Fixup the code to merge during path walks
[platform/upstream/btrfs-progs.git] / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10                       int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12                       int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14                           struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16                               struct tree_buffer *dst_buf,
17                               struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19                    int slot);
20
21 inline void init_path(struct ctree_path *p)
22 {
23         memset(p, 0, sizeof(*p));
24 }
25
26 void release_path(struct ctree_root *root, struct ctree_path *p)
27 {
28         int i;
29         for (i = 0; i < MAX_LEVEL; i++) {
30                 if (!p->nodes[i])
31                         break;
32                 tree_block_release(root, p->nodes[i]);
33         }
34         memset(p, 0, sizeof(*p));
35 }
36
37 /*
38  * The leaf data grows from end-to-front in the node.
39  * this returns the address of the start of the last item,
40  * which is the stop of the leaf data stack
41  */
42 static inline unsigned int leaf_data_end(struct leaf *leaf)
43 {
44         unsigned int nr = leaf->header.nritems;
45         if (nr == 0)
46                 return sizeof(leaf->data);
47         return leaf->items[nr-1].offset;
48 }
49
50 /*
51  * The space between the end of the leaf items and
52  * the start of the leaf data.  IOW, how much room
53  * the leaf has left for both items and data
54  */
55 int leaf_free_space(struct leaf *leaf)
56 {
57         int data_end = leaf_data_end(leaf);
58         int nritems = leaf->header.nritems;
59         char *items_end = (char *)(leaf->items + nritems + 1);
60         return (char *)(leaf->data + data_end) - (char *)items_end;
61 }
62
63 /*
64  * compare two keys in a memcmp fashion
65  */
66 int comp_keys(struct key *k1, struct key *k2)
67 {
68         if (k1->objectid > k2->objectid)
69                 return 1;
70         if (k1->objectid < k2->objectid)
71                 return -1;
72         if (k1->flags > k2->flags)
73                 return 1;
74         if (k1->flags < k2->flags)
75                 return -1;
76         if (k1->offset > k2->offset)
77                 return 1;
78         if (k1->offset < k2->offset)
79                 return -1;
80         return 0;
81 }
82
83 int check_node(struct ctree_path *path, int level)
84 {
85         int i;
86         struct node *parent = NULL;
87         struct node *node = &path->nodes[level]->node;
88         int parent_slot;
89
90         if (path->nodes[level + 1])
91                 parent = &path->nodes[level + 1]->node;
92         parent_slot = path->slots[level + 1];
93         if (parent && node->header.nritems > 0) {
94                 struct key *parent_key;
95                 parent_key = &parent->keys[parent_slot];
96                 BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
97                 BUG_ON(parent->blockptrs[parent_slot] != node->header.blocknr);
98         }
99         BUG_ON(node->header.nritems > NODEPTRS_PER_BLOCK);
100         for (i = 0; i < node->header.nritems - 2; i++) {
101                 BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
102         }
103         return 0;
104 }
105
106 int check_leaf(struct ctree_path *path, int level)
107 {
108         int i;
109         struct leaf *leaf = &path->nodes[level]->leaf;
110         struct node *parent = NULL;
111         int parent_slot;
112
113         if (path->nodes[level + 1])
114                 parent = &path->nodes[level + 1]->node;
115         parent_slot = path->slots[level + 1];
116         if (parent && leaf->header.nritems > 0) {
117                 struct key *parent_key;
118                 parent_key = &parent->keys[parent_slot];
119                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
120                        sizeof(struct key)));
121                 BUG_ON(parent->blockptrs[parent_slot] != leaf->header.blocknr);
122         }
123         for (i = 0; i < leaf->header.nritems - 2; i++) {
124                 BUG_ON(comp_keys(&leaf->items[i].key,
125                                  &leaf->items[i+1].key) >= 0);
126                 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
127                     leaf->items[i + 1].size);
128                 if (i == 0) {
129                         BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
130                                 LEAF_DATA_SIZE);
131                 }
132         }
133         BUG_ON(leaf_free_space(leaf) < 0);
134         return 0;
135 }
136
137 int check_block(struct ctree_path *path, int level)
138 {
139         if (level == 0)
140                 return check_leaf(path, level);
141         return check_node(path, level);
142 }
143
144 /*
145  * search for key in the array p.  items p are item_size apart
146  * and there are 'max' items in p
147  * the slot in the array is returned via slot, and it points to
148  * the place where you would insert key if it is not found in
149  * the array.
