get/set for struct header fields
[platform/upstream/btrfs-progs.git] / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10                       int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12                       int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14                           struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16                               struct tree_buffer *dst_buf,
17                               struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19                    int slot);
20
21 inline void init_path(struct ctree_path *p)
22 {
23         memset(p, 0, sizeof(*p));
24 }
25
26 void release_path(struct ctree_root *root, struct ctree_path *p)
27 {
28         int i;
29         for (i = 0; i < MAX_LEVEL; i++) {
30                 if (!p->nodes[i])
31                         break;
32                 tree_block_release(root, p->nodes[i]);
33         }
34         memset(p, 0, sizeof(*p));
35 }
36
37 int btrfs_cow_block(struct ctree_root *root,
38                     struct tree_buffer *buf,
39                     struct tree_buffer *parent,
40                     int parent_slot,
41                     struct tree_buffer **cow_ret)
42 {
43         struct tree_buffer *cow;
44
45         if (!list_empty(&buf->dirty)) {
46                 *cow_ret = buf;
47                 return 0;
48         }
49         cow = alloc_free_block(root);
50         memcpy(&cow->node, &buf->node, sizeof(buf->node));
51         btrfs_set_header_blocknr(&cow->node.header, cow->blocknr);
52         *cow_ret = cow;
53         btrfs_inc_ref(root, buf);
54         if (buf == root->node) {
55                 root->node = cow;
56                 cow->count++;
57                 if (buf != root->commit_root)
58                         free_extent(root, buf->blocknr, 1);
59                 tree_block_release(root, buf);
60         } else {
61                 parent->node.blockptrs[parent_slot] = cow->blocknr;
62                 BUG_ON(list_empty(&parent->dirty));
63                 free_extent(root, buf->blocknr, 1);
64         }
65         tree_block_release(root, buf);
66         return 0;
67 }
68
69 /*
70  * The leaf data grows from end-to-front in the node.
71  * this returns the address of the start of the last item,
72  * which is the stop of the leaf data stack
73  */
74 static inline unsigned int leaf_data_end(struct leaf *leaf)
75 {
76         u32 nr = btrfs_header_nritems(&leaf->header);
77         if (nr == 0)
78                 return sizeof(leaf->data);
79         return leaf->items[nr-1].offset;
80 }
81
82 /*
83  * The space between the end of the leaf items and
84  * the start of the leaf data.  IOW, how much room
85  * the leaf has left for both items and data
86  */
87 int leaf_free_space(struct leaf *leaf)
88 {
89         int data_end = leaf_data_end(leaf);
90         int nritems = btrfs_header_nritems(&leaf->header);
91         char *items_end = (char *)(leaf->items + nritems + 1);
92         return (char *)(leaf->data + data_end) - (char *)items_end;
93 }
94
95 /*
96  * compare two keys in a memcmp fashion
97  */
98 int comp_keys(struct key *k1, struct key *k2)
99 {
100         if (k1->objectid > k2->objectid)
101                 return 1;
102         if (k1->objectid < k2->objectid)
103                 return -1;
104         if (k1->flags > k2->flags)
105                 return 1;
106         if (k1->flags < k2->flags)
107                 return -1;
108         if (k1->offset > k2->offset)
109                 return 1;
110         if (k1->offset < k2->offset)
111                 return -1;
112         return 0;
113 }
114
115 int check_node(struct ctree_path *path, int level)
116 {
117         int i;
118         struct node *parent = NULL;
119         struct node *node = &path->nodes[level]->node;
120         int parent_slot;
121         u32 nritems = btrfs_header_nritems(&node->header);
122
123         if (path->nodes[level + 1])
124                 parent = &path->nodes[level + 1]->node;
125         parent_slot = path->slots[level + 1];
126         BUG_ON(nritems == 0);
127         if (parent) {
128                 struct key *parent_key;
129                 parent_key = &parent->keys[parent_slot];
130                 BUG_ON(memcmp(parent_key, node->keys, sizeof(struct key)));
131                 BUG_ON(parent->blockptrs[parent_slot] !=
132                        btrfs_header_blocknr(&node->header));
133         }
134         BUG_ON(nritems > NODEPTRS_PER_BLOCK);
135         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
136                 BUG_ON(comp_keys(&node->keys[i], &node->keys[i+1]) >= 0);
137         }
138         return 0;
139 }
140
141 int check_leaf(struct ctree_path *path, int level)
142 {
143         int i;
144         struct leaf *leaf = &path->nodes[level]->leaf;
145         struct node *parent = NULL;
146         int parent_slot;
147         u32 nritems = btrfs_header_nritems(&leaf->header);
148
149         if (path->nodes[level + 1])
150                 parent = &path->nodes[level + 1]->node;
151         parent_slot = path->slots[level + 1];
152         BUG_ON(leaf_free_space(leaf) < 0);
153
154         if (nritems == 0)
155                 return 0;
156
157         if (parent) {
158                 struct key *parent_key;
