2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include "transaction.h"
21 #include "print-tree.h"
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25 *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_key *ins_key,
28 struct btrfs_path *path, int data_size, int extend);
29 static int push_node_left(struct btrfs_trans_handle *trans,
30 struct btrfs_root *root, struct extent_buffer *dst,
31 struct extent_buffer *src, int empty);
32 static int balance_node_right(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root,
34 struct extent_buffer *dst_buf,
35 struct extent_buffer *src_buf);
37 inline void btrfs_init_path(struct btrfs_path *p)
39 memset(p, 0, sizeof(*p));
42 struct btrfs_path *btrfs_alloc_path(void)
44 struct btrfs_path *path;
45 path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
49 void btrfs_free_path(struct btrfs_path *p)
53 btrfs_release_path(p);
57 void btrfs_release_path(struct btrfs_path *p)
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
63 free_extent_buffer(p->nodes[i]);
65 memset(p, 0, sizeof(*p));
68 void add_root_to_dirty_list(struct btrfs_root *root)
70 if (root->track_dirty && list_empty(&root->dirty_list)) {
71 list_add(&root->dirty_list,
72 &root->fs_info->dirty_cowonly_roots);
76 int btrfs_copy_root(struct btrfs_trans_handle *trans,
77 struct btrfs_root *root,
78 struct extent_buffer *buf,
79 struct extent_buffer **cow_ret, u64 new_root_objectid)
81 struct extent_buffer *cow;
84 struct btrfs_root *new_root;
85 struct btrfs_disk_key disk_key;
87 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
91 memcpy(new_root, root, sizeof(*new_root));
92 new_root->root_key.objectid = new_root_objectid;
94 WARN_ON(root->ref_cows && trans->transid !=
95 root->fs_info->running_transaction->transid);
96 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
98 level = btrfs_header_level(buf);
100 btrfs_item_key(buf, &disk_key, 0);
102 btrfs_node_key(buf, &disk_key, 0);
103 cow = btrfs_alloc_free_block(trans, new_root, buf->len,
104 new_root_objectid, &disk_key,
105 level, buf->start, 0);
111 copy_extent_buffer(cow, buf, 0, 0, cow->len);
112 btrfs_set_header_bytenr(cow, cow->start);
113 btrfs_set_header_generation(cow, trans->transid);
114 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
115 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
116 BTRFS_HEADER_FLAG_RELOC);
117 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
118 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
120 btrfs_set_header_owner(cow, new_root_objectid);
122 write_extent_buffer(cow, root->fs_info->fsid,
123 btrfs_header_fsid(), BTRFS_FSID_SIZE);
125 WARN_ON(btrfs_header_generation(buf) > trans->transid);
126 ret = btrfs_inc_ref(trans, new_root, cow, 0);
132 btrfs_mark_buffer_dirty(cow);
138 * check if the tree block can be shared by multiple trees
140 static int btrfs_block_can_be_shared(struct btrfs_root *root,
141 struct extent_buffer *buf)
144 * Tree blocks not in refernece counted trees and tree roots
145 * are never shared. If a block was allocated after the last
146 * snapshot and the block was not allocated by tree relocation,
147 * we know the block is not shared.
149 if (root->ref_cows &&
150 buf != root->node && buf != root->commit_root &&
151 (btrfs_header_generation(buf) <=
152 btrfs_root_last_snapshot(&root->root_item) ||
153 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
155 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
156 if (root->ref_cows &&
157 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
163 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
164 struct btrfs_root *root,
165 struct extent_buffer *buf,
166 struct extent_buffer *cow)
175 * Backrefs update rules:
177 * Always use full backrefs for extent pointers in tree block
178 * allocated by tree relocation.
180 * If a shared tree block is no longer referenced by its owner
181 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
182 * use full backrefs for extent pointers in tree block.
184 * If a tree block is been relocating
185 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
186 * use full backrefs for extent pointers in tree block.
187 * The reason for this is some operations (such as drop tree)
188 * are only allowed for blocks use full backrefs.
191 if (btrfs_block_can_be_shared(root, buf)) {
192 ret = btrfs_lookup_extent_info(trans, root, buf->start,
193 btrfs_header_level(buf), 1,
199 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
200 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
201 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
206 owner = btrfs_header_owner(buf);
207 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
208 owner == BTRFS_TREE_RELOC_OBJECTID);
211 if ((owner == root->root_key.objectid ||
212 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
213 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
214 ret = btrfs_inc_ref(trans, root, buf, 1);
217 if (root->root_key.objectid ==
218 BTRFS_TREE_RELOC_OBJECTID) {
219 ret = btrfs_dec_ref(trans, root, buf, 0);
221 ret = btrfs_inc_ref(trans, root, cow, 1);
224 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
227 if (root->root_key.objectid ==
228 BTRFS_TREE_RELOC_OBJECTID)
229 ret = btrfs_inc_ref(trans, root, cow, 1);
231 ret = btrfs_inc_ref(trans, root, cow, 0);
234 if (new_flags != 0) {
235 ret = btrfs_set_block_flags(trans, root, buf->start,
236 btrfs_header_level(buf),
241 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
242 if (root->root_key.objectid ==
243 BTRFS_TREE_RELOC_OBJECTID)
244 ret = btrfs_inc_ref(trans, root, cow, 1);
246 ret = btrfs_inc_ref(trans, root, cow, 0);
248 ret = btrfs_dec_ref(trans, root, buf, 1);
251 clean_tree_block(trans, root, buf);
256 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
257 struct btrfs_root *root,
258 struct extent_buffer *buf,
259 struct extent_buffer *parent, int parent_slot,
260 struct extent_buffer **cow_ret,
261 u64 search_start, u64 empty_size)
263 struct extent_buffer *cow;
264 struct btrfs_disk_key disk_key;
267 WARN_ON(root->ref_cows && trans->transid !=
268 root->fs_info->running_transaction->transid);
269 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
271 level = btrfs_header_level(buf);
274 btrfs_item_key(buf, &disk_key, 0);
276 btrfs_node_key(buf, &disk_key, 0);
278 cow = btrfs_alloc_free_block(trans, root, buf->len,
279 root->root_key.objectid, &disk_key,
280 level, search_start, empty_size);
284 copy_extent_buffer(cow, buf, 0, 0, cow->len);
285 btrfs_set_header_bytenr(cow, cow->start);
286 btrfs_set_header_generation(cow, trans->transid);
287 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
288 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
289 BTRFS_HEADER_FLAG_RELOC);
290 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
291 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
293 btrfs_set_header_owner(cow, root->root_key.objectid);
295 write_extent_buffer(cow, root->fs_info->fsid,
296 btrfs_header_fsid(), BTRFS_FSID_SIZE);
298 WARN_ON(!(buf->flags & EXTENT_BAD_TRANSID) &&
299 btrfs_header_generation(buf) > trans->transid);
301 update_ref_for_cow(trans, root, buf, cow);
303 if (buf == root->node) {
305 extent_buffer_get(cow);
307 btrfs_free_extent(trans, root, buf->start, buf->len,
308 0, root->root_key.objectid, level, 0);
309 free_extent_buffer(buf);
310 add_root_to_dirty_list(root);
312 btrfs_set_node_blockptr(parent, parent_slot,
314 WARN_ON(trans->transid == 0);
315 btrfs_set_node_ptr_generation(parent, parent_slot,
317 btrfs_mark_buffer_dirty(parent);
318 WARN_ON(btrfs_header_generation(parent) != trans->transid);
320 btrfs_free_extent(trans, root, buf->start, buf->len,
321 0, root->root_key.objectid, level, 1);
323 if (!list_empty(&buf->recow)) {
324 list_del_init(&buf->recow);
325 free_extent_buffer(buf);
327 free_extent_buffer(buf);
328 btrfs_mark_buffer_dirty(cow);
333 static inline int should_cow_block(struct btrfs_trans_handle *trans,
334 struct btrfs_root *root,
335 struct extent_buffer *buf)
337 if (btrfs_header_generation(buf) == trans->transid &&
338 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
339 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
340 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
345 int btrfs_cow_block(struct btrfs_trans_handle *trans,
346 struct btrfs_root *root, struct extent_buffer *buf,
347 struct extent_buffer *parent, int parent_slot,
348 struct extent_buffer **cow_ret)
353 if (trans->transaction != root->fs_info->running_transaction) {
354 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
355 root->fs_info->running_transaction->transid);
359 if (trans->transid != root->fs_info->generation) {
360 printk(KERN_CRIT "trans %llu running %llu\n",
361 (unsigned long long)trans->transid,
362 (unsigned long long)root->fs_info->generation);
365 if (!should_cow_block(trans, root, buf)) {
370 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
371 ret = __btrfs_cow_block(trans, root, buf, parent,
372 parent_slot, cow_ret, search_start, 0);
376 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
378 if (k1->objectid > k2->objectid)
380 if (k1->objectid < k2->objectid)
382 if (k1->type > k2->type)
384 if (k1->type < k2->type)
386 if (k1->offset > k2->offset)
388 if (k1->offset < k2->offset)
394 * compare two keys in a memcmp fashion
396 static int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
400 btrfs_disk_key_to_cpu(&k1, disk);
401 return btrfs_comp_cpu_keys(&k1, k2);
405 * The leaf data grows from end-to-front in the node.