150  *
151  * slot may point to max if the key is bigger than all of the keys
152  */
153 int generic_bin_search(char *p, int item_size, struct key *key,
154                        int max, int *slot)
155 {
156         int low = 0;
157         int high = max;
158         int mid;
159         int ret;
160         struct key *tmp;
161
162         while(low < high) {
163                 mid = (low + high) / 2;
164                 tmp = (struct key *)(p + mid * item_size);
165                 ret = comp_keys(tmp, key);
166
167                 if (ret < 0)
168                         low = mid + 1;
169                 else if (ret > 0)
170                         high = mid;
171                 else {
172                         *slot = mid;
173                         return 0;
174                 }
175         }
176         *slot = low;
177         return 1;
178 }
179
180 /*
181  * simple bin_search frontend that does the right thing for
182  * leaves vs nodes
183  */
184 int bin_search(struct node *c, struct key *key, int *slot)
185 {
186         if (is_leaf(c->header.flags)) {
187                 struct leaf *l = (struct leaf *)c;
188                 return generic_bin_search((void *)l->items, sizeof(struct item),
189                                           key, c->header.nritems, slot);
190         } else {
191                 return generic_bin_search((void *)c->keys, sizeof(struct key),
192                                           key, c->header.nritems, slot);
193         }
194         return -1;
195 }
196
197 struct tree_buffer *read_node_slot(struct ctree_root *root,
198                                    struct tree_buffer *parent_buf,
199                                    int slot)
200 {
201         struct node *node = &parent_buf->node;
202         if (slot < 0)
203                 return NULL;
204         if (slot >= node->header.nritems)
205                 return NULL;
206         return read_tree_block(root, node->blockptrs[slot]);
207 }
208
209 static int balance_level(struct ctree_root *root, struct ctree_path *path,
210                         int level)
211 {
212         struct tree_buffer *right_buf;
213         struct tree_buffer *mid_buf;
214         struct tree_buffer *left_buf;
215         struct tree_buffer *parent_buf = NULL;
216         struct node *right = NULL;
217         struct node *mid;
218         struct node *left = NULL;
219         struct node *parent = NULL;
220         int ret = 0;
221         int wret;
222         int pslot;
223         int orig_slot = path->slots[level];
224         u64 orig_ptr;
225
226         if (level == 0)
227                 return 0;
228
229         mid_buf = path->nodes[level];
230         mid = &mid_buf->node;
231         orig_ptr = mid->blockptrs[orig_slot];
232
233         if (level < MAX_LEVEL - 1)
234                 parent_buf = path->nodes[level + 1];
235         pslot = path->slots[level + 1];
236
237         if (!parent_buf) {
238                 struct tree_buffer *child;
239                 u64 blocknr = mid_buf->blocknr;
240
241                 if (mid->header.nritems != 1)
242                         return 0;
243
244                 /* promote the child to a root */
245                 child = read_node_slot(root, mid_buf, 0);
246                 BUG_ON(!child);
247                 root->node = child;
248                 path->nodes[level] = NULL;
249                 /* once for the path */
250                 tree_block_release(root, mid_buf);
251                 /* once for the root ptr */
252                 tree_block_release(root, mid_buf);
253                 return free_extent(root, blocknr, 1);
254         }
255         parent = &parent_buf->node;
256
257         if (mid->header.nritems > NODEPTRS_PER_BLOCK / 4)
258                 return 0;
259
260         left_buf = read_node_slot(root, parent_buf, pslot - 1);
261         right_buf = read_node_slot(root, parent_buf, pslot + 1);
262
263         /* first, try to make some room in the middle buffer */
264         if (left_buf) {
265                 left = &left_buf->node;
266                 orig_slot += left->header.nritems;
267                 wret = push_node_left(root, left_buf, mid_buf);
268                 if (wret < 0)
269                         ret = wret;
270         }
271
272         /*
273          * then try to empty the right most buffer into the middle
274          */
275         if (right_buf) {
276                 right = &right_buf->node;
277                 wret = push_node_left(root, mid_buf, right_buf);
278                 if (wret < 0)
279                         ret = wret;
280                 if (right->header.nritems == 0) {
281                         u64 blocknr = right_buf->blocknr;
282                         tree_block_release(root, right_buf);
283                         right_buf = NULL;
284                         right = NULL;
285                         wret = del_ptr(root, path, level + 1, pslot + 1);
286                         if (wret)
287                                 ret = wret;
288                         wret = free_extent(root, blocknr, 1);
289                         if (wret)
290                                 ret = wret;
291                 } else {
292                         memcpy(parent->keys + pslot + 1, right->keys,
293                                 sizeof(struct key));
294                         wret = write_tree_block(root, parent_buf);
295                         if (wret)
296                                 ret = wret;
297                 }
298         }
299         if (mid->header.nritems == 1) {
300                 /*
301                  * we're not allowed to leave a node with one item in the
302                  * tree during a delete.  A deletion from lower in the tree
303                  * could try to delete the only pointer in this node.
304                  * So, pull some keys from the left.
305                  * There has to be a left pointer at this point because
306                  * otherwise we would have pulled some pointers from the
307                  * right
308                  */
309                 BUG_ON(!left_buf);
310                 wret = balance_node_right(root, mid_buf, left_buf);
311                 if (wret < 0)
312                         ret = wret;
313                 BUG_ON(wret == 1);
314         }
315         if (mid->header.nritems == 0) {
316                 /* we've managed to empty the middle node, drop it */
317                 u64 blocknr = mid_buf->blocknr;
318                 tree_block_release(root, mid_buf);
319                 mid_buf = NULL;
320                 mid = NULL;
321                 wret = del_ptr(root, path, level + 1, pslot);
322                 if (wret)
323                         ret = wret;
324                 wret = free_extent(root, blocknr, 1);
325                 if (wret)
326                         ret = wret;
327         } else {
328                 /* update the parent key to reflect our changes */
329                 memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
330                 wret = write_tree_block(root, parent_buf);
331                 if (wret)
332                         ret = wret;
333         }
334
335         /* update the path */
336         if (left_buf) {
337                 if (left->header.nritems > orig_slot) {
338                         left_buf->count++; // released below
339                         path->nodes[level] = left_buf;
340                         path->slots[level + 1] -= 1;
341                         path->slots[level] = orig_slot;
342                         if (mid_buf)
343                                 tree_block_release(root, mid_buf);
344                 } else {
345                         orig_slot -= left->header.nritems;
346                         path->slots[level] = orig_slot;
347                 }
348         }
349         /* double check we haven't messed things up */
350         check_block(path, level);
351         if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
352                 BUG();
353
354         if (right_buf)
355                 tree_block_release(root, right_buf);
356         if (left_buf)
357                 tree_block_release(root, left_buf);
358         return ret;
359 }
360
361 /*
362  * look for key in the tree.  path is filled in with nodes along the way
363  * if key is found, we return zero and you can find the item in the leaf
364  * level of the path (level 0)
365  *
366  * If the key isn't found, the path points to the slot where it should
367  * be inserted, and 1 is returned.  If there are other errors during the
368  * search a negative error number is returned.
