5 1 4 2.</_></rects>
\r
5922 <tilted>1</tilted></feature>
\r
5923 <threshold>7.4357059784233570e-003</threshold>
\r
5924 <left_val>-0.0670880377292633</left_val>
\r
5925 <right_val>0.3722797930240631</right_val></_></_>
\r
5929 <!-- root node -->
\r
5937 17 8 14 8 2.</_></rects>
\r
5938 <tilted>0</tilted></feature>
\r
5939 <threshold>-0.0905762165784836</threshold>
\r
5940 <left_val>-0.5831961035728455</left_val>
\r
5941 <right_val>0.0801467597484589</right_val></_></_>
\r
5945 <!-- root node -->
\r
5951 31 0 2 2 2.</_></rects>
\r
5952 <tilted>1</tilted></feature>
\r
5953 <threshold>8.8247694075107574e-003</threshold>
\r
5954 <left_val>0.1290193051099777</left_val>
\r
5955 <right_val>-0.4760313034057617</right_val></_></_>
\r
5959 <!-- root node -->
\r
5965 4 12 3 3 3.</_></rects>
\r
5966 <tilted>0</tilted></feature>
\r
5967 <threshold>-2.6147770695388317e-003</threshold>
\r
5968 <left_val>-0.4000220894813538</left_val>
\r
5969 <right_val>0.1124631017446518</right_val></_></_>
\r
5973 <!-- root node -->
\r
5979 32 17 4 1 2.</_></rects>
\r
5980 <tilted>0</tilted></feature>
\r
5981 <threshold>-2.5541300419718027e-004</threshold>
\r
5982 <left_val>0.3238615989685059</left_val>
\r
5983 <right_val>-0.2333187013864517</right_val></_></_>
\r
5987 <!-- root node -->
\r
5993 17 0 1 5 2.</_></rects>
\r
5994 <tilted>1</tilted></feature>
\r
5995 <threshold>0.0265476293861866</threshold>
\r
5996 <left_val>0.0723338723182678</left_val>
\r
5997 <right_val>-0.5837839841842651</right_val></_></_>
\r
6001 <!-- root node -->
\r
6007 17 4 7 8 2.</_></rects>
\r
6008 <tilted>0</tilted></feature>
\r
6009 <threshold>-0.0513831414282322</threshold>
\r
6010 <left_val>-0.2244618982076645</left_val>
\r
6011 <right_val>0.0409497395157814</right_val></_></_>
\r
6015 <!-- root node -->
\r
6021 6 2 11 2 2.</_></rects>
\r
6022 <tilted>0</tilted></feature>
\r
6023 <threshold>3.3701129723340273e-003</threshold>
\r
6024 <left_val>-0.1671708971261978</left_val>
\r
6025 <right_val>0.2552697062492371</right_val></_></_>
\r
6029 <!-- root node -->
\r
6035 35 1 1 1 2.</_></rects>
\r
6036 <tilted>0</tilted></feature>
\r
6037 <threshold>-2.2581920493394136e-003</threshold>
\r
6038 <left_val>-0.9207922816276550</left_val>
\r
6039 <right_val>3.4371060319244862e-003</right_val></_></_>
\r
6043 <!-- root node -->
\r
6049 0 1 1 1 2.</_></rects>
\r
6050 <tilted>0</tilted></feature>
\r
6051 <threshold>-1.3282749569043517e-004</threshold>
\r
6052 <left_val>0.1857322007417679</left_val>
\r
6053 <right_val>-0.2249896973371506</right_val></_></_>
\r
6057 <!-- root node -->
\r
6063 33 0 1 1 2.</_></rects>
\r
6064 <tilted>1</tilted></feature>
\r
6065 <threshold>-2.8032590635120869e-003</threshold>
\r
6066 <left_val>-0.8589754104614258</left_val>
\r
6067 <right_val>0.0463845208287239</right_val></_></_>
\r
6071 <!-- root node -->
\r
6077 3 0 1 1 2.</_></rects>
\r
6078 <tilted>1</tilted></feature>
\r
6079 <threshold>1.3141379458829761e-003</threshold>
\r
6080 <left_val>0.0796270668506622</left_val>
\r
6081 <right_val>-0.4610596895217896</right_val></_></_>
\r
6085 <!-- root node -->
\r
6091 9 17 18 1 2.</_></rects>
\r
6092 <tilted>0</tilted></feature>
\r
6093 <threshold>0.0638845413923264</threshold>
\r
6094 <left_val>-0.0534401498734951</left_val>
\r
6095 <right_val>0.8104500174522400</right_val></_></_>
\r
6099 <!-- root node -->
\r
6105 8 14 1 1 3.</_></rects>
\r
6106 <tilted>1</tilted></feature>
\r
6107 <threshold>-1.9811019301414490e-003</threshold>
\r
6108 <left_val>-0.6382514834403992</left_val>
\r
6109 <right_val>0.0766435563564301</right_val></_></_>
\r
6113 <!-- root node -->
\r
6119 17 4 7 8 2.</_></rects>
\r
6120 <tilted>0</tilted></feature>
\r
6121 <threshold>0.0133598595857620</threshold>
\r
6122 <left_val>-0.0950375497341156</left_val>
\r
6123 <right_val>0.0625333487987518</right_val></_></_>
\r
6127 <!-- root node -->
\r
6133 0 17 4 1 2.</_></rects>
\r
6134 <tilted>0</tilted></feature>
\r
6135 <threshold>-1.0935300088021904e-004</threshold>
\r
6136 <left_val>0.1747954040765762</left_val>
\r
6137 <right_val>-0.2287603020668030</right_val></_></_>
\r
6141 <!-- root node -->
\r
6145 13 12 10 3 -1.</_>
\r
6147 13 13 10 1 3.</_></rects>
\r
6148 <tilted>0</tilted></feature>
\r
6149 <threshold>0.0119106303900480</threshold>
\r
6150 <left_val>-0.0770419836044312</left_val>
\r
6151 <right_val>0.5045837759971619</right_val></_></_>
\r
6155 <!-- root node -->
\r
6161 18 12 18 6 2.</_></rects>
\r
6162 <tilted>0</tilted></feature>
\r
6163 <threshold>0.2395170032978058</threshold>
\r
6164 <left_val>-0.0651228874921799</left_val>
\r
6165 <right_val>0.5042074918746948</right_val></_></_>
\r
6169 <!-- root node -->
\r
6175 14 5 9 2 9.</_></rects>
\r
6176 <tilted>0</tilted></feature>
\r
6177 <threshold>0.3983140885829926</threshold>
\r
6178 <left_val>-0.0299998205155134</left_val>
\r
6179 <right_val>0.7968547940254211</right_val></_></_>
\r
6183 <!-- root node -->
\r
6189 8 6 5 1 3.</_></rects>
\r
6190 <tilted>1</tilted></feature>
\r
6191 <threshold>6.1875800602138042e-003</threshold>
\r
6192 <left_val>-0.0853391736745834</left_val>
\r
6193 <right_val>0.3945176899433136</right_val></_></_>
\r
6197 <!-- root node -->
\r
6203 15 7 6 4 2.</_></rects>
\r
6204 <tilted>0</tilted></feature>
\r
6205 <threshold>-9.4047123566269875e-003</threshold>
\r
6206 <left_val>-0.4344133138656616</left_val>
\r
6207 <right_val>0.0826191008090973</right_val></_></_>
\r
6211 <!-- root node -->
\r
6217 15 5 4 4 2.</_></rects>
\r
6218 <tilted>0</tilted></feature>
\r