406 * this returns the address of the start of the last item,
407 * which is the stop of the leaf data stack
409 static inline unsigned int leaf_data_end(struct btrfs_root *root,
410 struct extent_buffer *leaf)
412 u32 nr = btrfs_header_nritems(leaf);
414 return BTRFS_LEAF_DATA_SIZE(root);
415 return btrfs_item_offset_nr(leaf, nr - 1);
418 enum btrfs_tree_block_status
419 btrfs_check_node(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
420 struct extent_buffer *buf)
423 struct btrfs_key cpukey;
424 struct btrfs_disk_key key;
425 u32 nritems = btrfs_header_nritems(buf);
426 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
428 if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root))
431 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
432 if (parent_key && parent_key->type) {
433 btrfs_node_key(buf, &key, 0);
434 if (memcmp(parent_key, &key, sizeof(key)))
437 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
438 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
439 btrfs_node_key(buf, &key, i);
440 btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
441 if (btrfs_comp_keys(&key, &cpukey) >= 0)
444 return BTRFS_TREE_BLOCK_CLEAN;
446 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
448 btrfs_disk_key_to_cpu(&cpukey, parent_key);
450 btrfs_node_key_to_cpu(buf, &cpukey, 0);
451 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
452 buf->start, buf->len,
453 btrfs_header_level(buf));
458 enum btrfs_tree_block_status
459 btrfs_check_leaf(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
460 struct extent_buffer *buf)
463 struct btrfs_key cpukey;
464 struct btrfs_disk_key key;
465 u32 nritems = btrfs_header_nritems(buf);
466 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
468 if (nritems * sizeof(struct btrfs_item) > buf->len) {
469 fprintf(stderr, "invalid number of items %llu\n",
470 (unsigned long long)buf->start);
474 if (btrfs_header_level(buf) != 0) {
475 ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
476 fprintf(stderr, "leaf is not a leaf %llu\n",
477 (unsigned long long)btrfs_header_bytenr(buf));
480 if (btrfs_leaf_free_space(root, buf) < 0) {
481 ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
482 fprintf(stderr, "leaf free space incorrect %llu %d\n",
483 (unsigned long long)btrfs_header_bytenr(buf),
484 btrfs_leaf_free_space(root, buf));
489 return BTRFS_TREE_BLOCK_CLEAN;
491 btrfs_item_key(buf, &key, 0);
492 if (parent_key && parent_key->type &&
493 memcmp(parent_key, &key, sizeof(key))) {
494 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
495 fprintf(stderr, "leaf parent key incorrect %llu\n",
496 (unsigned long long)btrfs_header_bytenr(buf));
499 for (i = 0; nritems > 1 && i < nritems - 1; i++) {
500 btrfs_item_key(buf, &key, i);
501 btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
502 if (btrfs_comp_keys(&key, &cpukey) >= 0) {
503 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
504 fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
507 if (btrfs_item_offset_nr(buf, i) !=
508 btrfs_item_end_nr(buf, i + 1)) {
509 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
510 fprintf(stderr, "incorrect offsets %u %u\n",
511 btrfs_item_offset_nr(buf, i),
512 btrfs_item_end_nr(buf, i + 1));
515 if (i == 0 && btrfs_item_end_nr(buf, i) !=
516 BTRFS_LEAF_DATA_SIZE(root)) {
517 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
518 fprintf(stderr, "bad item end %u wanted %u\n",
519 btrfs_item_end_nr(buf, i),
520 (unsigned)BTRFS_LEAF_DATA_SIZE(root));
524 return BTRFS_TREE_BLOCK_CLEAN;
526 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
528 btrfs_disk_key_to_cpu(&cpukey, parent_key);
530 btrfs_item_key_to_cpu(buf, &cpukey, 0);
532 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
533 buf->start, buf->len, 0);
538 static int noinline check_block(struct btrfs_root *root,
539 struct btrfs_path *path, int level)
541 struct btrfs_disk_key key;
542 struct btrfs_disk_key *key_ptr = NULL;
543 struct extent_buffer *parent;
544 enum btrfs_tree_block_status ret;
546 if (path->skip_check_block)
548 if (path->nodes[level + 1]) {
549 parent = path->nodes[level + 1];
550 btrfs_node_key(parent, &key, path->slots[level + 1]);
554 ret = btrfs_check_leaf(root, key_ptr, path->nodes[0]);
556 ret = btrfs_check_node(root, key_ptr, path->nodes[level]);
557 if (ret == BTRFS_TREE_BLOCK_CLEAN)
563 * search for key in the extent_buffer. The items start at offset p,
564 * and they are item_size apart. There are 'max' items in p.
566 * the slot in the array is returned via slot, and it points to
567 * the place where you would insert key if it is not found in
570 * slot may point to max if the key is bigger than all of the keys
572 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
573 int item_size, struct btrfs_key *key,
580 unsigned long offset;
581 struct btrfs_disk_key *tmp;
584 mid = (low + high) / 2;
585 offset = p + mid * item_size;
587 tmp = (struct btrfs_disk_key *)(eb->data + offset);
588 ret = btrfs_comp_keys(tmp, key);
604 * simple bin_search frontend that does the right thing for
607 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
608 int level, int *slot)
611 return generic_bin_search(eb,
612 offsetof(struct btrfs_leaf, items),
613 sizeof(struct btrfs_item),
614 key, btrfs_header_nritems(eb),
617 return generic_bin_search(eb,
618 offsetof(struct btrfs_node, ptrs),
619 sizeof(struct btrfs_key_ptr),
620 key, btrfs_header_nritems(eb),
624 struct extent_buffer *read_node_slot(struct btrfs_root *root,
625 struct extent_buffer *parent, int slot)
627 int level = btrfs_header_level(parent);
630 if (slot >= btrfs_header_nritems(parent))
636 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
637 btrfs_level_size(root, level - 1),
638 btrfs_node_ptr_generation(parent, slot));
641 static int balance_level(struct btrfs_trans_handle *trans,
642 struct btrfs_root *root,
643 struct btrfs_path *path, int level)
645 struct extent_buffer *right = NULL;
646 struct extent_buffer *mid;
647 struct extent_buffer *left = NULL;
648 struct extent_buffer *parent = NULL;
652 int orig_slot = path->slots[level];
658 mid = path->nodes[level];
659 WARN_ON(btrfs_header_generation(mid) != trans->transid);
661 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
663 if (level < BTRFS_MAX_LEVEL - 1) {
664 parent = path->nodes[level + 1];
665 pslot = path->slots[level + 1];
669 * deal with the case where there is only one pointer in the root
670 * by promoting the node below to a root
673 struct extent_buffer *child;
675 if (btrfs_header_nritems(mid) != 1)
678 /* promote the child to a root */
679 child = read_node_slot(root, mid, 0);
681 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
685 add_root_to_dirty_list(root);
686 path->nodes[level] = NULL;
687 clean_tree_block(trans, root, mid);
688 wait_on_tree_block_writeback(root, mid);
689 /* once for the path */
690 free_extent_buffer(mid);
692 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
693 0, root->root_key.objectid,
695 /* once for the root ptr */
696 free_extent_buffer(mid);
699 if (btrfs_header_nritems(mid) >
700 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
703 left = read_node_slot(root, parent, pslot - 1);
705 wret = btrfs_cow_block(trans, root, left,
706 parent, pslot - 1, &left);
712 right = read_node_slot(root, parent, pslot + 1);
714 wret = btrfs_cow_block(trans, root, right,
715 parent, pslot + 1, &right);
722 /* first, try to make some room in the middle buffer */
724 orig_slot += btrfs_header_nritems(left);
725 wret = push_node_left(trans, root, left, mid, 1);
731 * then try to empty the right most buffer into the middle
734 wret = push_node_left(trans, root, mid, right, 1);
735 if (wret < 0 && wret != -ENOSPC)
737 if (btrfs_header_nritems(right) == 0) {
738 u64 bytenr = right->start;
739 u32 blocksize = right->len;
741 clean_tree_block(trans, root, right);
742 wait_on_tree_block_writeback(root, right);
743 free_extent_buffer(right);
745 wret = btrfs_del_ptr(trans, root, path,
746 level + 1, pslot + 1);
749 wret = btrfs_free_extent(trans, root, bytenr,
751 root->root_key.objectid,
756 struct btrfs_disk_key right_key;
757 btrfs_node_key(right, &right_key, 0);
758 btrfs_set_node_key(parent, &right_key, pslot + 1);
759 btrfs_mark_buffer_dirty(parent);
762 if (btrfs_header_nritems(mid) == 1) {
764 * we're not allowed to leave a node with one item in the
765 * tree during a delete. A deletion from lower in the tree
766 * could try to delete the only pointer in this node.