369  *
370  * if ins_len > 0, nodes and leaves will be split as we walk down the
371  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
372  * possible)
373  */
374 int search_slot(struct ctree_root *root, struct key *key,
375                 struct ctree_path *p, int ins_len)
376 {
377         struct tree_buffer *b;
378         struct node *c;
379         int slot;
380         int ret;
381         int level;
382
383 again:
384         b = root->node;
385         b->count++;
386         while (b) {
387                 c = &b->node;
388                 level = node_level(c->header.flags);
389                 p->nodes[level] = b;
390                 ret = check_block(p, level);
391                 if (ret)
392                         return -1;
393                 ret = bin_search(c, key, &slot);
394                 if (!is_leaf(c->header.flags)) {
395                         if (ret && slot > 0)
396                                 slot -= 1;
397                         p->slots[level] = slot;
398                         if (ins_len > 0 &&
399                             c->header.nritems == NODEPTRS_PER_BLOCK) {
400                                 int sret = split_node(root, p, level);
401                                 BUG_ON(sret > 0);
402                                 if (sret)
403                                         return sret;
404                                 b = p->nodes[level];
405                                 c = &b->node;
406                                 slot = p->slots[level];
407                         } else if (ins_len < 0) {
408                                 int sret = balance_level(root, p, level);
409                                 if (sret)
410                                         return sret;
411                                 b = p->nodes[level];
412                                 if (!b)
413                                         goto again;
414                                 c = &b->node;
415                                 slot = p->slots[level];
416                                 BUG_ON(c->header.nritems == 1);
417                         }
418                         b = read_tree_block(root, c->blockptrs[slot]);
419                 } else {
420                         struct leaf *l = (struct leaf *)c;
421                         p->slots[level] = slot;
422                         if (ins_len > 0 && leaf_free_space(l) <
423                             sizeof(struct item) + ins_len) {
424                                 int sret = split_leaf(root, p, ins_len);
425                                 BUG_ON(sret > 0);
426                                 if (sret)
427                                         return sret;
428                         }
429                         BUG_ON(root->node->count == 1);
430                         return ret;
431                 }
432         }
433         BUG_ON(root->node->count == 1);
434         return 1;
435 }
436
437 /*
438  * adjust the pointers going up the tree, starting at level
439  * making sure the right key of each node is points to 'key'.
440  * This is used after shifting pointers to the left, so it stops
441  * fixing up pointers when a given leaf/node is not in slot 0 of the
442  * higher levels
443  *
444  * If this fails to write a tree block, it returns -1, but continues
445  * fixing up the blocks in ram so the tree is consistent.
446  */
447 static int fixup_low_keys(struct ctree_root *root,
448                            struct ctree_path *path, struct key *key,
449                            int level)
450 {
451         int i;
452         int ret = 0;
453         int wret;
454         for (i = level; i < MAX_LEVEL; i++) {
455                 struct node *t;
456                 int tslot = path->slots[i];
457                 if (!path->nodes[i])
458                         break;
459                 t = &path->nodes[i]->node;
460                 memcpy(t->keys + tslot, key, sizeof(*key));
461                 wret = write_tree_block(root, path->nodes[i]);
462                 if (wret)
463                         ret = wret;
464                 if (tslot != 0)
465                         break;
466         }
467         return ret;
468 }
469
470 /*
471  * try to push data from one node into the next node left in the
472  * tree.
473  *
474  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
475  * error, and > 0 if there was no room in the left hand block.
476  */
477 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
478                           struct tree_buffer *src_buf)
479 {
480         struct node *src = &src_buf->node;
481         struct node *dst = &dst_buf->node;
482         int push_items = 0;
483         int src_nritems;
484         int dst_nritems;
485         int ret = 0;
486         int wret;
487
488         src_nritems = src->header.nritems;
489         dst_nritems = dst->header.nritems;
490         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
491         if (push_items <= 0) {
492                 return 1;
493         }
494
495         if (src_nritems < push_items)
496                 push_items = src_nritems;
497
498         memcpy(dst->keys + dst_nritems, src->keys,
499                 push_items * sizeof(struct key));
500         memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
501                 push_items * sizeof(u64));
502         if (push_items < src_nritems) {
503                 memmove(src->keys, src->keys + push_items,
504                         (src_nritems - push_items) * sizeof(struct key));
505                 memmove(src->blockptrs, src->blockptrs + push_items,
506                         (src_nritems - push_items) * sizeof(u64));
507         }
508         src->header.nritems -= push_items;
509         dst->header.nritems += push_items;
510
511         wret = write_tree_block(root, src_buf);
512         if (wret < 0)
513                 ret = wret;
514
515         wret = write_tree_block(root, dst_buf);
516         if (wret < 0)
517                 ret = wret;
518         return ret;
519 }
520
521 /*
522  * try to push data from one node into the next node right in the
523  * tree.