159                 parent_key = &parent->keys[parent_slot];
160                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
161                        sizeof(struct key)));
162                 BUG_ON(parent->blockptrs[parent_slot] !=
163                        btrfs_header_blocknr(&leaf->header));
164         }
165         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
166                 BUG_ON(comp_keys(&leaf->items[i].key,
167                                  &leaf->items[i+1].key) >= 0);
168                 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
169                     leaf->items[i + 1].size);
170                 if (i == 0) {
171                         BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
172                                 LEAF_DATA_SIZE);
173                 }
174         }
175         return 0;
176 }
177
178 int check_block(struct ctree_path *path, int level)
179 {
180         if (level == 0)
181                 return check_leaf(path, level);
182         return check_node(path, level);
183 }
184
185 /*
186  * search for key in the array p.  items p are item_size apart
187  * and there are 'max' items in p
188  * the slot in the array is returned via slot, and it points to
189  * the place where you would insert key if it is not found in
190  * the array.
191  *
192  * slot may point to max if the key is bigger than all of the keys
193  */
194 int generic_bin_search(char *p, int item_size, struct key *key,
195                        int max, int *slot)
196 {
197         int low = 0;
198         int high = max;
199         int mid;
200         int ret;
201         struct key *tmp;
202
203         while(low < high) {
204                 mid = (low + high) / 2;
205                 tmp = (struct key *)(p + mid * item_size);
206                 ret = comp_keys(tmp, key);
207
208                 if (ret < 0)
209                         low = mid + 1;
210                 else if (ret > 0)
211                         high = mid;
212                 else {
213                         *slot = mid;
214                         return 0;
215                 }
216         }
217         *slot = low;
218         return 1;
219 }
220
221 /*
222  * simple bin_search frontend that does the right thing for
223  * leaves vs nodes
224  */
225 int bin_search(struct node *c, struct key *key, int *slot)
226 {
227         if (btrfs_is_leaf(c)) {
228                 struct leaf *l = (struct leaf *)c;
229                 return generic_bin_search((void *)l->items, sizeof(struct item),
230                                           key, btrfs_header_nritems(&c->header),
231                                           slot);
232         } else {
233                 return generic_bin_search((void *)c->keys, sizeof(struct key),
234                                           key, btrfs_header_nritems(&c->header),
235                                           slot);
236         }
237         return -1;
238 }
239
240 struct tree_buffer *read_node_slot(struct ctree_root *root,
241                                    struct tree_buffer *parent_buf,
242                                    int slot)
243 {
244         struct node *node = &parent_buf->node;
245         if (slot < 0)
246                 return NULL;
247         if (slot >= btrfs_header_nritems(&node->header))
248                 return NULL;
249         return read_tree_block(root, node->blockptrs[slot]);
250 }
251
252 static int balance_level(struct ctree_root *root, struct ctree_path *path,
253                         int level)
254 {
255         struct tree_buffer *right_buf;
256         struct tree_buffer *mid_buf;
257         struct tree_buffer *left_buf;
258         struct tree_buffer *parent_buf = NULL;
259         struct node *right = NULL;
260         struct node *mid;
261         struct node *left = NULL;
262         struct node *parent = NULL;
263         int ret = 0;
264         int wret;
265         int pslot;
266         int orig_slot = path->slots[level];
267         u64 orig_ptr;
268
269         if (level == 0)
270                 return 0;
271
272         mid_buf = path->nodes[level];
273         mid = &mid_buf->node;
274         orig_ptr = mid->blockptrs[orig_slot];
275
276         if (level < MAX_LEVEL - 1)
277                 parent_buf = path->nodes[level + 1];
278         pslot = path->slots[level + 1];
279
280         if (!parent_buf) {
281                 struct tree_buffer *child;
282                 u64 blocknr = mid_buf->blocknr;
283
284                 if (btrfs_header_nritems(&mid->header) != 1)
285                         return 0;
286
287                 /* promote the child to a root */
288                 child = read_node_slot(root, mid_buf, 0);
289                 BUG_ON(!child);
290                 root->node = child;
291                 path->nodes[level] = NULL;
292                 /* once for the path */
293                 tree_block_release(root, mid_buf);
294                 /* once for the root ptr */
295                 tree_block_release(root, mid_buf);
296                 clean_tree_block(root, mid_buf);
297                 return free_extent(root, blocknr, 1);
298         }
299         parent = &parent_buf->node;
300