767 * So, pull some keys from the left.
768 * There has to be a left pointer at this point because
769 * otherwise we would have pulled some pointers from the
773 wret = balance_node_right(trans, root, mid, left);
779 wret = push_node_left(trans, root, left, mid, 1);
785 if (btrfs_header_nritems(mid) == 0) {
786 /* we've managed to empty the middle node, drop it */
787 u64 bytenr = mid->start;
788 u32 blocksize = mid->len;
789 clean_tree_block(trans, root, mid);
790 wait_on_tree_block_writeback(root, mid);
791 free_extent_buffer(mid);
793 wret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
796 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
797 0, root->root_key.objectid,
802 /* update the parent key to reflect our changes */
803 struct btrfs_disk_key mid_key;
804 btrfs_node_key(mid, &mid_key, 0);
805 btrfs_set_node_key(parent, &mid_key, pslot);
806 btrfs_mark_buffer_dirty(parent);
809 /* update the path */
811 if (btrfs_header_nritems(left) > orig_slot) {
812 extent_buffer_get(left);
813 path->nodes[level] = left;
814 path->slots[level + 1] -= 1;
815 path->slots[level] = orig_slot;
817 free_extent_buffer(mid);
819 orig_slot -= btrfs_header_nritems(left);
820 path->slots[level] = orig_slot;
823 /* double check we haven't messed things up */
824 check_block(root, path, level);
826 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
830 free_extent_buffer(right);
832 free_extent_buffer(left);
836 /* returns zero if the push worked, non-zero otherwise */
837 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path, int level)
841 struct extent_buffer *right = NULL;
842 struct extent_buffer *mid;
843 struct extent_buffer *left = NULL;
844 struct extent_buffer *parent = NULL;
848 int orig_slot = path->slots[level];
853 mid = path->nodes[level];
854 WARN_ON(btrfs_header_generation(mid) != trans->transid);
856 if (level < BTRFS_MAX_LEVEL - 1) {
857 parent = path->nodes[level + 1];
858 pslot = path->slots[level + 1];
864 left = read_node_slot(root, parent, pslot - 1);
866 /* first, try to make some room in the middle buffer */
869 left_nr = btrfs_header_nritems(left);
870 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
873 ret = btrfs_cow_block(trans, root, left, parent,
878 wret = push_node_left(trans, root,
885 struct btrfs_disk_key disk_key;
886 orig_slot += left_nr;
887 btrfs_node_key(mid, &disk_key, 0);
888 btrfs_set_node_key(parent, &disk_key, pslot);
889 btrfs_mark_buffer_dirty(parent);
890 if (btrfs_header_nritems(left) > orig_slot) {
891 path->nodes[level] = left;
892 path->slots[level + 1] -= 1;
893 path->slots[level] = orig_slot;
894 free_extent_buffer(mid);
897 btrfs_header_nritems(left);
898 path->slots[level] = orig_slot;
899 free_extent_buffer(left);
903 free_extent_buffer(left);
905 right= read_node_slot(root, parent, pslot + 1);
908 * then try to empty the right most buffer into the middle
912 right_nr = btrfs_header_nritems(right);
913 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
916 ret = btrfs_cow_block(trans, root, right,
922 wret = balance_node_right(trans, root,
929 struct btrfs_disk_key disk_key;
931 btrfs_node_key(right, &disk_key, 0);
932 btrfs_set_node_key(parent, &disk_key, pslot + 1);
933 btrfs_mark_buffer_dirty(parent);
935 if (btrfs_header_nritems(mid) <= orig_slot) {
936 path->nodes[level] = right;
937 path->slots[level + 1] += 1;
938 path->slots[level] = orig_slot -
939 btrfs_header_nritems(mid);
940 free_extent_buffer(mid);
942 free_extent_buffer(right);
946 free_extent_buffer(right);
952 * readahead one full node of leaves
954 void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
955 int level, int slot, u64 objectid)
957 struct extent_buffer *node;
958 struct btrfs_disk_key disk_key;
964 int direction = path->reada;
965 struct extent_buffer *eb;
973 if (!path->nodes[level])
976 node = path->nodes[level];
977 search = btrfs_node_blockptr(node, slot);
978 blocksize = btrfs_level_size(root, level - 1);
979 eb = btrfs_find_tree_block(root, search, blocksize);
981 free_extent_buffer(eb);
985 highest_read = search;
986 lowest_read = search;
988 nritems = btrfs_header_nritems(node);
995 } else if (direction > 0) {
1000 if (path->reada < 0 && objectid) {
1001 btrfs_node_key(node, &disk_key, nr);
1002 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1005 search = btrfs_node_blockptr(node, nr);
1006 if ((search >= lowest_read && search <= highest_read) ||
1007 (search < lowest_read && lowest_read - search <= 32768) ||
1008 (search > highest_read && search - highest_read <= 32768)) {
1009 readahead_tree_block(root, search, blocksize,
1010 btrfs_node_ptr_generation(node, nr));
1014 if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
1016 if(nread > (1024 * 1024) || nscan > 128)
1019 if (search < lowest_read)
1020 lowest_read = search;
1021 if (search > highest_read)
1022 highest_read = search;
1026 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
1027 u64 iobjectid, u64 ioff, u8 key_type,
1028 struct btrfs_key *found_key)
1031 struct btrfs_key key;
1032 struct extent_buffer *eb;
1033 struct btrfs_path *path;
1035 key.type = key_type;
1036 key.objectid = iobjectid;
1039 if (found_path == NULL) {
1040 path = btrfs_alloc_path();
1046 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1047 if ((ret < 0) || (found_key == NULL)) {
1048 if (path != found_path)
1049 btrfs_free_path(path);
1053 eb = path->nodes[0];
1054 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1055 ret = btrfs_next_leaf(fs_root, path);
1058 eb = path->nodes[0];
1061 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1062 if (found_key->type != key.type ||
1063 found_key->objectid != key.objectid)
1070 * look for key in the tree. path is filled in with nodes along the way
1071 * if key is found, we return zero and you can find the item in the leaf
1072 * level of the path (level 0)
1074 * If the key isn't found, the path points to the slot where it should
1075 * be inserted, and 1 is returned. If there are other errors during the
1076 * search a negative error number is returned.
1078 * if ins_len > 0, nodes and leaves will be split as we walk down the
1079 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1082 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1083 *root, struct btrfs_key *key, struct btrfs_path *p, int
1086 struct extent_buffer *b;
1090 int should_reada = p->reada;
1091 u8 lowest_level = 0;
1093 lowest_level = p->lowest_level;
1094 WARN_ON(lowest_level && ins_len > 0);
1095 WARN_ON(p->nodes[0] != NULL);
1097 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1101 extent_buffer_get(b);
1103 level = btrfs_header_level(b);
1106 wret = btrfs_cow_block(trans, root, b,
1107 p->nodes[level + 1],
1108 p->slots[level + 1],
1111 free_extent_buffer(b);
1115 BUG_ON(!cow && ins_len);
1116 if (level != btrfs_header_level(b))
1118 level = btrfs_header_level(b);
1119 p->nodes[level] = b;
1120 ret = check_block(root, p, level);
1123 ret = bin_search(b, key, level, &slot);
1125 if (ret && slot > 0)
1127 p->slots[level] = slot;
1128 if ((p->search_for_split || ins_len > 0) &&
1129 btrfs_header_nritems(b) >=
1130 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1131 int sret = split_node(trans, root, p, level);
1135 b = p->nodes[level];
1136 slot = p->slots[level];
1137 } else if (ins_len < 0) {
1138 int sret = balance_level(trans, root, p,
1142 b = p->nodes[level];
1144 btrfs_release_path(p);
1147 slot = p->slots[level];
1148 BUG_ON(btrfs_header_nritems(b) == 1);
1150 /* this is only true while dropping a snapshot */
1151 if (level == lowest_level)
1155 reada_for_search(root, p, level, slot,
1158 b = read_node_slot(root, b, slot);
1159 if (!extent_buffer_uptodate(b))
1162 p->slots[level] = slot;
1164 ins_len > btrfs_leaf_free_space(root, b)) {
1165 int sret = split_leaf(trans, root, key,
1166 p, ins_len, ret == 0);
1178 * adjust the pointers going up the tree, starting at level
1179 * making sure the right key of each node is points to 'key'.