524  *
525  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
526  * error, and > 0 if there was no room in the right hand block.
527  *
528  * this will  only push up to 1/2 the contents of the left node over
529  */
530 static int balance_node_right(struct ctree_root *root,
531                               struct tree_buffer *dst_buf,
532                               struct tree_buffer *src_buf)
533 {
534         struct node *src = &src_buf->node;
535         struct node *dst = &dst_buf->node;
536         int push_items = 0;
537         int max_push;
538         int src_nritems;
539         int dst_nritems;
540         int ret = 0;
541         int wret;
542
543         src_nritems = src->header.nritems;
544         dst_nritems = dst->header.nritems;
545         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
546         if (push_items <= 0) {
547                 return 1;
548         }
549
550         max_push = src_nritems / 2 + 1;
551         /* don't try to empty the node */
552         if (max_push > src_nritems)
553                 return 1;
554         if (max_push < push_items)
555                 push_items = max_push;
556
557         memmove(dst->keys + push_items, dst->keys,
558                 dst_nritems * sizeof(struct key));
559         memmove(dst->blockptrs + push_items, dst->blockptrs,
560                 dst_nritems * sizeof(u64));
561         memcpy(dst->keys, src->keys + src_nritems - push_items,
562                 push_items * sizeof(struct key));
563         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
564                 push_items * sizeof(u64));
565
566         src->header.nritems -= push_items;
567         dst->header.nritems += push_items;
568
569         wret = write_tree_block(root, src_buf);
570         if (wret < 0)
571                 ret = wret;
572
573         wret = write_tree_block(root, dst_buf);
574         if (wret < 0)
575                 ret = wret;
576         return ret;
577 }
578
579 /*
580  * helper function to insert a new root level in the tree.
581  * A new node is allocated, and a single item is inserted to
582  * point to the existing root
583  *
584  * returns zero on success or < 0 on failure.
585  */
586 static int insert_new_root(struct ctree_root *root,
587                            struct ctree_path *path, int level)
588 {
589         struct tree_buffer *t;
590         struct node *lower;
591         struct node *c;
592         struct key *lower_key;
593
594         BUG_ON(path->nodes[level]);
595         BUG_ON(path->nodes[level-1] != root->node);
596
597         t = alloc_free_block(root);
598         c = &t->node;
599         memset(c, 0, sizeof(c));
600         c->header.nritems = 1;
601         c->header.flags = node_level(level);
602         c->header.blocknr = t->blocknr;
603         c->header.parentid = root->node->node.header.parentid;
604         lower = &path->nodes[level-1]->node;
605         if (is_leaf(lower->header.flags))
606                 lower_key = &((struct leaf *)lower)->items[0].key;
607         else
608                 lower_key = lower->keys;
609         memcpy(c->keys, lower_key, sizeof(struct key));
610         c->blockptrs[0] = path->nodes[level-1]->blocknr;
611         /* the super has an extra ref to root->node */
612         tree_block_release(root, root->node);
613         root->node = t;
614         t->count++;
615         write_tree_block(root, t);
616         path->nodes[level] = t;
617         path->slots[level] = 0;
618         return 0;
619 }
620
621 /*
622  * worker function to insert a single pointer in a node.
623  * the node should have enough room for the pointer already
624  *
625  * slot and level indicate where you want the key to go, and
626  * blocknr is the block the key points to.
627  *
628  * returns zero on success and < 0 on any error
629  */
630 static int insert_ptr(struct ctree_root *root,
631                 struct ctree_path *path, struct key *key,
632                 u64 blocknr, int slot, int level)
633 {
634         struct node *lower;
635         int nritems;
636
637         BUG_ON(!path->nodes[level]);
638         lower = &path->nodes[level]->node;
639         nritems = lower->header.nritems;
640         if (slot > nritems)
641                 BUG();
642         if (nritems == NODEPTRS_PER_BLOCK)
643                 BUG();
644         if (slot != nritems) {
645                 memmove(lower->keys + slot + 1, lower->keys + slot,
646                         (nritems - slot) * sizeof(struct key));
647                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
648                         (nritems - slot) * sizeof(u64));
649         }
650         memcpy(lower->keys + slot, key, sizeof(struct key));
651         lower->blockptrs[slot] = blocknr;
652         lower->header.nritems++;
653         if (lower->keys[1].objectid == 0)
654                         BUG();
655         write_tree_block(root, path->nodes[level]);
656         return 0;
657 }
658
659 /*
660  * split the node at the specified level in path in two.
661  * The path is corrected to point to the appropriate node after the split
662  *
663  * Before splitting this tries to make some room in the node by pushing
664  * left and right, if either one works, it returns right away.