6219 <threshold>0.0117366304621100</threshold>
\r
6220 <left_val>0.0694831609725952</left_val>
\r
6221 <right_val>-0.4870649874210358</right_val></_></_>
\r
6225 <!-- root node -->
\r
6231 16 14 3 4 2.</_></rects>
\r
6232 <tilted>0</tilted></feature>
\r
6233 <threshold>-0.0151767702773213</threshold>
\r
6234 <left_val>-0.5854120850563049</left_val>
\r
6235 <right_val>0.0328795611858368</right_val></_></_>
\r
6239 <!-- root node -->
\r
6245 14 11 5 1 3.</_></rects>
\r
6246 <tilted>0</tilted></feature>
\r
6247 <threshold>3.0744259711354971e-003</threshold>
\r
6248 <left_val>-0.1314608007669449</left_val>
\r
6249 <right_val>0.2546674013137817</right_val></_></_>
\r
6253 <!-- root node -->
\r
6259 25 4 6 2 2.</_></rects>
\r
6260 <tilted>0</tilted></feature>
\r
6261 <threshold>2.9391339048743248e-003</threshold>
\r
6262 <left_val>-0.1086023002862930</left_val>
\r
6263 <right_val>0.2783496081829071</right_val></_></_>
\r
6267 <!-- root node -->
\r
6273 3 8 6 4 2.</_></rects>
\r
6274 <tilted>0</tilted></feature>
\r
6275 <threshold>2.1510310471057892e-003</threshold>
\r
6276 <left_val>-0.1575057953596115</left_val>
\r
6277 <right_val>0.2087786048650742</right_val></_></_>
\r
6281 <!-- root node -->
\r
6287 27 6 5 2 3.</_></rects>
\r
6288 <tilted>0</tilted></feature>
\r
6289 <threshold>5.3775361739099026e-003</threshold>
\r
6290 <left_val>-0.1320703029632568</left_val>
\r
6291 <right_val>0.3767293989658356</right_val></_></_>
\r
6295 <!-- root node -->
\r
6301 4 4 6 3 3.</_></rects>
\r
6302 <tilted>0</tilted></feature>
\r
6303 <threshold>0.0221741795539856</threshold>
\r
6304 <left_val>-0.0901802927255630</left_val>
\r
6305 <right_val>0.4157527089118958</right_val></_></_>
\r
6309 <!-- root node -->
\r
6315 21 10 2 2 2.</_></rects>
\r
6316 <tilted>0</tilted></feature>
\r
6317 <threshold>-1.9948610570281744e-003</threshold>
\r
6318 <left_val>0.2560858130455017</left_val>
\r
6319 <right_val>-0.0990849286317825</right_val></_></_>
\r
6323 <!-- root node -->
\r
6331 18 12 17 2 2.</_></rects>
\r
6332 <tilted>0</tilted></feature>
\r
6333 <threshold>0.0315575599670410</threshold>
\r
6334 <left_val>0.0741889998316765</left_val>
\r
6335 <right_val>-0.5494022965431213</right_val></_></_>
\r
6339 <!-- root node -->
\r
6345 34 16 2 1 3.</_></rects>
\r
6346 <tilted>0</tilted></feature>
\r
6347 <threshold>-4.3111158447572961e-005</threshold>
\r
6348 <left_val>0.3032462894916534</left_val>
\r
6349 <right_val>-0.1778181046247482</right_val></_></_>
\r
6353 <!-- root node -->
\r
6359 3 0 2 1 2.</_></rects>
\r
6360 <tilted>1</tilted></feature>
\r
6361 <threshold>-3.2675920519977808e-003</threshold>
\r
6362 <left_val>-0.6721243262290955</left_val>
\r
6363 <right_val>0.0591883286833763</right_val></_></_>
\r
6367 <!-- root node -->
\r
6373 33 0 1 1 2.</_></rects>
\r
6374 <tilted>1</tilted></feature>
\r
6375 <threshold>4.2293380829505622e-004</threshold>
\r
6376 <left_val>-0.1103409975767136</left_val>
\r
6377 <right_val>0.1257317960262299</right_val></_></_></trees>
\r
6378 <stage_threshold>-1.3384460210800171</stage_threshold>
\r
6379 <parent>15</parent>
\r
6380 <next>-1</next></_>
\r
6387 <!-- root node -->
\r
6393 6 2 10 4 2.</_></rects>
\r
6394 <tilted>1</tilted></feature>
\r
6395 <threshold>-0.0425620190799236</threshold>
\r
6396 <left_val>0.3334665894508362</left_val>
\r
6397 <right_val>-0.2986198067665100</right_val></_></_>
\r
6401 <!-- root node -->
\r
6407 13 8 10 2 9.</_></rects>
\r
6408 <tilted>0</tilted></feature>
\r
6409 <threshold>0.4182719886302948</threshold>
\r
6410 <left_val>-0.0951386988162994</left_val>
\r
6411 <right_val>0.7570992112159729</right_val></_></_>
\r
6415 <!-- root node -->
\r
6421 13 8 10 2 2.</_></rects>
\r
6422 <tilted>0</tilted></feature>
\r
6423 <threshold>-0.0202563796192408</threshold>
\r
6424 <left_val>0.4778389036655426</left_val>
\r
6425 <right_val>-0.1459210067987442</right_val></_></_>
\r
6429 <!-- root node -->
\r
6437 16 11 3 6 2.</_></rects>
\r
6438 <tilted>0</tilted></feature>
\r
6439 <threshold>-0.0189483091235161</threshold>
\r
6440 <left_val>-0.3872750103473663</left_val>
\r
6441 <right_val>0.0524798892438412</right_val></_></_>
\r
6445 <!-- root node -->
\r
6451 8 3 4 2 3.</_></rects>
\r
6452 <tilted>1</tilted></feature>
\r
6453 <threshold>-0.0405505895614624</threshold>
\r
6454 <left_val>0.5464624762535095</left_val>
\r
6455 <right_val>-0.0813998579978943</right_val></_></_>
\r
6459 <!-- root node -->
\r
6465 13 9 11 2 9.</_></rects>
\r
6466 <tilted>0</tilted></feature>
\r
6467 <threshold>0.5187274813652039</threshold>
\r
6468 <left_val>-0.0279305391013622</left_val>
\r
6469 <right_val>0.8458098173141480</right_val></_></_>
\r
6473 <!-- root node -->
\r
6479 13 7 10 1 9.</_></rects>
\r
6480 <tilted>0</tilted></feature>
\r
6481 <threshold>0.2071361988782883</threshold>
\r
6482 <left_val>-0.0588508695363998</left_val>
\r
6483 <right_val>0.7960156202316284</right_val></_></_>
\r
6487 <!-- root node -->
\r
6493 15 12 6 1 3.</_></rects>
\r
6494 <tilted>0</tilted></feature>
\r
6495 <threshold>8.1972572952508926e-003</threshold>
\r
6496 <left_val>-0.0999663695693016</left_val>
\r
6497 <right_val>0.4983156025409699</right_val></_></_>
\r
6501 <!-- root node -->
\r
6509 17 11 3 6 2.</_></rects>
\r
6510 <tilted>0</tilted></feature>
\r
6511 <threshold>0.0174453891813755</threshold>
\r
6512 <left_val>0.0680409595370293</left_val>
\r
6513 <right_val>-0.5669981837272644</right_val></_></_>
\r
6517 <!-- root node -->
\r
6525 5 15 13 3 2.</_></rects>
\r
6526 <tilted>0</tilted></feature>
\r