1180 * This is used after shifting pointers to the left, so it stops
1181 * fixing up pointers when a given leaf/node is not in slot 0 of the
1184 void btrfs_fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
1185 struct btrfs_disk_key *key, int level)
1188 struct extent_buffer *t;
1190 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1191 int tslot = path->slots[i];
1192 if (!path->nodes[i])
1195 btrfs_set_node_key(t, key, tslot);
1196 btrfs_mark_buffer_dirty(path->nodes[i]);
1205 * This function isn't completely safe. It's the caller's responsibility
1206 * that the new key won't break the order
1208 int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
1209 struct btrfs_key *new_key)
1211 struct btrfs_disk_key disk_key;
1212 struct extent_buffer *eb;
1215 eb = path->nodes[0];
1216 slot = path->slots[0];
1218 btrfs_item_key(eb, &disk_key, slot - 1);
1219 if (btrfs_comp_keys(&disk_key, new_key) >= 0)
1222 if (slot < btrfs_header_nritems(eb) - 1) {
1223 btrfs_item_key(eb, &disk_key, slot + 1);
1224 if (btrfs_comp_keys(&disk_key, new_key) <= 0)
1228 btrfs_cpu_key_to_disk(&disk_key, new_key);
1229 btrfs_set_item_key(eb, &disk_key, slot);
1230 btrfs_mark_buffer_dirty(eb);
1232 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1237 * update an item key without the safety checks. This is meant to be called by
1240 void btrfs_set_item_key_unsafe(struct btrfs_root *root,
1241 struct btrfs_path *path,
1242 struct btrfs_key *new_key)
1244 struct btrfs_disk_key disk_key;
1245 struct extent_buffer *eb;
1248 eb = path->nodes[0];
1249 slot = path->slots[0];
1251 btrfs_cpu_key_to_disk(&disk_key, new_key);
1252 btrfs_set_item_key(eb, &disk_key, slot);
1253 btrfs_mark_buffer_dirty(eb);
1255 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1259 * try to push data from one node into the next node left in the
1262 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1263 * error, and > 0 if there was no room in the left hand block.
1265 static int push_node_left(struct btrfs_trans_handle *trans,
1266 struct btrfs_root *root, struct extent_buffer *dst,
1267 struct extent_buffer *src, int empty)
1274 src_nritems = btrfs_header_nritems(src);
1275 dst_nritems = btrfs_header_nritems(dst);
1276 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1277 WARN_ON(btrfs_header_generation(src) != trans->transid);
1278 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1280 if (!empty && src_nritems <= 8)
1283 if (push_items <= 0) {
1288 push_items = min(src_nritems, push_items);
1289 if (push_items < src_nritems) {
1290 /* leave at least 8 pointers in the node if
1291 * we aren't going to empty it
1293 if (src_nritems - push_items < 8) {
1294 if (push_items <= 8)
1300 push_items = min(src_nritems - 8, push_items);
1302 copy_extent_buffer(dst, src,
1303 btrfs_node_key_ptr_offset(dst_nritems),
1304 btrfs_node_key_ptr_offset(0),
1305 push_items * sizeof(struct btrfs_key_ptr));
1307 if (push_items < src_nritems) {
1308 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1309 btrfs_node_key_ptr_offset(push_items),
1310 (src_nritems - push_items) *
1311 sizeof(struct btrfs_key_ptr));
1313 btrfs_set_header_nritems(src, src_nritems - push_items);
1314 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1315 btrfs_mark_buffer_dirty(src);
1316 btrfs_mark_buffer_dirty(dst);
1322 * try to push data from one node into the next node right in the
1325 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1326 * error, and > 0 if there was no room in the right hand block.
1328 * this will only push up to 1/2 the contents of the left node over
1330 static int balance_node_right(struct btrfs_trans_handle *trans,
1331 struct btrfs_root *root,
1332 struct extent_buffer *dst,
1333 struct extent_buffer *src)
1341 WARN_ON(btrfs_header_generation(src) != trans->transid);
1342 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1344 src_nritems = btrfs_header_nritems(src);
1345 dst_nritems = btrfs_header_nritems(dst);
1346 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1347 if (push_items <= 0) {
1351 if (src_nritems < 4) {
1355 max_push = src_nritems / 2 + 1;
1356 /* don't try to empty the node */
1357 if (max_push >= src_nritems) {
1361 if (max_push < push_items)
1362 push_items = max_push;
1364 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1365 btrfs_node_key_ptr_offset(0),
1367 sizeof(struct btrfs_key_ptr));
1369 copy_extent_buffer(dst, src,
1370 btrfs_node_key_ptr_offset(0),
1371 btrfs_node_key_ptr_offset(src_nritems - push_items),
1372 push_items * sizeof(struct btrfs_key_ptr));
1374 btrfs_set_header_nritems(src, src_nritems - push_items);
1375 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1377 btrfs_mark_buffer_dirty(src);
1378 btrfs_mark_buffer_dirty(dst);
1384 * helper function to insert a new root level in the tree.
1385 * A new node is allocated, and a single item is inserted to
1386 * point to the existing root
1388 * returns zero on success or < 0 on failure.
1390 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1391 struct btrfs_root *root,
1392 struct btrfs_path *path, int level)
1395 struct extent_buffer *lower;
1396 struct extent_buffer *c;
1397 struct extent_buffer *old;
1398 struct btrfs_disk_key lower_key;
1400 BUG_ON(path->nodes[level]);
1401 BUG_ON(path->nodes[level-1] != root->node);
1403 lower = path->nodes[level-1];
1405 btrfs_item_key(lower, &lower_key, 0);
1407 btrfs_node_key(lower, &lower_key, 0);
1409 c = btrfs_alloc_free_block(trans, root, root->nodesize,
1410 root->root_key.objectid, &lower_key,
1411 level, root->node->start, 0);
1416 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1417 btrfs_set_header_nritems(c, 1);
1418 btrfs_set_header_level(c, level);
1419 btrfs_set_header_bytenr(c, c->start);
1420 btrfs_set_header_generation(c, trans->transid);
1421 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1422 btrfs_set_header_owner(c, root->root_key.objectid);
1424 write_extent_buffer(c, root->fs_info->fsid,
1425 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1427 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1428 btrfs_header_chunk_tree_uuid(c),
1431 btrfs_set_node_key(c, &lower_key, 0);
1432 btrfs_set_node_blockptr(c, 0, lower->start);
1433 lower_gen = btrfs_header_generation(lower);
1434 WARN_ON(lower_gen != trans->transid);
1436 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1438 btrfs_mark_buffer_dirty(c);
1443 /* the super has an extra ref to root->node */
1444 free_extent_buffer(old);
1446 add_root_to_dirty_list(root);
1447 extent_buffer_get(c);
1448 path->nodes[level] = c;
1449 path->slots[level] = 0;
1454 * worker function to insert a single pointer in a node.
1455 * the node should have enough room for the pointer already
1457 * slot and level indicate where you want the key to go, and
1458 * blocknr is the block the key points to.
1460 * returns zero on success and < 0 on any error
1462 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1463 *root, struct btrfs_path *path, struct btrfs_disk_key
1464 *key, u64 bytenr, int slot, int level)
1466 struct extent_buffer *lower;
1469 BUG_ON(!path->nodes[level]);
1470 lower = path->nodes[level];
1471 nritems = btrfs_header_nritems(lower);
1474 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1476 if (slot != nritems) {
1477 memmove_extent_buffer(lower,
1478 btrfs_node_key_ptr_offset(slot + 1),
1479 btrfs_node_key_ptr_offset(slot),
1480 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1482 btrfs_set_node_key(lower, key, slot);
1483 btrfs_set_node_blockptr(lower, slot, bytenr);
1484 WARN_ON(trans->transid == 0);
1485 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1486 btrfs_set_header_nritems(lower, nritems + 1);
1487 btrfs_mark_buffer_dirty(lower);
1492 * split the node at the specified level in path in two.