665  *
666  * returns 0 on success and < 0 on failure
667  */
668 static int split_node(struct ctree_root *root, struct ctree_path *path,
669                       int level)
670 {
671         struct tree_buffer *t;
672         struct node *c;
673         struct tree_buffer *split_buffer;
674         struct node *split;
675         int mid;
676         int ret;
677         int wret;
678
679         t = path->nodes[level];
680         c = &t->node;
681         if (t == root->node) {
682                 /* trying to split the root, lets make a new one */
683                 ret = insert_new_root(root, path, level + 1);
684                 if (ret)
685                         return ret;
686         }
687         split_buffer = alloc_free_block(root);
688         split = &split_buffer->node;
689         split->header.flags = c->header.flags;
690         split->header.blocknr = split_buffer->blocknr;
691         split->header.parentid = root->node->node.header.parentid;
692         mid = (c->header.nritems + 1) / 2;
693         memcpy(split->keys, c->keys + mid,
694                 (c->header.nritems - mid) * sizeof(struct key));
695         memcpy(split->blockptrs, c->blockptrs + mid,
696                 (c->header.nritems - mid) * sizeof(u64));
697         split->header.nritems = c->header.nritems - mid;
698         c->header.nritems = mid;
699         ret = 0;
700
701         wret = write_tree_block(root, t);
702         if (wret)
703                 ret = wret;
704         wret = write_tree_block(root, split_buffer);
705         if (wret)
706                 ret = wret;
707         wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
708                           path->slots[level + 1] + 1, level + 1);
709         if (wret)
710                 ret = wret;
711
712         if (path->slots[level] >= mid) {
713                 path->slots[level] -= mid;
714                 tree_block_release(root, t);
715                 path->nodes[level] = split_buffer;
716                 path->slots[level + 1] += 1;
717         } else {
718                 tree_block_release(root, split_buffer);
719         }
720         return ret;
721 }
722
723 /*
724  * how many bytes are required to store the items in a leaf.  start
725  * and nr indicate which items in the leaf to check.  This totals up the
726  * space used both by the item structs and the item data
727  */
728 static int leaf_space_used(struct leaf *l, int start, int nr)
729 {
730         int data_len;
731         int end = start + nr - 1;
732
733         if (!nr)
734                 return 0;
735         data_len = l->items[start].offset + l->items[start].size;
736         data_len = data_len - l->items[end].offset;
737         data_len += sizeof(struct item) * nr;
738         return data_len;
739 }
740
741 /*
742  * push some data in the path leaf to the right, trying to free up at
743  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
744  *
745  * returns 1 if the push failed because the other node didn't have enough
746  * room, 0 if everything worked out and < 0 if there were major errors.
747  */
748 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
749                            int data_size)
750 {
751         struct tree_buffer *left_buf = path->nodes[0];
752         struct leaf *left = &left_buf->leaf;
753         struct leaf *right;
754         struct tree_buffer *right_buf;
755         struct tree_buffer *upper;
756         int slot;
757         int i;
758         int free_space;
759         int push_space = 0;
760         int push_items = 0;
761         struct item *item;
762
763         slot = path->slots[1];
764         if (!path->nodes[1]) {
765                 return 1;
766         }
767         upper = path->nodes[1];
768         if (slot >= upper->node.header.nritems - 1) {
769                 return 1;
770         }
771         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
772         right = &right_buf->leaf;
773         free_space = leaf_free_space(right);
774         if (free_space < data_size + sizeof(struct item)) {
775                 tree_block_release(root, right_buf);
776                 return 1;
777         }
778         for (i = left->header.nritems - 1; i >= 0; i--) {
779                 item = left->items + i;
780                 if (path->slots[0] == i)
781                         push_space += data_size + sizeof(*item);
782                 if (item->size + sizeof(*item) + push_space > free_space)
783                         break;
784                 push_items++;
785                 push_space += item->size + sizeof(*item);
786         }
787         if (push_items == 0) {
788                 tree_block_release(root, right_buf);
789                 return 1;
790         }
791         /* push left to right */
792         push_space = left->items[left->header.nritems - push_items].offset +
793                      left->items[left->header.nritems - push_items].size;
794         push_space -= leaf_data_end(left);
795         /* make room in the right data area */
796         memmove(right->data + leaf_data_end(right) - push_space,
797                 right->data + leaf_data_end(right),
798                 LEAF_DATA_SIZE - leaf_data_end(right));
799         /* copy from the left data area */
800         memcpy(right->data + LEAF_DATA_SIZE - push_space,
801                 left->data + leaf_data_end(left),
802                 push_space);
803         memmove(right->items + push_items, right->items,
804                 right->header.nritems * sizeof(struct item));
805         /* copy the items from left to right */
806         memcpy(right->items, left->items + left->header.nritems - push_items,
807                 push_items * sizeof(struct item));
808
809         /* update the item pointers */
810         right->header.nritems += push_items;
811         push_space = LEAF_DATA_SIZE;
812         for (i = 0; i < right->header.nritems; i++) {
813                 right->items[i].offset = push_space - right->items[i].size;
814                 push_space = right->items[i].offset;