301         if (btrfs_header_nritems(&mid->header) > NODEPTRS_PER_BLOCK / 4)
302                 return 0;
303
304         left_buf = read_node_slot(root, parent_buf, pslot - 1);
305         right_buf = read_node_slot(root, parent_buf, pslot + 1);
306
307         /* first, try to make some room in the middle buffer */
308         if (left_buf) {
309                 btrfs_cow_block(root, left_buf, parent_buf,
310                                 pslot - 1, &left_buf);
311                 left = &left_buf->node;
312                 orig_slot += btrfs_header_nritems(&left->header);
313                 wret = push_node_left(root, left_buf, mid_buf);
314                 if (wret < 0)
315                         ret = wret;
316         }
317
318         /*
319          * then try to empty the right most buffer into the middle
320          */
321         if (right_buf) {
322                 btrfs_cow_block(root, right_buf, parent_buf,
323                                 pslot + 1, &right_buf);
324                 right = &right_buf->node;
325                 wret = push_node_left(root, mid_buf, right_buf);
326                 if (wret < 0)
327                         ret = wret;
328                 if (btrfs_header_nritems(&right->header) == 0) {
329                         u64 blocknr = right_buf->blocknr;
330                         tree_block_release(root, right_buf);
331                         clean_tree_block(root, right_buf);
332                         right_buf = NULL;
333                         right = NULL;
334                         wret = del_ptr(root, path, level + 1, pslot + 1);
335                         if (wret)
336                                 ret = wret;
337                         wret = free_extent(root, blocknr, 1);
338                         if (wret)
339                                 ret = wret;
340                 } else {
341                         memcpy(parent->keys + pslot + 1, right->keys,
342                                 sizeof(struct key));
343                         BUG_ON(list_empty(&parent_buf->dirty));
344                 }
345         }
346         if (btrfs_header_nritems(&mid->header) == 1) {
347                 /*
348                  * we're not allowed to leave a node with one item in the
349                  * tree during a delete.  A deletion from lower in the tree
350                  * could try to delete the only pointer in this node.
351                  * So, pull some keys from the left.
352                  * There has to be a left pointer at this point because
353                  * otherwise we would have pulled some pointers from the
354                  * right
355                  */
356                 BUG_ON(!left_buf);
357                 wret = balance_node_right(root, mid_buf, left_buf);
358                 if (wret < 0)
359                         ret = wret;
360                 BUG_ON(wret == 1);
361         }
362         if (btrfs_header_nritems(&mid->header) == 0) {
363                 /* we've managed to empty the middle node, drop it */
364                 u64 blocknr = mid_buf->blocknr;
365                 tree_block_release(root, mid_buf);
366                 clean_tree_block(root, mid_buf);
367                 mid_buf = NULL;
368                 mid = NULL;
369                 wret = del_ptr(root, path, level + 1, pslot);
370                 if (wret)
371                         ret = wret;
372                 wret = free_extent(root, blocknr, 1);
373                 if (wret)
374                         ret = wret;
375         } else {
376                 /* update the parent key to reflect our changes */
377                 memcpy(parent->keys + pslot, mid->keys, sizeof(struct key));
378                 BUG_ON(list_empty(&parent_buf->dirty));
379         }
380
381         /* update the path */
382         if (left_buf) {
383                 if (btrfs_header_nritems(&left->header) > orig_slot) {
384                         left_buf->count++; // released below
385                         path->nodes[level] = left_buf;
386                         path->slots[level + 1] -= 1;
387                         path->slots[level] = orig_slot;
388                         if (mid_buf)
389                                 tree_block_release(root, mid_buf);
390                 } else {
391                         orig_slot -= btrfs_header_nritems(&left->header);
392                         path->slots[level] = orig_slot;
393                 }
394         }
395         /* double check we haven't messed things up */
396         check_block(path, level);
397         if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
398                 BUG();
399
400         if (right_buf)
401                 tree_block_release(root, right_buf);
402         if (left_buf)
403                 tree_block_release(root, left_buf);
404         return ret;
405 }
406
407 /*
408  * look for key in the tree.  path is filled in with nodes along the way
409  * if key is found, we return zero and you can find the item in the leaf
410  * level of the path (level 0)
411  *
412  * If the key isn't found, the path points to the slot where it should
413  * be inserted, and 1 is returned.  If there are other errors during the
414  * search a negative error number is returned.