1493 * The path is corrected to point to the appropriate node after the split
1495 * Before splitting this tries to make some room in the node by pushing
1496 * left and right, if either one works, it returns right away.
1498 * returns 0 on success and < 0 on failure
1500 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1501 *root, struct btrfs_path *path, int level)
1503 struct extent_buffer *c;
1504 struct extent_buffer *split;
1505 struct btrfs_disk_key disk_key;
1511 c = path->nodes[level];
1512 WARN_ON(btrfs_header_generation(c) != trans->transid);
1513 if (c == root->node) {
1514 /* trying to split the root, lets make a new one */
1515 ret = insert_new_root(trans, root, path, level + 1);
1519 ret = push_nodes_for_insert(trans, root, path, level);
1520 c = path->nodes[level];
1521 if (!ret && btrfs_header_nritems(c) <
1522 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
1528 c_nritems = btrfs_header_nritems(c);
1529 mid = (c_nritems + 1) / 2;
1530 btrfs_node_key(c, &disk_key, mid);
1532 split = btrfs_alloc_free_block(trans, root, root->nodesize,
1533 root->root_key.objectid,
1534 &disk_key, level, c->start, 0);
1536 return PTR_ERR(split);
1538 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
1539 btrfs_set_header_level(split, btrfs_header_level(c));
1540 btrfs_set_header_bytenr(split, split->start);
1541 btrfs_set_header_generation(split, trans->transid);
1542 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
1543 btrfs_set_header_owner(split, root->root_key.objectid);
1544 write_extent_buffer(split, root->fs_info->fsid,
1545 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1546 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1547 btrfs_header_chunk_tree_uuid(split),
1551 copy_extent_buffer(split, c,
1552 btrfs_node_key_ptr_offset(0),
1553 btrfs_node_key_ptr_offset(mid),
1554 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1555 btrfs_set_header_nritems(split, c_nritems - mid);
1556 btrfs_set_header_nritems(c, mid);
1559 btrfs_mark_buffer_dirty(c);
1560 btrfs_mark_buffer_dirty(split);
1562 wret = insert_ptr(trans, root, path, &disk_key, split->start,
1563 path->slots[level + 1] + 1,
1568 if (path->slots[level] >= mid) {
1569 path->slots[level] -= mid;
1570 free_extent_buffer(c);
1571 path->nodes[level] = split;
1572 path->slots[level + 1] += 1;
1574 free_extent_buffer(split);
1580 * how many bytes are required to store the items in a leaf. start
1581 * and nr indicate which items in the leaf to check. This totals up the
1582 * space used both by the item structs and the item data
1584 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1587 int nritems = btrfs_header_nritems(l);
1588 int end = min(nritems, start + nr) - 1;
1592 data_len = btrfs_item_end_nr(l, start);
1593 data_len = data_len - btrfs_item_offset_nr(l, end);
1594 data_len += sizeof(struct btrfs_item) * nr;
1595 WARN_ON(data_len < 0);
1600 * The space between the end of the leaf items and
1601 * the start of the leaf data. IOW, how much room
1602 * the leaf has left for both items and data
1604 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1606 int nritems = btrfs_header_nritems(leaf);
1608 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1610 printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
1611 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
1612 leaf_space_used(leaf, 0, nritems), nritems);
1618 * push some data in the path leaf to the right, trying to free up at
1619 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1621 * returns 1 if the push failed because the other node didn't have enough
1622 * room, 0 if everything worked out and < 0 if there were major errors.
1624 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1625 *root, struct btrfs_path *path, int data_size,
1628 struct extent_buffer *left = path->nodes[0];
1629 struct extent_buffer *right;
1630 struct extent_buffer *upper;
1631 struct btrfs_disk_key disk_key;
1637 struct btrfs_item *item;
1645 slot = path->slots[1];
1646 if (!path->nodes[1]) {
1649 upper = path->nodes[1];
1650 if (slot >= btrfs_header_nritems(upper) - 1)
1653 right = read_node_slot(root, upper, slot + 1);
1654 free_space = btrfs_leaf_free_space(root, right);
1655 if (free_space < data_size) {
1656 free_extent_buffer(right);
1660 /* cow and double check */
1661 ret = btrfs_cow_block(trans, root, right, upper,
1664 free_extent_buffer(right);
1667 free_space = btrfs_leaf_free_space(root, right);
1668 if (free_space < data_size) {
1669 free_extent_buffer(right);
1673 left_nritems = btrfs_header_nritems(left);
1674 if (left_nritems == 0) {
1675 free_extent_buffer(right);
1684 i = left_nritems - 1;
1686 item = btrfs_item_nr(i);
1688 if (path->slots[0] == i)
1689 push_space += data_size + sizeof(*item);
1691 this_item_size = btrfs_item_size(left, item);
1692 if (this_item_size + sizeof(*item) + push_space > free_space)
1695 push_space += this_item_size + sizeof(*item);
1701 if (push_items == 0) {
1702 free_extent_buffer(right);
1706 if (!empty && push_items == left_nritems)
1709 /* push left to right */
1710 right_nritems = btrfs_header_nritems(right);
1712 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1713 push_space -= leaf_data_end(root, left);
1715 /* make room in the right data area */
1716 data_end = leaf_data_end(root, right);
1717 memmove_extent_buffer(right,
1718 btrfs_leaf_data(right) + data_end - push_space,
1719 btrfs_leaf_data(right) + data_end,
1720 BTRFS_LEAF_DATA_SIZE(root) - data_end);
1722 /* copy from the left data area */
1723 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1724 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1725 btrfs_leaf_data(left) + leaf_data_end(root, left),
1728 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1729 btrfs_item_nr_offset(0),
1730 right_nritems * sizeof(struct btrfs_item));
1732 /* copy the items from left to right */
1733 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1734 btrfs_item_nr_offset(left_nritems - push_items),
1735 push_items * sizeof(struct btrfs_item));
1737 /* update the item pointers */
1738 right_nritems += push_items;
1739 btrfs_set_header_nritems(right, right_nritems);
1740 push_space = BTRFS_LEAF_DATA_SIZE(root);
1741 for (i = 0; i < right_nritems; i++) {
1742 item = btrfs_item_nr(i);
1743 push_space -= btrfs_item_size(right, item);
1744 btrfs_set_item_offset(right, item, push_space);
1747 left_nritems -= push_items;
1748 btrfs_set_header_nritems(left, left_nritems);
1751 btrfs_mark_buffer_dirty(left);
1752 btrfs_mark_buffer_dirty(right);
1754 btrfs_item_key(right, &disk_key, 0);
1755 btrfs_set_node_key(upper, &disk_key, slot + 1);
1756 btrfs_mark_buffer_dirty(upper);
1758 /* then fixup the leaf pointer in the path */
1759 if (path->slots[0] >= left_nritems) {
1760 path->slots[0] -= left_nritems;
1761 free_extent_buffer(path->nodes[0]);
1762 path->nodes[0] = right;
1763 path->slots[1] += 1;
1765 free_extent_buffer(right);
1770 * push some data in the path leaf to the left, trying to free up at
1771 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1773 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1774 *root, struct btrfs_path *path, int data_size,
1777 struct btrfs_disk_key disk_key;
1778 struct extent_buffer *right = path->nodes[0];
1779 struct extent_buffer *left;
1785 struct btrfs_item *item;
1786 u32 old_left_nritems;
1791 u32 old_left_item_size;
1793 slot = path->slots[1];
1796 if (!path->nodes[1])
1799 right_nritems = btrfs_header_nritems(right);
1800 if (right_nritems == 0) {
1804 left = read_node_slot(root, path->nodes[1], slot - 1);
1805 free_space = btrfs_leaf_free_space(root, left);
1806 if (free_space < data_size) {
1807 free_extent_buffer(left);
1811 /* cow and double check */
1812 ret = btrfs_cow_block(trans, root, left,
1813 path->nodes[1], slot - 1, &left);
1815 /* we hit -ENOSPC, but it isn't fatal here */
1816 free_extent_buffer(left);
1820 free_space = btrfs_leaf_free_space(root, left);
1821 if (free_space < data_size) {
1822 free_extent_buffer(left);
1829 nr = right_nritems - 1;
1831 for (i = 0; i < nr; i++) {
1832 item = btrfs_item_nr(i);