815         }
816         left->header.nritems -= push_items;
817
818         write_tree_block(root, left_buf);
819         write_tree_block(root, right_buf);
820         memcpy(upper->node.keys + slot + 1,
821                 &right->items[0].key, sizeof(struct key));
822         write_tree_block(root, upper);
823         /* then fixup the leaf pointer in the path */
824         if (path->slots[0] >= left->header.nritems) {
825                 path->slots[0] -= left->header.nritems;
826                 tree_block_release(root, path->nodes[0]);
827                 path->nodes[0] = right_buf;
828                 path->slots[1] += 1;
829         } else {
830                 tree_block_release(root, right_buf);
831         }
832         return 0;
833 }
834 /*
835  * push some data in the path leaf to the left, trying to free up at
836  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
837  */
838 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
839                           int data_size)
840 {
841         struct tree_buffer *right_buf = path->nodes[0];
842         struct leaf *right = &right_buf->leaf;
843         struct tree_buffer *t;
844         struct leaf *left;
845         int slot;
846         int i;
847         int free_space;
848         int push_space = 0;
849         int push_items = 0;
850         struct item *item;
851         int old_left_nritems;
852         int ret = 0;
853         int wret;
854
855         slot = path->slots[1];
856         if (slot == 0) {
857                 return 1;
858         }
859         if (!path->nodes[1]) {
860                 return 1;
861         }
862         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
863         left = &t->leaf;
864         free_space = leaf_free_space(left);
865         if (free_space < data_size + sizeof(struct item)) {
866                 tree_block_release(root, t);
867                 return 1;
868         }
869         for (i = 0; i < right->header.nritems; i++) {
870                 item = right->items + i;
871                 if (path->slots[0] == i)
872                         push_space += data_size + sizeof(*item);
873                 if (item->size + sizeof(*item) + push_space > free_space)
874                         break;
875                 push_items++;
876                 push_space += item->size + sizeof(*item);
877         }
878         if (push_items == 0) {
879                 tree_block_release(root, t);
880                 return 1;
881         }
882         /* push data from right to left */
883         memcpy(left->items + left->header.nritems,
884                 right->items, push_items * sizeof(struct item));
885         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
886         memcpy(left->data + leaf_data_end(left) - push_space,
887                 right->data + right->items[push_items - 1].offset,
888                 push_space);
889         old_left_nritems = left->header.nritems;
890         BUG_ON(old_left_nritems < 0);
891
892         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
893                 left->items[i].offset -= LEAF_DATA_SIZE -
894                         left->items[old_left_nritems -1].offset;
895         }
896         left->header.nritems += push_items;
897
898         /* fixup right node */
899         push_space = right->items[push_items-1].offset - leaf_data_end(right);
900         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
901                 leaf_data_end(right), push_space);
902         memmove(right->items, right->items + push_items,
903                 (right->header.nritems - push_items) * sizeof(struct item));
904         right->header.nritems -= push_items;
905         push_space = LEAF_DATA_SIZE;
906
907         for (i = 0; i < right->header.nritems; i++) {
908                 right->items[i].offset = push_space - right->items[i].size;
909                 push_space = right->items[i].offset;
910         }
911
912         wret = write_tree_block(root, t);
913         if (wret)
914                 ret = wret;
915         wret = write_tree_block(root, right_buf);
916         if (wret)
917                 ret = wret;
918
919         wret = fixup_low_keys(root, path, &right->items[0].key, 1);
920         if (wret)
921                 ret = wret;
922
923         /* then fixup the leaf pointer in the path */
924         if (path->slots[0] < push_items) {
925                 path->slots[0] += old_left_nritems;
926                 tree_block_release(root, path->nodes[0]);
927                 path->nodes[0] = t;
928                 path->slots[1] -= 1;
929         } else {
930                 tree_block_release(root, t);
931                 path->slots[0] -= push_items;
932         }
933         BUG_ON(path->slots[0] < 0);
934         return ret;
935 }
936
937 /*
938  * split the path's leaf in two, making sure there is at least data_size
939  * available for the resulting leaf level of the path.
940  *
941  * returns 0 if all went well and < 0 on failure.
942  */
943 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
944                       int data_size)
945 {
946         struct tree_buffer *l_buf;
947         struct leaf *l;
948         int nritems;
949         int mid;
950         int slot;
951         struct leaf *right;
952         struct tree_buffer *right_buffer;
953         int space_needed = data_size + sizeof(struct item);
954         int data_copy_size;
955         int rt_data_off;
956         int i;
957         int ret;
958         int wret;
959
960         wret = push_leaf_left(root, path, data_size);
961         if (wret < 0)
962                 return wret;
963         if (wret) {
964                 wret = push_leaf_right(root, path, data_size);
965                 if (wret < 0)
966                         return wret;
967         }
968         l_buf = path->nodes[0];
969         l = &l_buf->leaf;
970
971         /* did the pushes work? */
972         if (leaf_free_space(l) >= sizeof(struct item) + data_size)
973                 return 0;
974
975         if (!path->nodes[1]) {