6527 <threshold>-0.0563102811574936</threshold>
\r
6528 <left_val>-0.6862804293632507</left_val>
\r
6529 <right_val>0.0742225572466850</right_val></_></_>
\r
6533 <!-- root node -->
\r
6539 13 13 9 1 9.</_></rects>
\r
6540 <tilted>0</tilted></feature>
\r
6541 <threshold>0.1809556037187576</threshold>
\r
6542 <left_val>-0.0528081282973289</left_val>
\r
6543 <right_val>0.8448318243026733</right_val></_></_>
\r
6547 <!-- root node -->
\r
6553 16 12 4 1 3.</_></rects>
\r
6554 <tilted>0</tilted></feature>
\r
6555 <threshold>-2.3450690787285566e-003</threshold>
\r
6556 <left_val>0.2839694023132324</left_val>
\r
6557 <right_val>-0.1112336963415146</right_val></_></_>
\r
6561 <!-- root node -->
\r
6567 6 13 2 2 2.</_></rects>
\r
6568 <tilted>1</tilted></feature>
\r
6569 <threshold>3.8937770295888186e-003</threshold>
\r
6570 <left_val>0.0654993131756783</left_val>
\r
6571 <right_val>-0.5792096257209778</right_val></_></_>
\r
6575 <!-- root node -->
\r
6581 34 17 1 1 2.</_></rects>
\r
6582 <tilted>0</tilted></feature>
\r
6583 <threshold>3.9383721741614863e-005</threshold>
\r
6584 <left_val>-0.3093047142028809</left_val>
\r
6585 <right_val>0.4223710894584656</right_val></_></_>
\r
6589 <!-- root node -->
\r
6595 16 0 1 6 2.</_></rects>
\r
6596 <tilted>1</tilted></feature>
\r
6597 <threshold>0.0338991582393646</threshold>
\r
6598 <left_val>0.0307075399905443</left_val>
\r
6599 <right_val>-0.7229980826377869</right_val></_></_>
\r
6603 <!-- root node -->
\r
6609 2 17 17 1 2.</_></rects>
\r
6610 <tilted>0</tilted></feature>
\r
6611 <threshold>-0.0336443893611431</threshold>
\r
6612 <left_val>0.4266444146633148</left_val>
\r
6613 <right_val>-0.0720057785511017</right_val></_></_>
\r
6617 <!-- root node -->
\r
6623 5 4 18 2 2.</_></rects>
\r
6624 <tilted>0</tilted></feature>
\r
6625 <threshold>0.0388077609241009</threshold>
\r
6626 <left_val>-0.0417135208845139</left_val>
\r
6627 <right_val>0.6599556803703308</right_val></_></_>
\r
6631 <!-- root node -->
\r
6637 34 17 1 1 2.</_></rects>
\r
6638 <tilted>0</tilted></feature>
\r
6639 <threshold>-3.9149548683781177e-005</threshold>
\r
6640 <left_val>0.4933550059795380</left_val>
\r
6641 <right_val>-0.2426010966300964</right_val></_></_>
\r
6645 <!-- root node -->
\r
6651 0 1 2 1 2.</_></rects>
\r
6652 <tilted>0</tilted></feature>
\r
6653 <threshold>-2.7580570895224810e-004</threshold>
\r
6654 <left_val>0.1791010946035385</left_val>
\r
6655 <right_val>-0.2192519009113312</right_val></_></_>
\r
6659 <!-- root node -->
\r
6665 15 6 16 1 3.</_></rects>
\r
6666 <tilted>0</tilted></feature>
\r
6667 <threshold>0.0126366596668959</threshold>
\r
6668 <left_val>-0.0712336227297783</left_val>
\r
6669 <right_val>0.2534261941909790</right_val></_></_>
\r
6673 <!-- root node -->
\r
6679 13 10 3 1 3.</_></rects>
\r
6680 <tilted>0</tilted></feature>
\r
6681 <threshold>-3.3681739587336779e-003</threshold>
\r
6682 <left_val>0.3310086131095886</left_val>
\r
6683 <right_val>-0.1020777970552445</right_val></_></_>
\r
6687 <!-- root node -->
\r
6693 22 4 4 14 2.</_></rects>
\r
6694 <tilted>0</tilted></feature>
\r
6695 <threshold>-0.0411845296621323</threshold>
\r
6696 <left_val>-0.4787198901176453</left_val>
\r
6697 <right_val>0.0274448096752167</right_val></_></_>
\r
6701 <!-- root node -->
\r
6707 12 5 10 6 2.</_></rects>
\r
6708 <tilted>0</tilted></feature>
\r
6709 <threshold>0.0172852799296379</threshold>
\r
6710 <left_val>-0.2373382002115250</left_val>
\r
6711 <right_val>0.1541430056095123</right_val></_></_>
\r
6715 <!-- root node -->
\r
6721 28 5 2 6 3.</_></rects>
\r
6722 <tilted>1</tilted></feature>
\r
6723 <threshold>-0.0583733208477497</threshold>
\r
6724 <left_val>0.3635525107383728</left_val>
\r
6725 <right_val>-0.0629119277000427</right_val></_></_>
\r
6729 <!-- root node -->
\r
6735 8 5 6 2 3.</_></rects>
\r
6736 <tilted>1</tilted></feature>
\r
6737 <threshold>0.0252293199300766</threshold>
\r
6738 <left_val>-0.0943458229303360</left_val>
\r
6739 <right_val>0.4322442114353180</right_val></_></_>
\r
6743 <!-- root node -->
\r
6749 34 0 1 3 2.</_></rects>
\r
6750 <tilted>1</tilted></feature>
\r
6751 <threshold>4.7925519756972790e-003</threshold>
\r
6752 <left_val>0.0486642718315125</left_val>
\r
6753 <right_val>-0.4704689085483551</right_val></_></_>
\r
6757 <!-- root node -->
\r
6763 0 17 2 1 2.</_></rects>
\r
6764 <tilted>0</tilted></feature>
\r
6765 <threshold>-1.3549529830925167e-004</threshold>
\r
6766 <left_val>0.1936188042163849</left_val>
\r
6767 <right_val>-0.1933847069740295</right_val></_></_>
\r
6771 <!-- root node -->
\r
6777 31 7 2 8 2.</_></rects>
\r
6778 <tilted>1</tilted></feature>
\r
6779 <threshold>-0.0179694108664989</threshold>
\r
6780 <left_val>0.2900086045265198</left_val>
\r
6781 <right_val>-0.0545452795922756</right_val></_></_>
\r
6785 <!-- root node -->
\r
6791 5 7 7 2 2.</_></rects>
\r
6792 <tilted>1</tilted></feature>
\r
6793 <threshold>0.0111410403624177</threshold>
\r
6794 <left_val>-0.1080225035548210</left_val>
\r
6795 <right_val>0.3332796096801758</right_val></_></_>
\r
6799 <!-- root node -->
\r
6805 22 4 4 14 2.</_></rects>
\r
6806 <tilted>0</tilted></feature>
\r
6807 <threshold>0.0397595092654228</threshold>
\r
6808 <left_val>0.0192408692091703</left_val>
\r
6809 <right_val>-0.4889996051788330</right_val></_></_>
\r
6813 <!-- root node -->
\r
6819 10 4 4 14 2.</_></rects>
\r
6820 <tilted>0</tilted></feature>
\r
6821 <threshold>-0.0226527098566294</threshold>
\r
6822 <left_val>-0.5036928057670593</left_val>
\r
6823 <right_val>0.0807737335562706</right_val></_></_>