1834 if (path->slots[0] == i)
1835 push_space += data_size + sizeof(*item);
1837 this_item_size = btrfs_item_size(right, item);
1838 if (this_item_size + sizeof(*item) + push_space > free_space)
1842 push_space += this_item_size + sizeof(*item);
1845 if (push_items == 0) {
1846 free_extent_buffer(left);
1849 if (!empty && push_items == btrfs_header_nritems(right))
1852 /* push data from right to left */
1853 copy_extent_buffer(left, right,
1854 btrfs_item_nr_offset(btrfs_header_nritems(left)),
1855 btrfs_item_nr_offset(0),
1856 push_items * sizeof(struct btrfs_item));
1858 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1859 btrfs_item_offset_nr(right, push_items -1);
1861 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1862 leaf_data_end(root, left) - push_space,
1863 btrfs_leaf_data(right) +
1864 btrfs_item_offset_nr(right, push_items - 1),
1866 old_left_nritems = btrfs_header_nritems(left);
1867 BUG_ON(old_left_nritems == 0);
1869 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1870 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1873 item = btrfs_item_nr(i);
1874 ioff = btrfs_item_offset(left, item);
1875 btrfs_set_item_offset(left, item,
1876 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
1878 btrfs_set_header_nritems(left, old_left_nritems + push_items);
1880 /* fixup right node */
1881 if (push_items > right_nritems) {
1882 printk("push items %d nr %u\n", push_items, right_nritems);
1886 if (push_items < right_nritems) {
1887 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1888 leaf_data_end(root, right);
1889 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1890 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1891 btrfs_leaf_data(right) +
1892 leaf_data_end(root, right), push_space);
1894 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1895 btrfs_item_nr_offset(push_items),
1896 (btrfs_header_nritems(right) - push_items) *
1897 sizeof(struct btrfs_item));
1899 right_nritems -= push_items;
1900 btrfs_set_header_nritems(right, right_nritems);
1901 push_space = BTRFS_LEAF_DATA_SIZE(root);
1902 for (i = 0; i < right_nritems; i++) {
1903 item = btrfs_item_nr(i);
1904 push_space = push_space - btrfs_item_size(right, item);
1905 btrfs_set_item_offset(right, item, push_space);
1908 btrfs_mark_buffer_dirty(left);
1910 btrfs_mark_buffer_dirty(right);
1912 btrfs_item_key(right, &disk_key, 0);
1913 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1915 /* then fixup the leaf pointer in the path */
1916 if (path->slots[0] < push_items) {
1917 path->slots[0] += old_left_nritems;
1918 free_extent_buffer(path->nodes[0]);
1919 path->nodes[0] = left;
1920 path->slots[1] -= 1;
1922 free_extent_buffer(left);
1923 path->slots[0] -= push_items;
1925 BUG_ON(path->slots[0] < 0);
1930 * split the path's leaf in two, making sure there is at least data_size
1931 * available for the resulting leaf level of the path.
1933 * returns 0 if all went well and < 0 on failure.
1935 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
1936 struct btrfs_root *root,
1937 struct btrfs_path *path,
1938 struct extent_buffer *l,
1939 struct extent_buffer *right,
1940 int slot, int mid, int nritems)
1947 struct btrfs_disk_key disk_key;
1949 nritems = nritems - mid;
1950 btrfs_set_header_nritems(right, nritems);
1951 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
1953 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1954 btrfs_item_nr_offset(mid),
1955 nritems * sizeof(struct btrfs_item));
1957 copy_extent_buffer(right, l,
1958 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1959 data_copy_size, btrfs_leaf_data(l) +
1960 leaf_data_end(root, l), data_copy_size);
1962 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1963 btrfs_item_end_nr(l, mid);
1965 for (i = 0; i < nritems; i++) {
1966 struct btrfs_item *item = btrfs_item_nr(i);
1967 u32 ioff = btrfs_item_offset(right, item);
1968 btrfs_set_item_offset(right, item, ioff + rt_data_off);
1971 btrfs_set_header_nritems(l, mid);
1973 btrfs_item_key(right, &disk_key, 0);
1974 wret = insert_ptr(trans, root, path, &disk_key, right->start,
1975 path->slots[1] + 1, 1);
1979 btrfs_mark_buffer_dirty(right);
1980 btrfs_mark_buffer_dirty(l);
1981 BUG_ON(path->slots[0] != slot);
1984 free_extent_buffer(path->nodes[0]);
1985 path->nodes[0] = right;
1986 path->slots[0] -= mid;
1987 path->slots[1] += 1;
1989 free_extent_buffer(right);
1992 BUG_ON(path->slots[0] < 0);
1998 * split the path's leaf in two, making sure there is at least data_size
1999 * available for the resulting leaf level of the path.
2001 * returns 0 if all went well and < 0 on failure.
2003 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2004 struct btrfs_root *root,
2005 struct btrfs_key *ins_key,
2006 struct btrfs_path *path, int data_size,
2009 struct btrfs_disk_key disk_key;
2010 struct extent_buffer *l;
2014 struct extent_buffer *right;
2018 int num_doubles = 0;
2021 slot = path->slots[0];
2022 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2023 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2026 /* first try to make some room by pushing left and right */
2027 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2028 wret = push_leaf_right(trans, root, path, data_size, 0);
2032 wret = push_leaf_left(trans, root, path, data_size, 0);
2038 /* did the pushes work? */
2039 if (btrfs_leaf_free_space(root, l) >= data_size)
2043 if (!path->nodes[1]) {
2044 ret = insert_new_root(trans, root, path, 1);
2051 slot = path->slots[0];
2052 nritems = btrfs_header_nritems(l);
2053 mid = (nritems + 1) / 2;
2057 leaf_space_used(l, mid, nritems - mid) + data_size >
2058 BTRFS_LEAF_DATA_SIZE(root)) {
2059 if (slot >= nritems) {
2063 if (mid != nritems &&
2064 leaf_space_used(l, mid, nritems - mid) +
2065 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2071 if (leaf_space_used(l, 0, mid) + data_size >
2072 BTRFS_LEAF_DATA_SIZE(root)) {
2073 if (!extend && data_size && slot == 0) {
2075 } else if ((extend || !data_size) && slot == 0) {
2079 if (mid != nritems &&
2080 leaf_space_used(l, mid, nritems - mid) +
2081 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2089 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2091 btrfs_item_key(l, &disk_key, mid);
2093 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2094 root->root_key.objectid,
2095 &disk_key, 0, l->start, 0);
2096 if (IS_ERR(right)) {
2098 return PTR_ERR(right);
2101 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2102 btrfs_set_header_bytenr(right, right->start);
2103 btrfs_set_header_generation(right, trans->transid);
2104 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2105 btrfs_set_header_owner(right, root->root_key.objectid);
2106 btrfs_set_header_level(right, 0);
2107 write_extent_buffer(right, root->fs_info->fsid,
2108 btrfs_header_fsid(), BTRFS_FSID_SIZE);
2110 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2111 btrfs_header_chunk_tree_uuid(right),
2116 btrfs_set_header_nritems(right, 0);
2117 wret = insert_ptr(trans, root, path,
2118 &disk_key, right->start,
2119 path->slots[1] + 1, 1);
2123 free_extent_buffer(path->nodes[0]);
2124 path->nodes[0] = right;
2126 path->slots[1] += 1;
2128 btrfs_set_header_nritems(right, 0);
2129 wret = insert_ptr(trans, root, path,
2135 free_extent_buffer(path->nodes[0]);
2136 path->nodes[0] = right;
2138 if (path->slots[1] == 0) {
2139 btrfs_fixup_low_keys(root, path,
2143 btrfs_mark_buffer_dirty(right);
2147 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2151 BUG_ON(num_doubles != 0);
2160 * This function splits a single item into two items,
2161 * giving 'new_key' to the new item and splitting the
2162 * old one at split_offset (from the start of the item).
2164 * The path may be released by this operation. After
2165 * the split, the path is pointing to the old item. The
2166 * new item is going to be in the same node as the old one.
2168 * Note, the item being split must be smaller enough to live alone on
2169 * a tree block with room for one extra struct btrfs_item
2171 * This allows us to split the item in place, keeping a lock on the
2172 * leaf the entire time.