976                 ret = insert_new_root(root, path, 1);
977                 if (ret)
978                         return ret;
979         }
980         slot = path->slots[0];
981         nritems = l->header.nritems;
982         mid = (nritems + 1)/ 2;
983
984         right_buffer = alloc_free_block(root);
985         BUG_ON(!right_buffer);
986         BUG_ON(mid == nritems);
987         right = &right_buffer->leaf;
988         memset(right, 0, sizeof(*right));
989         if (mid <= slot) {
990                 /* FIXME, just alloc a new leaf here */
991                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
992                         LEAF_DATA_SIZE)
993                         BUG();
994         } else {
995                 /* FIXME, just alloc a new leaf here */
996                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
997                         LEAF_DATA_SIZE)
998                         BUG();
999         }
1000         right->header.nritems = nritems - mid;
1001         right->header.blocknr = right_buffer->blocknr;
1002         right->header.flags = node_level(0);
1003         right->header.parentid = root->node->node.header.parentid;
1004         data_copy_size = l->items[mid].offset + l->items[mid].size -
1005                          leaf_data_end(l);
1006         memcpy(right->items, l->items + mid,
1007                (nritems - mid) * sizeof(struct item));
1008         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1009                l->data + leaf_data_end(l), data_copy_size);
1010         rt_data_off = LEAF_DATA_SIZE -
1011                      (l->items[mid].offset + l->items[mid].size);
1012
1013         for (i = 0; i < right->header.nritems; i++)
1014                 right->items[i].offset += rt_data_off;
1015
1016         l->header.nritems = mid;
1017         ret = 0;
1018         wret = insert_ptr(root, path, &right->items[0].key,
1019                           right_buffer->blocknr, path->slots[1] + 1, 1);
1020         if (wret)
1021                 ret = wret;
1022         wret = write_tree_block(root, right_buffer);
1023         if (wret)
1024                 ret = wret;
1025         wret = write_tree_block(root, l_buf);
1026         if (wret)
1027                 ret = wret;
1028
1029         BUG_ON(path->slots[0] != slot);
1030         if (mid <= slot) {
1031                 tree_block_release(root, path->nodes[0]);
1032                 path->nodes[0] = right_buffer;
1033                 path->slots[0] -= mid;
1034                 path->slots[1] += 1;
1035         } else
1036                 tree_block_release(root, right_buffer);
1037         BUG_ON(path->slots[0] < 0);
1038         return ret;
1039 }
1040
1041 /*
1042  * Given a key and some data, insert an item into the tree.
1043  * This does all the path init required, making room in the tree if needed.
1044  */
1045 int insert_item(struct ctree_root *root, struct key *key,
1046                           void *data, int data_size)
1047 {
1048         int ret = 0;
1049         int wret;
1050         int slot;
1051         int slot_orig;
1052         struct leaf *leaf;
1053         struct tree_buffer *leaf_buf;
1054         unsigned int nritems;
1055         unsigned int data_end;
1056         struct ctree_path path;
1057
1058         /* create a root if there isn't one */
1059         if (!root->node)
1060                 BUG();
1061         init_path(&path);
1062         ret = search_slot(root, key, &path, data_size);
1063         if (ret == 0) {
1064                 release_path(root, &path);
1065                 return -EEXIST;
1066         }
1067         if (ret < 0) {
1068                 release_path(root, &path);
1069                 return ret;
1070         }
1071
1072         slot_orig = path.slots[0];
1073         leaf_buf = path.nodes[0];
1074         leaf = &leaf_buf->leaf;
1075
1076         nritems = leaf->header.nritems;
1077         data_end = leaf_data_end(leaf);
1078
1079         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
1080                 BUG();
1081
1082         slot = path.slots[0];
1083         BUG_ON(slot < 0);
1084         if (slot != nritems) {
1085                 int i;
1086                 unsigned int old_data = leaf->items[slot].offset +
1087                                         leaf->items[slot].size;
1088
1089                 /*
1090                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1091                  */
1092                 /* first correct the data pointers */
1093                 for (i = slot; i < nritems; i++)
1094                         leaf->items[i].offset -= data_size;
1095
1096                 /* shift the items */
1097                 memmove(leaf->items + slot + 1, leaf->items + slot,
1098                         (nritems - slot) * sizeof(struct item));
1099
1100                 /* shift the data */
1101                 memmove(leaf->data + data_end - data_size, leaf->data +
1102                         data_end, old_data - data_end);
1103                 data_end = old_data;
1104         }
1105         /* copy the new data in */
1106         memcpy(&leaf->items[slot].key, key, sizeof(struct key));
1107         leaf->items[slot].offset = data_end - data_size;
1108         leaf->items[slot].size = data_size;
1109         memcpy(leaf->data + data_end - data_size, data, data_size);
1110         leaf->header.nritems += 1;
1111
1112         ret = 0;
1113         if (slot == 0)
1114                 ret = fixup_low_keys(root, &path, key, 1);
1115
1116         wret = write_tree_block(root, leaf_buf);
1117         if (wret)
1118                 ret = wret;
1119
1120         if (leaf_free_space(leaf) < 0)
1121                 BUG();
1122         check_leaf(&path, 0);
1123         release_path(root, &path);
1124         return ret;
1125 }
1126
1127 /*
1128  * delete the pointer from a given node.
1129  *
1130  * If the delete empties a node, the node is removed from the tree,
1131  * continuing all the way the root if required.  The root is converted into
1132  * a leaf if all the nodes are emptied.