415  *
416  * if ins_len > 0, nodes and leaves will be split as we walk down the
417  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
418  * possible)
419  */
420 int search_slot(struct ctree_root *root, struct key *key,
421                 struct ctree_path *p, int ins_len, int cow)
422 {
423         struct tree_buffer *b;
424         struct tree_buffer *cow_buf;
425         struct node *c;
426         int slot;
427         int ret;
428         int level;
429
430 again:
431         b = root->node;
432         b->count++;
433         while (b) {
434                 level = btrfs_header_level(&b->node.header);
435                 if (cow) {
436                         int wret;
437                         wret = btrfs_cow_block(root, b, p->nodes[level + 1],
438                                                p->slots[level + 1], &cow_buf);
439                         b = cow_buf;
440                 }
441                 BUG_ON(!cow && ins_len);
442                 c = &b->node;
443                 p->nodes[level] = b;
444                 ret = check_block(p, level);
445                 if (ret)
446                         return -1;
447                 ret = bin_search(c, key, &slot);
448                 if (!btrfs_is_leaf(c)) {
449                         if (ret && slot > 0)
450                                 slot -= 1;
451                         p->slots[level] = slot;
452                         if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
453                             NODEPTRS_PER_BLOCK) {
454                                 int sret = split_node(root, p, level);
455                                 BUG_ON(sret > 0);
456                                 if (sret)
457                                         return sret;
458                                 b = p->nodes[level];
459                                 c = &b->node;
460                                 slot = p->slots[level];
461                         } else if (ins_len < 0) {
462                                 int sret = balance_level(root, p, level);
463                                 if (sret)
464                                         return sret;
465                                 b = p->nodes[level];
466                                 if (!b)
467                                         goto again;
468                                 c = &b->node;
469                                 slot = p->slots[level];
470                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
471                         }
472                         b = read_tree_block(root, c->blockptrs[slot]);
473                 } else {
474                         struct leaf *l = (struct leaf *)c;
475                         p->slots[level] = slot;
476                         if (ins_len > 0 && leaf_free_space(l) <
477                             sizeof(struct item) + ins_len) {
478                                 int sret = split_leaf(root, p, ins_len);
479                                 BUG_ON(sret > 0);
480                                 if (sret)
481                                         return sret;
482                         }
483                         BUG_ON(root->node->count == 1);
484                         return ret;
485                 }
486         }
487         BUG_ON(root->node->count == 1);
488         return 1;
489 }
490
491 /*
492  * adjust the pointers going up the tree, starting at level
493  * making sure the right key of each node is points to 'key'.
494  * This is used after shifting pointers to the left, so it stops
495  * fixing up pointers when a given leaf/node is not in slot 0 of the
496  * higher levels
497  *
498  * If this fails to write a tree block, it returns -1, but continues
499  * fixing up the blocks in ram so the tree is consistent.