\r
6827 <!-- root node -->
\r
6833 19 17 2 1 3.</_></rects>
\r
6834 <tilted>0</tilted></feature>
\r
6835 <threshold>1.0915650054812431e-003</threshold>
\r
6836 <left_val>0.0655540525913239</left_val>
\r
6837 <right_val>-0.2444387972354889</right_val></_></_>
\r
6841 <!-- root node -->
\r
6847 10 0 10 6 2.</_></rects>
\r
6848 <tilted>0</tilted></feature>
\r
6849 <threshold>0.0687547475099564</threshold>
\r
6850 <left_val>0.0891968086361885</left_val>
\r
6851 <right_val>-0.3565390110015869</right_val></_></_>
\r
6855 <!-- root node -->
\r
6861 8 0 11 18 2.</_></rects>
\r
6862 <tilted>0</tilted></feature>
\r
6863 <threshold>-0.3307105898857117</threshold>
\r
6864 <left_val>0.4649569988250732</left_val>
\r
6865 <right_val>-0.0581836998462677</right_val></_></_>
\r
6869 <!-- root node -->
\r
6877 17 8 4 6 2.</_></rects>
\r
6878 <tilted>0</tilted></feature>
\r
6879 <threshold>-0.0193072296679020</threshold>
\r
6880 <left_val>-0.4415718019008637</left_val>
\r
6881 <right_val>0.0830501168966293</right_val></_></_>
\r
6885 <!-- root node -->
\r
6889 11 10 14 8 -1.</_>
\r
6893 11 14 7 4 2.</_></rects>
\r
6894 <tilted>0</tilted></feature>
\r
6895 <threshold>0.0348087586462498</threshold>
\r
6896 <left_val>0.0534805804491043</left_val>
\r
6897 <right_val>-0.5037739872932434</right_val></_></_>
\r
6901 <!-- root node -->
\r
6909 2 17 1 1 2.</_></rects>
\r
6910 <tilted>0</tilted></feature>
\r
6911 <threshold>-3.8908151327632368e-004</threshold>
\r
6912 <left_val>0.3427126109600067</left_val>
\r
6913 <right_val>-0.0899231806397438</right_val></_></_>
\r
6917 <!-- root node -->
\r
6923 34 0 1 1 2.</_></rects>
\r
6924 <tilted>1</tilted></feature>
\r
6925 <threshold>-2.1421869751065969e-003</threshold>
\r
6926 <left_val>-0.6064280271530151</left_val>
\r
6927 <right_val>0.0555892400443554</right_val></_></_>
\r
6931 <!-- root node -->
\r
6937 12 3 12 4 2.</_></rects>
\r
6938 <tilted>0</tilted></feature>
\r
6939 <threshold>0.1101581007242203</threshold>
\r
6940 <left_val>-0.0547747202217579</left_val>
\r
6941 <right_val>0.6878091096878052</right_val></_></_>
\r
6945 <!-- root node -->
\r
6951 19 2 2 1 3.</_></rects>
\r
6952 <tilted>0</tilted></feature>
\r
6953 <threshold>3.0875208904035389e-004</threshold>
\r
6954 <left_val>-0.0558342188596725</left_val>
\r
6955 <right_val>0.0931682363152504</right_val></_></_>
\r
6959 <!-- root node -->
\r
6965 2 0 1 1 2.</_></rects>
\r
6966 <tilted>1</tilted></feature>
\r
6967 <threshold>2.1960400044918060e-003</threshold>
\r
6968 <left_val>0.0539557486772537</left_val>
\r
6969 <right_val>-0.6050305962562561</right_val></_></_>
\r
6973 <!-- root node -->
\r
6981 15 7 3 4 2.</_></rects>
\r
6982 <tilted>0</tilted></feature>
\r
6983 <threshold>-0.0126062501221895</threshold>
\r
6984 <left_val>-0.4686402976512909</left_val>
\r
6985 <right_val>0.0599438697099686</right_val></_></_>
\r
6989 <!-- root node -->
\r
6995 14 6 4 1 2.</_></rects>
\r
6996 <tilted>0</tilted></feature>
\r
6997 <threshold>-2.7497899718582630e-003</threshold>
\r
6998 <left_val>0.2894253134727478</left_val>
\r
6999 <right_val>-0.1129785031080246</right_val></_></_>
\r
7003 <!-- root node -->
\r
7009 13 10 10 3 9.</_></rects>
\r
7010 <tilted>0</tilted></feature>
\r
7011 <threshold>0.6096264123916626</threshold>
\r
7012 <left_val>-0.0478859916329384</left_val>
\r
7013 <right_val>0.5946549177169800</right_val></_></_>
\r
7017 <!-- root node -->
\r
7023 12 8 6 9 2.</_></rects>
\r
7024 <tilted>0</tilted></feature>
\r
7025 <threshold>0.0450232513248920</threshold>
\r
7026 <left_val>0.0638310685753822</left_val>
\r
7027 <right_val>-0.5295680165290833</right_val></_></_></trees>
\r
7028 <stage_threshold>-1.2722699642181396</stage_threshold>
\r
7029 <parent>16</parent>
\r
7030 <next>-1</next></_>
\r
7037 <!-- root node -->
\r
7043 14 8 8 5 2.</_></rects>
\r
7044 <tilted>0</tilted></feature>
\r
7045 <threshold>0.0159072801470757</threshold>
\r
7046 <left_val>-0.3819232881069183</left_val>
\r
7047 <right_val>0.2941176891326904</right_val></_></_>
\r
7051 <!-- root node -->
\r
7057 31 2 2 10 2.</_></rects>
\r
7058 <tilted>1</tilted></feature>
\r
7059 <threshold>-0.0304830092936754</threshold>
\r
7060 <left_val>0.6401454806327820</left_val>
\r
7061 <right_val>-0.1133823990821838</right_val></_></_>
\r
7065 <!-- root node -->
\r
7071 11 2 10 4 2.</_></rects>
\r
7072 <tilted>1</tilted></feature>
\r
7073 <threshold>0.0258412398397923</threshold>
\r
7074 <left_val>-0.1765469014644623</left_val>
\r
7075 <right_val>0.2556340098381043</right_val></_></_>
\r
7079 <!-- root node -->
\r
7085 32 2 1 14 2.</_></rects>
\r
7086 <tilted>1</tilted></feature>
\r
7087 <threshold>0.0121606197208166</threshold>
\r
7088 <left_val>-0.0494619905948639</left_val>
\r
7089 <right_val>0.3473398983478546</right_val></_></_>
\r
7093 <!-- root node -->
\r
7099 4 2 14 1 2.</_></rects>
\r
7100 <tilted>1</tilted></feature>
\r
7101 <threshold>-0.0159101597964764</threshold>
\r
7102 <left_val>0.4796676933765411</left_val>
\r
7103 <right_val>-0.1300950944423676</right_val></_></_>
\r
7107 <!-- root node -->
\r
7113 30 14 3 4 2.</_></rects>
\r
7114 <tilted>0</tilted></feature>
\r
7115 <threshold>3.5282061435282230e-004</threshold>
\r
7116 <left_val>-0.3418492972850800</left_val>
\r
7117 <right_val>0.2309112995862961</right_val></_></_>
\r
7121 <!-- root node -->
\r
7127 11 15 1 2 2.</_></rects>
\r
7128 <tilted>0</tilted></feature>
\r
7129 <threshold>6.7633582511916757e-004</threshold>
\r
7130 <left_val>-0.1543250977993012</left_val>
\r
7131 <right_val>0.2668730020523071</right_val></_></_>