1133  */
1134 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1135                    int slot)
1136 {
1137         struct node *node;
1138         struct tree_buffer *parent = path->nodes[level];
1139         int nritems;
1140         int ret = 0;
1141         int wret;
1142
1143         node = &parent->node;
1144         nritems = node->header.nritems;
1145
1146         if (slot != nritems -1) {
1147                 memmove(node->keys + slot, node->keys + slot + 1,
1148                         sizeof(struct key) * (nritems - slot - 1));
1149                 memmove(node->blockptrs + slot,
1150                         node->blockptrs + slot + 1,
1151                         sizeof(u64) * (nritems - slot - 1));
1152         }
1153         node->header.nritems--;
1154         if (node->header.nritems == 0 && parent == root->node) {
1155                 BUG_ON(node_level(root->node->node.header.flags) != 1);
1156                 /* just turn the root into a leaf and break */
1157                 root->node->node.header.flags = node_level(0);
1158         } else if (slot == 0) {
1159                 wret = fixup_low_keys(root, path, node->keys, level + 1);
1160                 if (wret)
1161                         ret = wret;
1162         }
1163         wret = write_tree_block(root, parent);
1164         if (wret)
1165                 ret = wret;
1166         return ret;
1167 }
1168
1169 /*
1170  * delete the item at the leaf level in path.  If that empties
1171  * the leaf, remove it from the tree
1172  */
1173 int del_item(struct ctree_root *root, struct ctree_path *path)
1174 {
1175         int slot;
1176         struct leaf *leaf;
1177         struct tree_buffer *leaf_buf;
1178         int doff;
1179         int dsize;
1180         int ret = 0;
1181         int wret;
1182
1183         leaf_buf = path->nodes[0];
1184         leaf = &leaf_buf->leaf;
1185         slot = path->slots[0];
1186         doff = leaf->items[slot].offset;
1187         dsize = leaf->items[slot].size;
1188
1189         if (slot != leaf->header.nritems - 1) {
1190                 int i;
1191                 int data_end = leaf_data_end(leaf);
1192                 memmove(leaf->data + data_end + dsize,
1193                         leaf->data + data_end,
1194                         doff - data_end);
1195                 for (i = slot + 1; i < leaf->header.nritems; i++)
1196                         leaf->items[i].offset += dsize;
1197                 memmove(leaf->items + slot, leaf->items + slot + 1,
1198                         sizeof(struct item) *
1199                         (leaf->header.nritems - slot - 1));
1200         }
1201         leaf->header.nritems -= 1;
1202         /* delete the leaf if we've emptied it */
1203         if (leaf->header.nritems == 0) {
1204                 if (leaf_buf == root->node) {
1205                         leaf->header.flags = node_level(0);
1206                         write_tree_block(root, leaf_buf);
1207                 } else {
1208                         wret = del_ptr(root, path, 1, path->slots[1]);
1209                         if (wret)
1210                                 ret = wret;
1211                         wret = free_extent(root, leaf_buf->blocknr, 1);
1212                         if (wret)
1213                                 ret = wret;
1214                 }
1215         } else {
1216                 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
1217                 if (slot == 0) {
1218                         wret = fixup_low_keys(root, path,
1219                                                    &leaf->items[0].key, 1);
1220                         if (wret)
1221                                 ret = wret;
1222                 }
1223                 wret = write_tree_block(root, leaf_buf);
1224                 if (wret)
1225                         ret = wret;
1226
1227                 /* delete the leaf if it is mostly empty */
1228                 if (used < LEAF_DATA_SIZE / 3) {
1229                         /* push_leaf_left fixes the path.
1230                          * make sure the path still points to our leaf
1231                          * for possible call to del_ptr below
1232                          */
1233                         slot = path->slots[1];
1234                         leaf_buf->count++;
1235                         wret = push_leaf_left(root, path, 1);
1236                         if (wret < 0)
1237                                 ret = wret;
1238                         if (leaf->header.nritems) {
1239                                 wret = push_leaf_right(root, path, 1);
1240                                 if (wret < 0)
1241                                         ret = wret;
1242                         }
1243                         if (leaf->header.nritems == 0) {
1244                                 u64 blocknr = leaf_buf->blocknr;
1245                                 wret = del_ptr(root, path, 1, slot);
1246                                 if (wret)
1247                                         ret = wret;
1248                                 tree_block_release(root, leaf_buf);
1249                                 wret = free_extent(root, blocknr, 1);
1250                                 if (wret)
1251                                         ret = wret;
1252                         } else {
1253                                 tree_block_release(root, leaf_buf);
1254                         }
1255                 }
1256         }
1257         return ret;
1258 }
1259
1260 /*
1261  * walk up the tree as far as required to find the next leaf.
1262  * returns 0 if it found something or 1 if there are no greater leaves.
1263  * returns < 0 on io errors.
1264  */
1265 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1266 {
1267         int slot;
1268         int level = 1;
1269         u64 blocknr;
1270         struct tree_buffer *c;
1271         struct tree_buffer *next = NULL;
1272
1273         while(level < MAX_LEVEL) {
1274                 if (!path->nodes[level])
1275                         return 1;
1276                 slot = path->slots[level] + 1;
1277                 c = path->nodes[level];
1278                 if (slot >= c->node.header.nritems) {
1279                         level++;
1280                         continue;
1281                 }
1282                 blocknr = c->node.blockptrs[slot];
1283                 if (next)
1284                         tree_block_release(root, next);
1285                 next = read_tree_block(root, blocknr);
1286                 break;
1287         }
1288         path->slots[level] = slot;
1289         while(1) {
1290                 level--;
1291                 c = path->nodes[level];
1292                 tree_block_release(root, c);
1293                 path->nodes[level] = next;
1294                 path->slots[level] = 0;
1295                 if (!level)
1296                         break;
1297                 next = read_tree_block(root, next->node.blockptrs[0]);
1298         }
1299         return 0;
1300 }
1301