500  */
501 static int fixup_low_keys(struct ctree_root *root,
502                            struct ctree_path *path, struct key *key,
503                            int level)
504 {
505         int i;
506         int ret = 0;
507         for (i = level; i < MAX_LEVEL; i++) {
508                 struct node *t;
509                 int tslot = path->slots[i];
510                 if (!path->nodes[i])
511                         break;
512                 t = &path->nodes[i]->node;
513                 memcpy(t->keys + tslot, key, sizeof(*key));
514                 BUG_ON(list_empty(&path->nodes[i]->dirty));
515                 if (tslot != 0)
516                         break;
517         }
518         return ret;
519 }
520
521 /*
522  * try to push data from one node into the next node left in the
523  * tree.
524  *
525  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
526  * error, and > 0 if there was no room in the left hand block.
527  */
528 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
529                           struct tree_buffer *src_buf)
530 {
531         struct node *src = &src_buf->node;
532         struct node *dst = &dst_buf->node;
533         int push_items = 0;
534         int src_nritems;
535         int dst_nritems;
536         int ret = 0;
537
538         src_nritems = btrfs_header_nritems(&src->header);
539         dst_nritems = btrfs_header_nritems(&dst->header);
540         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
541         if (push_items <= 0) {
542                 return 1;
543         }
544
545         if (src_nritems < push_items)
546                 push_items = src_nritems;
547
548         memcpy(dst->keys + dst_nritems, src->keys,
549                 push_items * sizeof(struct key));
550         memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
551                 push_items * sizeof(u64));
552         if (push_items < src_nritems) {
553                 memmove(src->keys, src->keys + push_items,
554                         (src_nritems - push_items) * sizeof(struct key));
555                 memmove(src->blockptrs, src->blockptrs + push_items,
556                         (src_nritems - push_items) * sizeof(u64));
557         }
558         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
559         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
560         BUG_ON(list_empty(&src_buf->dirty));
561         BUG_ON(list_empty(&dst_buf->dirty));
562         return ret;
563 }
564
565 /*
566  * try to push data from one node into the next node right in the
567  * tree.
568  *
569  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
570  * error, and > 0 if there was no room in the right hand block.
571  *
572  * this will  only push up to 1/2 the contents of the left node over
573  */
574 static int balance_node_right(struct ctree_root *root,
575                               struct tree_buffer *dst_buf,
576                               struct tree_buffer *src_buf)
577 {
578         struct node *src = &src_buf->node;
579         struct node *dst = &dst_buf->node;
580         int push_items = 0;
581         int max_push;
582         int src_nritems;
583         int dst_nritems;
584         int ret = 0;
585
586         src_nritems = btrfs_header_nritems(&src->header);
587         dst_nritems = btrfs_header_nritems(&dst->header);
588         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
589         if (push_items <= 0) {
590                 return 1;
591         }
592
593         max_push = src_nritems / 2 + 1;
594         /* don't try to empty the node */
595         if (max_push > src_nritems)
596                 return 1;
597         if (max_push < push_items)
598                 push_items = max_push;
599
600         memmove(dst->keys + push_items, dst->keys,
601                 dst_nritems * sizeof(struct key));
602         memmove(dst->blockptrs + push_items, dst->blockptrs,
603                 dst_nritems * sizeof(u64));
604         memcpy(dst->keys, src->keys + src_nritems - push_items,
605                 push_items * sizeof(struct key));
606         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
607                 push_items * sizeof(u64));
608
609         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
610         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
611
612         BUG_ON(list_empty(&src_buf->dirty));
613         BUG_ON(list_empty(&dst_buf->dirty));
614         return ret;
615 }
616
617 /*
618  * helper function to insert a new root level in the tree.
619  * A new node is allocated, and a single item is inserted to
620  * point to the existing root
621  *
622  * returns zero on success or < 0 on failure.