\r
7135 <!-- root node -->
\r
7139 11 0 14 18 -1.</_>
\r
7143 11 9 7 9 2.</_></rects>
\r
7144 <tilted>0</tilted></feature>
\r
7145 <threshold>-0.0599361397325993</threshold>
\r
7146 <left_val>-0.4880258142948151</left_val>
\r
7147 <right_val>0.0933274477720261</right_val></_></_>
\r
7151 <!-- root node -->
\r
7157 10 1 10 9 2.</_></rects>
\r
7158 <tilted>0</tilted></feature>
\r
7159 <threshold>-0.1134240999817848</threshold>
\r
7160 <left_val>-0.6577144265174866</left_val>
\r
7161 <right_val>0.0591668188571930</right_val></_></_>
\r
7165 <!-- root node -->
\r
7171 23 3 4 3 2.</_></rects>
\r
7172 <tilted>0</tilted></feature>
\r
7173 <threshold>-4.3361280113458633e-003</threshold>
\r
7174 <left_val>-0.1593652069568634</left_val>
\r
7175 <right_val>0.0502370409667492</right_val></_></_>
\r
7179 <!-- root node -->
\r
7185 13 10 2 2 2.</_></rects>
\r
7186 <tilted>0</tilted></feature>
\r
7187 <threshold>-1.8627740209922194e-003</threshold>
\r
7188 <left_val>0.3073025941848755</left_val>
\r
7189 <right_val>-0.1254066973924637</right_val></_></_>
\r
7193 <!-- root node -->
\r
7199 14 10 11 1 2.</_></rects>
\r
7200 <tilted>0</tilted></feature>
\r
7201 <threshold>0.0126530099660158</threshold>
\r
7202 <left_val>-0.1004493013024330</left_val>
\r
7203 <right_val>0.3749617934226990</right_val></_></_>
\r
7207 <!-- root node -->
\r
7213 12 5 12 3 9.</_></rects>
\r
7214 <tilted>0</tilted></feature>
\r
7215 <threshold>0.6911857724189758</threshold>
\r
7216 <left_val>-0.0471464097499847</left_val>
\r
7217 <right_val>0.8321244120597839</right_val></_></_>
\r
7221 <!-- root node -->
\r
7227 34 15 2 3 2.</_></rects>
\r
7228 <tilted>0</tilted></feature>
\r
7229 <threshold>-2.6093868655152619e-004</threshold>
\r
7230 <left_val>0.3198773860931397</left_val>
\r
7231 <right_val>-0.2718330919742584</right_val></_></_>
\r
7235 <!-- root node -->
\r
7241 11 6 14 2 3.</_></rects>
\r
7242 <tilted>0</tilted></feature>
\r
7243 <threshold>-0.0763450562953949</threshold>
\r
7244 <left_val>0.4309130012989044</left_val>
\r
7245 <right_val>-0.0908882692456245</right_val></_></_>
\r
7249 <!-- root node -->
\r
7255 31 0 2 1 2.</_></rects>
\r
7256 <tilted>0</tilted></feature>
\r
7257 <threshold>2.8098300099372864e-003</threshold>
\r
7258 <left_val>0.0587311200797558</left_val>
\r
7259 <right_val>-0.6199675202369690</right_val></_></_>
\r
7263 <!-- root node -->
\r
7269 3 0 2 1 2.</_></rects>
\r
7270 <tilted>0</tilted></feature>
\r
7271 <threshold>-1.3322039740160108e-004</threshold>
\r
7272 <left_val>0.2000005990266800</left_val>
\r
7273 <right_val>-0.2012010961771011</right_val></_></_>
\r
7277 <!-- root node -->
\r
7283 21 14 2 4 3.</_></rects>
\r
7284 <tilted>0</tilted></feature>
\r
7285 <threshold>-0.0137176299467683</threshold>
\r
7286 <left_val>-0.7309545278549194</left_val>
\r
7287 <right_val>0.0271785296499729</right_val></_></_>
\r
7291 <!-- root node -->
\r
7297 13 14 2 4 3.</_></rects>
\r
7298 <tilted>0</tilted></feature>
\r
7299 <threshold>-6.2303808517754078e-003</threshold>
\r
7300 <left_val>-0.5478098988533020</left_val>
\r
7301 <right_val>0.0687499493360519</right_val></_></_>
\r
7305 <!-- root node -->
\r
7311 9 14 18 1 2.</_></rects>
\r
7312 <tilted>0</tilted></feature>
\r
7313 <threshold>0.0499227195978165</threshold>
\r
7314 <left_val>-0.0473043099045753</left_val>
\r
7315 <right_val>0.8242310285568237</right_val></_></_>
\r
7319 <!-- root node -->
\r
7325 5 0 2 1 2.</_></rects>
\r
7326 <tilted>1</tilted></feature>
\r
7327 <threshold>-1.9126719562336802e-003</threshold>
\r
7328 <left_val>-0.5394017100334168</left_val>
\r
7329 <right_val>0.0774475932121277</right_val></_></_>
\r
7333 <!-- root node -->
\r
7339 26 4 5 1 3.</_></rects>
\r
7340 <tilted>0</tilted></feature>
\r
7341 <threshold>1.1384560493752360e-003</threshold>
\r
7342 <left_val>-0.0965376868844032</left_val>
\r
7343 <right_val>0.1548569053411484</right_val></_></_>
\r
7347 <!-- root node -->
\r
7353 15 9 1 1 3.</_></rects>
\r
7354 <tilted>1</tilted></feature>
\r
7355 <threshold>-2.4732090532779694e-003</threshold>
\r
7356 <left_val>0.3559078872203827</left_val>
\r
7357 <right_val>-0.0931698307394981</right_val></_></_>
\r
7361 <!-- root node -->
\r
7367 21 12 2 1 3.</_></rects>
\r
7368 <tilted>0</tilted></feature>
\r
7369 <threshold>-7.1464257780462503e-004</threshold>
\r
7370 <left_val>0.1452019065618515</left_val>
\r
7371 <right_val>-0.0741942077875137</right_val></_></_>
\r
7375 <!-- root node -->
\r
7381 8 6 6 2 2.</_></rects>
\r
7382 <tilted>1</tilted></feature>
\r
7383 <threshold>-0.0204371493309736</threshold>
\r
7384 <left_val>0.4416376948356628</left_val>
\r
7385 <right_val>-0.0809424370527267</right_val></_></_>
\r
7389 <!-- root node -->
\r
7395 31 0 1 2 2.</_></rects>
\r
7396 <tilted>1</tilted></feature>
\r
7397 <threshold>-4.0483791381120682e-003</threshold>
\r
7398 <left_val>-0.5999277830123901</left_val>
\r
7399 <right_val>0.0330253802239895</right_val></_></_>
\r
7403 <!-- root node -->
\r
7409 6 7 3 3 3.</_></rects>
\r
7410 <tilted>0</tilted></feature>
\r
7411 <threshold>0.0111480504274368</threshold>
\r
7412 <left_val>-0.1135832965373993</left_val>
\r
7413 <right_val>0.3264499902725220</right_val></_></_>
\r
7417 <!-- root node -->
\r
7423 19 0 11 1 2.</_></rects>
\r
7424 <tilted>1</tilted></feature>
\r
7425 <threshold>9.8842009902000427e-003</threshold>
\r
7426 <left_val>0.0554044805467129</left_val>
\r
7427 <right_val>-0.3273097872734070</right_val></_></_>
\r
7431 <!-- root node -->
\r
7437 5 0 2 1 2.</_></rects>