2174 int btrfs_split_item(struct btrfs_trans_handle *trans,
2175 struct btrfs_root *root,
2176 struct btrfs_path *path,
2177 struct btrfs_key *new_key,
2178 unsigned long split_offset)
2181 struct extent_buffer *leaf;
2182 struct btrfs_key orig_key;
2183 struct btrfs_item *item;
2184 struct btrfs_item *new_item;
2189 struct btrfs_disk_key disk_key;
2192 leaf = path->nodes[0];
2193 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2194 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2197 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2198 btrfs_release_path(path);
2200 path->search_for_split = 1;
2202 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2203 path->search_for_split = 0;
2205 /* if our item isn't there or got smaller, return now */
2206 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2211 ret = split_leaf(trans, root, &orig_key, path, 0, 0);
2214 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2215 leaf = path->nodes[0];
2218 item = btrfs_item_nr(path->slots[0]);
2219 orig_offset = btrfs_item_offset(leaf, item);
2220 item_size = btrfs_item_size(leaf, item);
2223 buf = kmalloc(item_size, GFP_NOFS);
2224 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2225 path->slots[0]), item_size);
2226 slot = path->slots[0] + 1;
2227 leaf = path->nodes[0];
2229 nritems = btrfs_header_nritems(leaf);
2231 if (slot != nritems) {
2232 /* shift the items */
2233 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2234 btrfs_item_nr_offset(slot),
2235 (nritems - slot) * sizeof(struct btrfs_item));
2239 btrfs_cpu_key_to_disk(&disk_key, new_key);
2240 btrfs_set_item_key(leaf, &disk_key, slot);
2242 new_item = btrfs_item_nr(slot);
2244 btrfs_set_item_offset(leaf, new_item, orig_offset);
2245 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2247 btrfs_set_item_offset(leaf, item,
2248 orig_offset + item_size - split_offset);
2249 btrfs_set_item_size(leaf, item, split_offset);
2251 btrfs_set_header_nritems(leaf, nritems + 1);
2253 /* write the data for the start of the original item */
2254 write_extent_buffer(leaf, buf,
2255 btrfs_item_ptr_offset(leaf, path->slots[0]),
2258 /* write the data for the new item */
2259 write_extent_buffer(leaf, buf + split_offset,
2260 btrfs_item_ptr_offset(leaf, slot),
2261 item_size - split_offset);
2262 btrfs_mark_buffer_dirty(leaf);
2265 if (btrfs_leaf_free_space(root, leaf) < 0) {
2266 btrfs_print_leaf(root, leaf);
2273 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2274 struct btrfs_root *root,
2275 struct btrfs_path *path,
2276 u32 new_size, int from_end)
2280 struct extent_buffer *leaf;
2281 struct btrfs_item *item;
2283 unsigned int data_end;
2284 unsigned int old_data_start;
2285 unsigned int old_size;
2286 unsigned int size_diff;
2289 leaf = path->nodes[0];
2290 slot = path->slots[0];
2292 old_size = btrfs_item_size_nr(leaf, slot);
2293 if (old_size == new_size)
2296 nritems = btrfs_header_nritems(leaf);
2297 data_end = leaf_data_end(root, leaf);
2299 old_data_start = btrfs_item_offset_nr(leaf, slot);
2301 size_diff = old_size - new_size;
2304 BUG_ON(slot >= nritems);
2307 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2309 /* first correct the data pointers */
2310 for (i = slot; i < nritems; i++) {
2312 item = btrfs_item_nr(i);
2313 ioff = btrfs_item_offset(leaf, item);
2314 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2317 /* shift the data */
2319 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2320 data_end + size_diff, btrfs_leaf_data(leaf) +
2321 data_end, old_data_start + new_size - data_end);
2323 struct btrfs_disk_key disk_key;
2326 btrfs_item_key(leaf, &disk_key, slot);
2328 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2330 struct btrfs_file_extent_item *fi;
2332 fi = btrfs_item_ptr(leaf, slot,
2333 struct btrfs_file_extent_item);
2334 fi = (struct btrfs_file_extent_item *)(
2335 (unsigned long)fi - size_diff);
2337 if (btrfs_file_extent_type(leaf, fi) ==
2338 BTRFS_FILE_EXTENT_INLINE) {
2339 ptr = btrfs_item_ptr_offset(leaf, slot);
2340 memmove_extent_buffer(leaf, ptr,
2342 offsetof(struct btrfs_file_extent_item,
2347 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2348 data_end + size_diff, btrfs_leaf_data(leaf) +
2349 data_end, old_data_start - data_end);
2351 offset = btrfs_disk_key_offset(&disk_key);
2352 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2353 btrfs_set_item_key(leaf, &disk_key, slot);
2355 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2358 item = btrfs_item_nr(slot);
2359 btrfs_set_item_size(leaf, item, new_size);
2360 btrfs_mark_buffer_dirty(leaf);
2363 if (btrfs_leaf_free_space(root, leaf) < 0) {
2364 btrfs_print_leaf(root, leaf);
2370 int btrfs_extend_item(struct btrfs_trans_handle *trans,
2371 struct btrfs_root *root, struct btrfs_path *path,
2376 struct extent_buffer *leaf;
2377 struct btrfs_item *item;
2379 unsigned int data_end;
2380 unsigned int old_data;
2381 unsigned int old_size;
2384 leaf = path->nodes[0];
2386 nritems = btrfs_header_nritems(leaf);
2387 data_end = leaf_data_end(root, leaf);
2389 if (btrfs_leaf_free_space(root, leaf) < data_size) {
2390 btrfs_print_leaf(root, leaf);
2393 slot = path->slots[0];
2394 old_data = btrfs_item_end_nr(leaf, slot);
2397 if (slot >= nritems) {
2398 btrfs_print_leaf(root, leaf);
2399 printk("slot %d too large, nritems %d\n", slot, nritems);
2404 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2406 /* first correct the data pointers */
2407 for (i = slot; i < nritems; i++) {
2409 item = btrfs_item_nr(i);
2410 ioff = btrfs_item_offset(leaf, item);
2411 btrfs_set_item_offset(leaf, item, ioff - data_size);
2414 /* shift the data */
2415 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2416 data_end - data_size, btrfs_leaf_data(leaf) +
2417 data_end, old_data - data_end);
2419 data_end = old_data;
2420 old_size = btrfs_item_size_nr(leaf, slot);
2421 item = btrfs_item_nr(slot);
2422 btrfs_set_item_size(leaf, item, old_size + data_size);
2423 btrfs_mark_buffer_dirty(leaf);
2426 if (btrfs_leaf_free_space(root, leaf) < 0) {
2427 btrfs_print_leaf(root, leaf);
2434 * Given a key and some data, insert an item into the tree.
2435 * This does all the path init required, making room in the tree if needed.
2437 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2438 struct btrfs_root *root,
2439 struct btrfs_path *path,
2440 struct btrfs_key *cpu_key, u32 *data_size,
2443 struct extent_buffer *leaf;
2444 struct btrfs_item *item;
2451 unsigned int data_end;
2452 struct btrfs_disk_key disk_key;
2454 for (i = 0; i < nr; i++) {
2455 total_data += data_size[i];
2458 /* create a root if there isn't one */
2462 total_size = total_data + nr * sizeof(struct btrfs_item);
2463 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2470 leaf = path->nodes[0];
2472 nritems = btrfs_header_nritems(leaf);
2473 data_end = leaf_data_end(root, leaf);
2475 if (btrfs_leaf_free_space(root, leaf) < total_size) {
2476 btrfs_print_leaf(root, leaf);
2477 printk("not enough freespace need %u have %d\n",
2478 total_size, btrfs_leaf_free_space(root, leaf));
2482 slot = path->slots[0];
2485 if (slot != nritems) {
2486 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2488 if (old_data < data_end) {
2489 btrfs_print_leaf(root, leaf);
2490 printk("slot %d old_data %d data_end %d\n",
2491 slot, old_data, data_end);
2495 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2497 /* first correct the data pointers */
2498 for (i = slot; i < nritems; i++) {
2501 item = btrfs_item_nr(i);
2502 ioff = btrfs_item_offset(leaf, item);
2503 btrfs_set_item_offset(leaf, item, ioff - total_data);
2506 /* shift the items */
2507 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2508 btrfs_item_nr_offset(slot),
2509 (nritems - slot) * sizeof(struct btrfs_item));
2511 /* shift the data */
2512 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2513 data_end - total_data, btrfs_leaf_data(leaf) +
2514 data_end, old_data - data_end);
2515 data_end = old_data;
2518 /* setup the item for the new data */
2519 for (i = 0; i < nr; i++) {
2520 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2521 btrfs_set_item_key(leaf, &disk_key, slot + i);
2522 item = btrfs_item_nr(slot + i);
2523 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2524 data_end -= data_size[i];
2525 btrfs_set_item_size(leaf, item, data_size[i]);
2527 btrfs_set_header_nritems(leaf, nritems + nr);
2528 btrfs_mark_buffer_dirty(leaf);
2532 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2533 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2536 if (btrfs_leaf_free_space(root, leaf) < 0) {
2537 btrfs_print_leaf(root, leaf);
2546 * Given a key and some data, insert an item into the tree.