623  */
624 static int insert_new_root(struct ctree_root *root,
625                            struct ctree_path *path, int level)
626 {
627         struct tree_buffer *t;
628         struct node *lower;
629         struct node *c;
630         struct key *lower_key;
631
632         BUG_ON(path->nodes[level]);
633         BUG_ON(path->nodes[level-1] != root->node);
634
635         t = alloc_free_block(root);
636         c = &t->node;
637         memset(c, 0, sizeof(c));
638         btrfs_set_header_nritems(&c->header, 1);
639         btrfs_set_header_level(&c->header, level);
640         btrfs_set_header_blocknr(&c->header, t->blocknr);
641         btrfs_set_header_parentid(&c->header,
642                                btrfs_header_parentid(&root->node->node.header));
643         lower = &path->nodes[level-1]->node;
644         if (btrfs_is_leaf(lower))
645                 lower_key = &((struct leaf *)lower)->items[0].key;
646         else
647                 lower_key = lower->keys;
648         memcpy(c->keys, lower_key, sizeof(struct key));
649         c->blockptrs[0] = path->nodes[level-1]->blocknr;
650         /* the super has an extra ref to root->node */
651         tree_block_release(root, root->node);
652         root->node = t;
653         t->count++;
654         path->nodes[level] = t;
655         path->slots[level] = 0;
656         return 0;
657 }
658
659 /*
660  * worker function to insert a single pointer in a node.
661  * the node should have enough room for the pointer already
662  *
663  * slot and level indicate where you want the key to go, and
664  * blocknr is the block the key points to.
665  *
666  * returns zero on success and < 0 on any error
667  */
668 static int insert_ptr(struct ctree_root *root,
669                 struct ctree_path *path, struct key *key,
670                 u64 blocknr, int slot, int level)
671 {
672         struct node *lower;
673         int nritems;
674
675         BUG_ON(!path->nodes[level]);
676         lower = &path->nodes[level]->node;
677         nritems = btrfs_header_nritems(&lower->header);
678         if (slot > nritems)
679                 BUG();
680         if (nritems == NODEPTRS_PER_BLOCK)
681                 BUG();
682         if (slot != nritems) {
683                 memmove(lower->keys + slot + 1, lower->keys + slot,
684                         (nritems - slot) * sizeof(struct key));
685                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
686                         (nritems - slot) * sizeof(u64));
687         }
688         memcpy(lower->keys + slot, key, sizeof(struct key));
689         lower->blockptrs[slot] = blocknr;
690         btrfs_set_header_nritems(&lower->header, nritems + 1);
691         if (lower->keys[1].objectid == 0)
692                         BUG();
693         BUG_ON(list_empty(&path->nodes[level]->dirty));
694         return 0;
695 }
696
697 /*
698  * split the node at the specified level in path in two.
699  * The path is corrected to point to the appropriate node after the split
700  *
701  * Before splitting this tries to make some room in the node by pushing
702  * left and right, if either one works, it returns right away.
703  *
704  * returns 0 on success and < 0 on failure
705  */
706 static int split_node(struct ctree_root *root, struct ctree_path *path,
707                       int level)
708 {
709         struct tree_buffer *t;
710         struct node *c;
711         struct tree_buffer *split_buffer;
712         struct node *split;
713         int mid;
714         int ret;
715         int wret;
716         u32 c_nritems;
717
718         t = path->nodes[level];
719         c = &t->node;
720         if (t == root->node) {
721                 /* trying to split the root, lets make a new one */
722                 ret = insert_new_root(root, path, level + 1);
723                 if (ret)
724                         return ret;
725         }
726         c_nritems = btrfs_header_nritems(&c->header);
727         split_buffer = alloc_free_block(root);
728         split = &split_buffer->node;
729         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
730         btrfs_set_header_blocknr(&split->header, split_buffer->blocknr);
731         btrfs_set_header_parentid(&split->header,
732                                btrfs_header_parentid(&root->node->node.header));
733         mid = (c_nritems + 1) / 2;
734         memcpy(split->keys, c->keys + mid,
735                 (c_nritems - mid) * sizeof(struct key));
736         memcpy(split->blockptrs, c->blockptrs + mid,
737                 (c_nritems - mid) * sizeof(u64));
738         btrfs_set_header_nritems(&split->header, c_nritems - mid);
739         btrfs_set_header_nritems(&c->header, mid);
740         ret = 0;
741
742         BUG_ON(list_empty(&t->dirty));
743         wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
744                           path->slots[level + 1] + 1, level + 1);
745         if (wret)
746                 ret = wret;
747
748         if (path->slots[level] >= mid) {
749                 path->slots[level] -= mid;
750                 tree_block_release(root, t);
751                 path->nodes[level] = split_buffer;
752                 path->slots[level + 1] += 1;
753         } else {
754                 tree_block_release(root, split_buffer);
755         }
756         return ret;
757 }
758
759 /*
760  * how many bytes are required to store the items in a leaf.  start
761  * and nr indicate which items in the leaf to check.  This totals up the
762  * space used both by the item structs and the item data
763  */
764 static int leaf_space_used(struct leaf *l, int start, int nr)
765 {
766         int data_len;
767         int end = start + nr - 1;
768
769         if (!nr)
770                 return 0;
771         data_len = l->items[start].offset + l->items[start].size;
772         data_len = data_len - l->items[end].offset;
773         data_len += sizeof(struct item) * nr;
774         return data_len;
775 }
776
777 /*
778  * push some data in the path leaf to the right, trying to free up at
779  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
780  *
781  * returns 1 if the push failed because the other node didn't have enough
782  * room, 0 if everything worked out and < 0 if there were major errors.