\r
7438 <tilted>1</tilted></feature>
\r
7439 <threshold>3.1296359375119209e-003</threshold>
\r
7440 <left_val>0.0774086564779282</left_val>
\r
7441 <right_val>-0.4595307111740112</right_val></_></_>
\r
7445 <!-- root node -->
\r
7453 22 2 7 2 2.</_></rects>
\r
7454 <tilted>0</tilted></feature>
\r
7455 <threshold>2.9721839819103479e-003</threshold>
\r
7456 <left_val>-0.1291726976633072</left_val>
\r
7457 <right_val>0.1552311033010483</right_val></_></_>
\r
7461 <!-- root node -->
\r
7467 15 1 2 13 2.</_></rects>
\r
7468 <tilted>1</tilted></feature>
\r
7469 <threshold>0.0205544792115688</threshold>
\r
7470 <left_val>0.0876004695892334</left_val>
\r
7471 <right_val>-0.4577418863773346</right_val></_></_>
\r
7475 <!-- root node -->
\r
7481 23 3 4 4 2.</_></rects>
\r
7482 <tilted>0</tilted></feature>
\r
7483 <threshold>-0.0230272803455591</threshold>
\r
7484 <left_val>0.3548808991909027</left_val>
\r
7485 <right_val>-0.0205669198185205</right_val></_></_>
\r
7489 <!-- root node -->
\r
7495 9 3 4 4 2.</_></rects>
\r
7496 <tilted>0</tilted></feature>
\r
7497 <threshold>-8.3903772756457329e-003</threshold>
\r
7498 <left_val>-0.4324072897434235</left_val>
\r
7499 <right_val>0.0920679792761803</right_val></_></_>
\r
7503 <!-- root node -->
\r
7511 32 15 1 1 2.</_></rects>
\r
7512 <tilted>0</tilted></feature>
\r
7513 <threshold>-1.1431539896875620e-003</threshold>
\r
7514 <left_val>0.3959133923053742</left_val>
\r
7515 <right_val>-0.0231928899884224</right_val></_></_>
\r
7519 <!-- root node -->
\r
7527 3 15 1 1 2.</_></rects>
\r
7528 <tilted>0</tilted></feature>
\r
7529 <threshold>-4.9133709399029613e-004</threshold>
\r
7530 <left_val>0.4274964034557343</left_val>
\r
7531 <right_val>-0.0855242162942886</right_val></_></_>
\r
7535 <!-- root node -->
\r
7541 35 9 1 4 3.</_></rects>
\r
7542 <tilted>0</tilted></feature>
\r
7543 <threshold>5.1292928401380777e-004</threshold>
\r
7544 <left_val>-0.1619673967361450</left_val>
\r
7545 <right_val>0.1961497068405151</right_val></_></_>
\r
7549 <!-- root node -->
\r
7555 0 10 1 3 3.</_></rects>
\r
7556 <tilted>0</tilted></feature>
\r
7557 <threshold>-5.8478871360421181e-003</threshold>
\r
7558 <left_val>-0.5911636948585510</left_val>
\r
7559 <right_val>0.0624482408165932</right_val></_></_>
\r
7563 <!-- root node -->
\r
7569 12 4 15 2 3.</_></rects>
\r
7570 <tilted>0</tilted></feature>
\r
7571 <threshold>-0.0941330492496490</threshold>
\r
7572 <left_val>0.4770160913467407</left_val>
\r
7573 <right_val>-0.0567101612687111</right_val></_></_>
\r
7577 <!-- root node -->
\r
7583 1 17 1 1 2.</_></rects>
\r
7584 <tilted>0</tilted></feature>
\r
7585 <threshold>1.0079269850393757e-004</threshold>
\r
7586 <left_val>-0.1625709980726242</left_val>
\r
7587 <right_val>0.2140229046344757</right_val></_></_>
\r
7591 <!-- root node -->
\r
7597 34 17 1 1 2.</_></rects>
\r
7598 <tilted>0</tilted></feature>
\r
7599 <threshold>3.2930231100181118e-005</threshold>
\r
7600 <left_val>-0.1859605014324188</left_val>
\r
7601 <right_val>0.1964769065380096</right_val></_></_>
\r
7605 <!-- root node -->
\r
7611 1 17 1 1 2.</_></rects>
\r
7612 <tilted>0</tilted></feature>
\r
7613 <threshold>-1.1743210052372888e-004</threshold>
\r
7614 <left_val>0.3182134926319122</left_val>
\r
7615 <right_val>-0.1328738033771515</right_val></_></_>
\r
7619 <!-- root node -->
\r
7623 11 0 16 10 -1.</_>
\r
7625 15 0 8 10 2.</_></rects>
\r
7626 <tilted>0</tilted></feature>
\r
7627 <threshold>0.1275181025266647</threshold>
\r
7628 <left_val>0.0301400795578957</left_val>
\r
7629 <right_val>-0.7411035895347595</right_val></_></_>
\r
7633 <!-- root node -->
\r
7641 17 14 12 4 2.</_></rects>
\r
7642 <tilted>0</tilted></feature>
\r
7643 <threshold>0.0803262963891029</threshold>
\r
7644 <left_val>0.0415550395846367</left_val>
\r
7645 <right_val>-0.8263683915138245</right_val></_></_>
\r
7649 <!-- root node -->
\r
7655 27 5 3 1 3.</_></rects>
\r
7656 <tilted>0</tilted></feature>
\r
7657 <threshold>1.6904190415516496e-003</threshold>
\r
7658 <left_val>-0.1029061973094940</left_val>
\r
7659 <right_val>0.2972418069839478</right_val></_></_></trees>
\r
7660 <stage_threshold>-1.3022350072860718</stage_threshold>
\r
7661 <parent>17</parent>
\r
7662 <next>-1</next></_>
\r
7669 <!-- root node -->
\r
7677 13 12 7 6 2.</_></rects>
\r
7678 <tilted>0</tilted></feature>
\r
7679 <threshold>-0.0461227893829346</threshold>
\r
7680 <left_val>0.4425258934497833</left_val>
\r
7681 <right_val>-0.2991319894790649</right_val></_></_>
\r
7685 <!-- root node -->
\r
7691 14 7 8 2 9.</_></rects>
\r
7692 <tilted>0</tilted></feature>
\r
7693 <threshold>0.3672331869602203</threshold>
\r
7694 <left_val>-0.0630117505788803</left_val>
\r
7695 <right_val>0.7712538242340088</right_val></_></_>
\r
7699 <!-- root node -->
\r
7705 12 7 3 2 2.</_></rects>
\r
7706 <tilted>0</tilted></feature>
\r
7707 <threshold>-3.0962929595261812e-003</threshold>
\r
7708 <left_val>0.3514241874217987</left_val>
\r
7709 <right_val>-0.1730643957853317</right_val></_></_>
\r
7713 <!-- root node -->
\r
7721 30 12 3 5 2.</_></rects>
\r
7722 <tilted>0</tilted></feature>
\r
7723 <threshold>9.2647131532430649e-003</threshold>
\r
7724 <left_val>-0.1607280969619751</left_val>
\r
7725 <right_val>0.1853290945291519</right_val></_></_>
\r
7729 <!-- root node -->
\r
7737 6 15 3 3 2.</_></rects>
\r
7738 <tilted>0</tilted></feature>
\r
7739 <threshold>3.1748649198561907e-003</threshold>
\r
7740 <left_val>-0.1968899965286255</left_val>
\r
7741 <right_val>0.2409728020429611</right_val></_></_>
\r