2547 * This does all the path init required, making room in the tree if needed.
2549 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2550 *root, struct btrfs_key *cpu_key, void *data, u32
2554 struct btrfs_path *path;
2555 struct extent_buffer *leaf;
2558 path = btrfs_alloc_path();
2560 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2562 leaf = path->nodes[0];
2563 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2564 write_extent_buffer(leaf, data, ptr, data_size);
2565 btrfs_mark_buffer_dirty(leaf);
2567 btrfs_free_path(path);
2572 * delete the pointer from a given node.
2574 * If the delete empties a node, the node is removed from the tree,
2575 * continuing all the way the root if required. The root is converted into
2576 * a leaf if all the nodes are emptied.
2578 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2579 struct btrfs_path *path, int level, int slot)
2581 struct extent_buffer *parent = path->nodes[level];
2585 nritems = btrfs_header_nritems(parent);
2586 if (slot != nritems -1) {
2587 memmove_extent_buffer(parent,
2588 btrfs_node_key_ptr_offset(slot),
2589 btrfs_node_key_ptr_offset(slot + 1),
2590 sizeof(struct btrfs_key_ptr) *
2591 (nritems - slot - 1));
2594 btrfs_set_header_nritems(parent, nritems);
2595 if (nritems == 0 && parent == root->node) {
2596 BUG_ON(btrfs_header_level(root->node) != 1);
2597 /* just turn the root into a leaf and break */
2598 btrfs_set_header_level(root->node, 0);
2599 } else if (slot == 0) {
2600 struct btrfs_disk_key disk_key;
2602 btrfs_node_key(parent, &disk_key, 0);
2603 btrfs_fixup_low_keys(root, path, &disk_key, level + 1);
2605 btrfs_mark_buffer_dirty(parent);
2610 * a helper function to delete the leaf pointed to by path->slots[1] and
2613 * This deletes the pointer in path->nodes[1] and frees the leaf
2614 * block extent. zero is returned if it all worked out, < 0 otherwise.
2616 * The path must have already been setup for deleting the leaf, including
2617 * all the proper balancing. path->nodes[1] must be locked.
2619 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
2620 struct btrfs_root *root,
2621 struct btrfs_path *path,
2622 struct extent_buffer *leaf)
2626 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
2627 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
2631 ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
2632 0, root->root_key.objectid, 0, 0);
2637 * delete the item at the leaf level in path. If that empties
2638 * the leaf, remove it from the tree
2640 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2641 struct btrfs_path *path, int slot, int nr)
2643 struct extent_buffer *leaf;
2644 struct btrfs_item *item;
2652 leaf = path->nodes[0];
2653 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2655 for (i = 0; i < nr; i++)
2656 dsize += btrfs_item_size_nr(leaf, slot + i);
2658 nritems = btrfs_header_nritems(leaf);
2660 if (slot + nr != nritems) {
2661 int data_end = leaf_data_end(root, leaf);
2663 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2665 btrfs_leaf_data(leaf) + data_end,
2666 last_off - data_end);
2668 for (i = slot + nr; i < nritems; i++) {
2671 item = btrfs_item_nr(i);
2672 ioff = btrfs_item_offset(leaf, item);
2673 btrfs_set_item_offset(leaf, item, ioff + dsize);
2676 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2677 btrfs_item_nr_offset(slot + nr),
2678 sizeof(struct btrfs_item) *
2679 (nritems - slot - nr));
2681 btrfs_set_header_nritems(leaf, nritems - nr);
2684 /* delete the leaf if we've emptied it */
2686 if (leaf == root->node) {
2687 btrfs_set_header_level(leaf, 0);
2689 clean_tree_block(trans, root, leaf);
2690 wait_on_tree_block_writeback(root, leaf);
2692 wret = btrfs_del_leaf(trans, root, path, leaf);
2698 int used = leaf_space_used(leaf, 0, nritems);
2700 struct btrfs_disk_key disk_key;
2702 btrfs_item_key(leaf, &disk_key, 0);
2703 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2706 /* delete the leaf if it is mostly empty */
2707 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2708 /* push_leaf_left fixes the path.
2709 * make sure the path still points to our leaf
2710 * for possible call to del_ptr below
2712 slot = path->slots[1];
2713 extent_buffer_get(leaf);
2715 wret = push_leaf_left(trans, root, path, 1, 1);
2716 if (wret < 0 && wret != -ENOSPC)
2719 if (path->nodes[0] == leaf &&
2720 btrfs_header_nritems(leaf)) {
2721 wret = push_leaf_right(trans, root, path, 1, 1);
2722 if (wret < 0 && wret != -ENOSPC)
2726 if (btrfs_header_nritems(leaf) == 0) {
2727 clean_tree_block(trans, root, leaf);
2728 wait_on_tree_block_writeback(root, leaf);
2730 path->slots[1] = slot;
2731 ret = btrfs_del_leaf(trans, root, path, leaf);
2733 free_extent_buffer(leaf);
2736 btrfs_mark_buffer_dirty(leaf);
2737 free_extent_buffer(leaf);
2740 btrfs_mark_buffer_dirty(leaf);
2747 * walk up the tree as far as required to find the previous leaf.
2748 * returns 0 if it found something or 1 if there are no lesser leaves.
2749 * returns < 0 on io errors.
2751 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2755 struct extent_buffer *c;
2756 struct extent_buffer *next = NULL;
2758 while(level < BTRFS_MAX_LEVEL) {
2759 if (!path->nodes[level])
2762 slot = path->slots[level];
2763 c = path->nodes[level];
2766 if (level == BTRFS_MAX_LEVEL)
2772 next = read_node_slot(root, c, slot);
2775 path->slots[level] = slot;
2778 c = path->nodes[level];
2779 free_extent_buffer(c);
2780 slot = btrfs_header_nritems(next);
2783 path->nodes[level] = next;
2784 path->slots[level] = slot;
2787 next = read_node_slot(root, next, slot);
2793 * walk up the tree as far as required to find the next leaf.
2794 * returns 0 if it found something or 1 if there are no greater leaves.
2795 * returns < 0 on io errors.
2797 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2801 struct extent_buffer *c;
2802 struct extent_buffer *next = NULL;
2804 while(level < BTRFS_MAX_LEVEL) {
2805 if (!path->nodes[level])
2808 slot = path->slots[level] + 1;
2809 c = path->nodes[level];
2810 if (slot >= btrfs_header_nritems(c)) {
2812 if (level == BTRFS_MAX_LEVEL)
2818 reada_for_search(root, path, level, slot, 0);
2820 next = read_node_slot(root, c, slot);
2825 path->slots[level] = slot;
2828 c = path->nodes[level];
2829 free_extent_buffer(c);
2830 path->nodes[level] = next;
2831 path->slots[level] = 0;
2835 reada_for_search(root, path, level, 0, 0);
2836 next = read_node_slot(root, next, 0);
2843 int btrfs_previous_item(struct btrfs_root *root,
2844 struct btrfs_path *path, u64 min_objectid,
2847 struct btrfs_key found_key;
2848 struct extent_buffer *leaf;
2852 if (path->slots[0] == 0) {
2853 ret = btrfs_prev_leaf(root, path);
2859 leaf = path->nodes[0];
2860 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2861 if (found_key.type == type)
2868 * search in extent tree to find a previous Metadata/Data extent item with
2871 * returns 0 if something is found, 1 if nothing was found and < 0 on error
2873 int btrfs_previous_extent_item(struct btrfs_root *root,
2874 struct btrfs_path *path, u64 min_objectid)
2876 struct btrfs_key found_key;
2877 struct extent_buffer *leaf;
2882 if (path->slots[0] == 0) {
2883 ret = btrfs_prev_leaf(root, path);
2889 leaf = path->nodes[0];
2890 nritems = btrfs_header_nritems(leaf);
2893 if (path->slots[0] == nritems)
2896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2897 if (found_key.objectid < min_objectid)
2899 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2900 found_key.type == BTRFS_METADATA_ITEM_KEY)
2902 if (found_key.objectid == min_objectid &&
2903 found_key.type < BTRFS_EXTENT_ITEM_KEY)