7745 <!-- root node -->
\r
7751 20 0 13 1 2.</_></rects>
\r
7752 <tilted>1</tilted></feature>
\r
7753 <threshold>8.0439839512109756e-003</threshold>
\r
7754 <left_val>0.0898629724979401</left_val>
\r
7755 <right_val>-0.3655225932598114</right_val></_></_>
\r
7759 <!-- root node -->
\r
7765 14 12 8 2 9.</_></rects>
\r
7766 <tilted>0</tilted></feature>
\r
7767 <threshold>0.3275249004364014</threshold>
\r
7768 <left_val>-0.0568796806037426</left_val>
\r
7769 <right_val>0.7749336957931519</right_val></_></_>
\r
7773 <!-- root node -->
\r
7781 15 8 4 4 2.</_></rects>
\r
7782 <tilted>0</tilted></feature>
\r
7783 <threshold>-0.0190744306892157</threshold>
\r
7784 <left_val>-0.2895380854606628</left_val>
\r
7785 <right_val>0.0622916705906391</right_val></_></_>
\r
7789 <!-- root node -->
\r
7797 17 8 4 4 2.</_></rects>
\r
7798 <tilted>0</tilted></feature>
\r
7799 <threshold>-0.0205017495900393</threshold>
\r
7800 <left_val>-0.6262530088424683</left_val>
\r
7801 <right_val>0.0682769715785980</right_val></_></_>
\r
7805 <!-- root node -->
\r
7811 34 16 1 2 2.</_></rects>
\r
7812 <tilted>0</tilted></feature>
\r
7813 <threshold>5.3187010053079575e-005</threshold>
\r
7814 <left_val>-0.2514955997467041</left_val>
\r
7815 <right_val>0.2613196074962616</right_val></_></_>
\r
7819 <!-- root node -->
\r
7825 12 7 3 1 3.</_></rects>
\r
7826 <tilted>0</tilted></feature>
\r
7827 <threshold>3.3275580499321222e-003</threshold>
\r
7828 <left_val>-0.1199077963829041</left_val>
\r
7829 <right_val>0.3651930093765259</right_val></_></_>
\r
7833 <!-- root node -->
\r
7839 21 8 4 2 2.</_></rects>
\r
7840 <tilted>0</tilted></feature>
\r
7841 <threshold>5.8408430777490139e-003</threshold>
\r
7842 <left_val>-0.0827485173940659</left_val>
\r
7843 <right_val>0.2365082055330277</right_val></_></_>
\r
7847 <!-- root node -->
\r
7855 17 10 15 2 2.</_></rects>
\r
7856 <tilted>0</tilted></feature>
\r
7857 <threshold>-0.0464623309671879</threshold>
\r
7858 <left_val>-0.6928564906120300</left_val>
\r
7859 <right_val>0.0781976729631424</right_val></_></_>
\r
7863 <!-- root node -->
\r
7869 27 5 3 2 2.</_></rects>
\r
7870 <tilted>0</tilted></feature>
\r
7871 <threshold>-3.7785700988024473e-003</threshold>
\r
7872 <left_val>0.3437257111072540</left_val>
\r
7873 <right_val>-0.1027545034885407</right_val></_></_>
\r
7877 <!-- root node -->
\r
7883 5 5 3 2 2.</_></rects>
\r
7884 <tilted>0</tilted></feature>
\r
7885 <threshold>1.6655459767207503e-003</threshold>
\r
7886 <left_val>-0.1160527989268303</left_val>
\r
7887 <right_val>0.3716202974319458</right_val></_></_>
\r
7891 <!-- root node -->
\r
7897 34 16 1 2 2.</_></rects>
\r
7898 <tilted>0</tilted></feature>
\r
7899 <threshold>-5.7107670727418736e-005</threshold>
\r
7900 <left_val>0.4589366912841797</left_val>
\r
7901 <right_val>-0.2123643010854721</right_val></_></_>
\r
7905 <!-- root node -->
\r
7913 17 17 17 1 2.</_></rects>
\r
7914 <tilted>0</tilted></feature>
\r
7915 <threshold>-9.0066380798816681e-003</threshold>
\r
7916 <left_val>-0.5953341126441956</left_val>
\r
7917 <right_val>0.0808764025568962</right_val></_></_>
\r
7921 <!-- root node -->
\r
7925 12 5 15 12 -1.</_>
\r
7927 12 9 15 4 3.</_></rects>
\r
7928 <tilted>0</tilted></feature>
\r
7929 <threshold>-0.1378971040248871</threshold>
\r
7930 <left_val>0.3957067131996155</left_val>
\r
7931 <right_val>-0.0898853763937950</right_val></_></_>
\r
7935 <!-- root node -->
\r
7941 12 10 12 2 9.</_></rects>
\r
7942 <tilted>0</tilted></feature>
\r
7943 <threshold>0.5759987235069275</threshold>
\r
7944 <left_val>-0.0538108199834824</left_val>
\r
7945 <right_val>0.8170394897460938</right_val></_></_>
\r
7949 <!-- root node -->
\r
7955 25 5 6 1 2.</_></rects>
\r
7956 <tilted>0</tilted></feature>
\r
7957 <threshold>-2.3918158840388060e-003</threshold>
\r
7958 <left_val>0.1393374055624008</left_val>
\r
7959 <right_val>-0.0421559289097786</right_val></_></_>
\r
7963 <!-- root node -->
\r
7969 1 17 1 1 2.</_></rects>
\r
7970 <tilted>0</tilted></feature>
\r
7971 <threshold>2.4896071408875287e-004</threshold>
\r
7972 <left_val>-0.1485866010189056</left_val>
\r
7973 <right_val>0.2626332938671112</right_val></_></_>
\r
7977 <!-- root node -->
\r
7983 19 0 3 9 3.</_></rects>
\r
7984 <tilted>0</tilted></feature>
\r
7985 <threshold>0.0330624915659428</threshold>
\r
7986 <left_val>0.0306599102914333</left_val>
\r
7987 <right_val>-0.3231860101222992</right_val></_></_>
\r
7991 <!-- root node -->
\r
7997 14 0 3 9 3.</_></rects>
\r
7998 <tilted>0</tilted></feature>
\r
7999 <threshold>0.0443218797445297</threshold>
\r
8000 <left_val>0.0478538200259209</left_val>
\r
8001 <right_val>-0.7813590168952942</right_val></_></_>
\r
8005 <!-- root node -->
\r
8011 24 5 8 5 2.</_></rects>
\r
8012 <tilted>0</tilted></feature>
\r
8013 <threshold>-0.0187181904911995</threshold>
\r
8014 <left_val>0.1201262027025223</left_val>
\r
8015 <right_val>-0.1121146976947784</right_val></_></_>
\r
8019 <!-- root node -->
\r
8025 4 3 8 9 2.</_></rects>
\r
8026 <tilted>0</tilted></feature>
\r
8027 <threshold>0.0923093706369400</threshold>
\r
8028 <left_val>0.0424630790948868</left_val>
\r
8029 <right_val>-0.8009700179100037</right_val></_></_>
\r
8033 <!-- root node -->
\r
8041 7 12 13 6 2.</_></rects>
\r
8042 <tilted>0</tilted></feature>
\r
8043 <threshold>0.0906654372811317</threshold>
\r
8044 <left_val>-0.0223045293241739</left_val>
\r
8045 <right_val>0.1284797936677933</right_val></_></_>
\r
8049 <!-- root node -->
\r
8057 17 12 12 6 2.</_></rects>
\r
8058 <tilted>0</tilted></feature>
\r
8059 <threshold>-0.0582949295639992</threshold>
\r
8060 <left_val>-0.3936854004859924</left_val>
\r
8061 <right_val>0.0954821407794952</right_val></_></_>
\r
8065 <!-- root node -->
\r
8071 18 4 1 12 3.</_></rects>
\r
8072 <tilted>0</tilted></feature>
\r
8073 <threshold>4.6649780124425888e-003</threshold>
\r
8074 <left_val>-0.0656419470906258</left_val>
\r
8075 <right_val>0.3640717864036560</right_val></_></_>
\r
8079 <!-- root node -->
\r
8085 3 13 2 1 3.</_></rects>
\r
8086 <tilted>1</tilted></feature>
\r
8087 <threshold>5.2480432204902172e-003</threshold>
\r
8088 <left_val>0.0687657818198204</left_val>
\r
8089 <right_val>-0.5050830245018005</right_val></_></_>
\r
8093 <!-- root node -->
\r
8097 21 12 14 2 -1.</_>
\r
8101 21 13 7 1 2.</_></rects>
\r
8102 <tilted>0</tilted></feature>
\r
8103 <threshold>2.5315659586340189e-003</threshold>
\r
8104 <left_val>-0.0933471694588661</left_val>
\r
8105 <right_val>0.1649612933397293</right_val></_></_>
\r
8109 <!-- root node -->
\r
8115 2 13 1 3 2.</_></rects>
\r
8116 <tilted>0</tilted></feature>
\r
8117 <threshold>2.4391160695813596e-004</threshold>
\r
8118 <left_val>-0.1888543963432312</left_val>
\r
8119 <right_val>0.1695670038461685</right_val></_></_>
\r
8123 <!-- root node -->
\r
8129 27 9 1 2 3.</_></rects>
\r
8130 <tilted>1</tilted></feature>
\r
8131 <threshold>-6.3037211075425148e-003</threshold>
\r
8132 <left_val>0.3826352953910828</left_val>
\r
8133 <right_val>-0.0590420998632908</right_val></_></_>
\r
8137 <!-- root node -->
\r
8143 9 9 2 1 3.</_></rects>
\r
8144 <tilted>1</tilted></feature>
\r
8145 <threshold>2.2754059173166752e-003</threshold>
\r
8146 <left_val>-0.1224882006645203</left_val>
\r
8147 <right_val>0.2828365862369537</right_val></_></_>
\r
8151 <!-- root node -->
\r
8155 12 0 18 18 -1.</_>
\r
8157 12 0 9 18 2.</_></rects>
\r
8158 <tilted>0</tilted></feature>
\r
8159 <threshold>-0.2769486904144287</threshold>
\r
8160 <left_val>0.4851497113704681</left_val>
\r
8161 <right_val>-0.0404825396835804</right_val></_></_>
\r
8165 <!-- root node -->
\r
8171 7 10 3 1 3.</_></rects>
\r
8172 <tilted>1</tilted></feature>
\r
8173 <threshold>5.8051547966897488e-003</threshold>
\r
8174 <left_val>-0.0835584178566933</left_val>
\r
8175 <right_val>0.4215149879455566</right_val></_></_>
\r
8179 <!-- root node -->
\r
8185 28 7 5 2 3.</_></rects>
\r
8186 <tilted>0</tilted></feature>
\r
8187 <threshold>2.4654529988765717e-003</threshold>
\r
8188 <left_val>-0.1281685978174210</left_val>
\r
8189 <right_val>0.2077662944793701</right_val></_></_>
\r
8193 <!-- root node -->
\r
8199 9 1 9 4 2.</_></rects>
\r
8200 <tilted>1</tilted></feature>
\r
8201 <threshold>7.8863510861992836e-003</threshold>
\r
8202 <left_val>-0.1719754040241242</left_val>
\r
8203 <right_val>0.2079081982374191</right_val></_></_>
\r
8207 <!-- root node -->
\r
8215 0 1 18 1 2.</_></rects>
\r
8216 <tilted>0</tilted></feature>
\r
8217 <threshold>-0.0118171302601695</threshold>
\r
8218 <left_val>-0.5788066983222961</left_val>
\r
8219 <right_val>0.0589591413736343</right_val></_></_>
\r
8223 <!-- root node -->
\r
8231 18 3 13 3 2.</_></rects>
\r
8232 <tilted>0</tilted></feature>
\r
8233 <threshold>-0.0641399174928665</threshold>
\r
8234 <left_val>-0.6368926167488098</left_val>
\r
8235 <right_val>0.0417975001037121</right_val></_></_>
\r
8239 <!-- root node -->
\r
8245 28 4 3 1 3.</_></rects>
\r
8246 <tilted>0</tilted></feature>
\r
8247 <threshold>-1.2179970508441329e-003</threshold>
\r
8248 <left_val>0.2356870025396347</left_val>
\r
8249 <right_val>-0.0805152580142021</right_val></_></_>
\r
8253 <!-- root node -->
\r
8259 5 4 5 1 3.</_></rects>
\r
8260 <tilted>0</tilted></feature>
\r
8261 <threshold>2.8652620967477560e-003</threshold>
\r
8262 <left_val>-0.0931371971964836</left_val>
\r
8263 <right_val>0.3902595043182373</right_val></_></_>
\r
8267 <!-- root node -->
\r
8273 16 12 4 2 2.</_></rects>
\r
8274 <tilted>0</tilted></feature>
\r
8275 <threshold>-5.7746102102100849e-003</threshold>
\r
8276 <left_val>-0.5753986835479736</left_val>
\r
8277 <right_val>0.0596776902675629</right_val></_></_>
\r
8281 <!-- root node -->
\r
8287 16 0 3 14 3.</_></rects>
\r
8288 <tilted>0</tilted></feature>
\r
8289 <threshold>0.0653770864009857</threshold>
\r
8290 <left_val>0.0341660715639591</left_val>
\r
8291 <right_val>-0.7425342202186585</right_val></_></_>
\r
8295 <!-- root node -->
\r
8301 23 0 5 1 2.</_></rects>
\r
8302 <tilted>1</tilted></feature>
\r
8303 <threshold>0.0162657108157873</threshold>
\r
8304 <left_val>0.0536542609333992</left_val>
\r
8305 <right_val>-0.2365860939025879</right_val></_></_>
\r
8309 <!-- root node -->
\r
8315 8 14 1 2 2.</_></rects>
\r
8316 <tilted>1</tilted></feature>
\r
8317 <threshold>2.2717609535902739e-003</threshold>
\r
8318 <left_val>0.0533591099083424</left_val>
\r
8319 <right_val>-0.5494074225425720</right_val></_></_>
\r
8323 <!-- root node -->
\r
8329 12 13 12 1 9.</_></rects>
\r
8330 <tilted>0</tilted></feature>
\r
8331 <threshold>0.2262602001428604</threshold>
\r
8332 <left_val>-0.0420460589230061</left_val>
\r
8333 <right_val>0.7791252136230469</right_val></_></_>
\r
8337 <!-- root node -->
\r
8345 17 15 17 2 2.</_></rects>
\r
8346 <tilted>0</tilted></feature>
\r
8347 <threshold>-0.0293774604797363</threshold>
\r
8348 <left_val>-0.5947058796882629</left_val>
\r
8349 <right_val>0.0548178702592850</right_val></_></_></trees>
\r
8350 <stage_threshold>-1.1933319568634033</stage_threshold>
\r
8351 <parent>18</parent>
\r
8352 <next>-1</next></_></stages></SmileDetector>
\r