783  */
784 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
785                            int data_size)
786 {
787         struct tree_buffer *left_buf = path->nodes[0];
788         struct leaf *left = &left_buf->leaf;
789         struct leaf *right;
790         struct tree_buffer *right_buf;
791         struct tree_buffer *upper;
792         int slot;
793         int i;
794         int free_space;
795         int push_space = 0;
796         int push_items = 0;
797         struct item *item;
798         u32 left_nritems;
799         u32 right_nritems;
800
801         slot = path->slots[1];
802         if (!path->nodes[1]) {
803                 return 1;
804         }
805         upper = path->nodes[1];
806         if (slot >= btrfs_header_nritems(&upper->node.header) - 1) {
807                 return 1;
808         }
809         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
810         right = &right_buf->leaf;
811         free_space = leaf_free_space(right);
812         if (free_space < data_size + sizeof(struct item)) {
813                 tree_block_release(root, right_buf);
814                 return 1;
815         }
816         /* cow and double check */
817         btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
818         right = &right_buf->leaf;
819         free_space = leaf_free_space(right);
820         if (free_space < data_size + sizeof(struct item)) {
821                 tree_block_release(root, right_buf);
822                 return 1;
823         }
824
825         left_nritems = btrfs_header_nritems(&left->header);
826         for (i = left_nritems - 1; i >= 0; i--) {
827                 item = left->items + i;
828                 if (path->slots[0] == i)
829                         push_space += data_size + sizeof(*item);
830                 if (item->size + sizeof(*item) + push_space > free_space)
831                         break;
832                 push_items++;
833                 push_space += item->size + sizeof(*item);
834         }
835         if (push_items == 0) {
836                 tree_block_release(root, right_buf);
837                 return 1;
838         }
839         right_nritems = btrfs_header_nritems(&right->header);
840         /* push left to right */
841         push_space = left->items[left_nritems - push_items].offset +
842                      left->items[left_nritems - push_items].size;
843         push_space -= leaf_data_end(left);
844         /* make room in the right data area */
845         memmove(right->data + leaf_data_end(right) - push_space,
846                 right->data + leaf_data_end(right),
847                 LEAF_DATA_SIZE - leaf_data_end(right));
848         /* copy from the left data area */
849         memcpy(right->data + LEAF_DATA_SIZE - push_space,
850                 left->data + leaf_data_end(left),
851                 push_space);
852         memmove(right->items + push_items, right->items,
853                 right_nritems * sizeof(struct item));
854         /* copy the items from left to right */
855         memcpy(right->items, left->items + left_nritems - push_items,
856                 push_items * sizeof(struct item));
857
858         /* update the item pointers */
859         right_nritems += push_items;
860         btrfs_set_header_nritems(&right->header, right_nritems);
861         push_space = LEAF_DATA_SIZE;
862         for (i = 0; i < right_nritems; i++) {
863                 right->items[i].offset = push_space - right->items[i].size;
864                 push_space = right->items[i].offset;
865         }
866         left_nritems -= push_items;
867         btrfs_set_header_nritems(&left->header, left_nritems);
868
869         BUG_ON(list_empty(&left_buf->dirty));
870         BUG_ON(list_empty(&right_buf->dirty));
871         memcpy(upper->node.keys + slot + 1,
872                 &right->items[0].key, sizeof(struct key));
873         BUG_ON(list_empty(&upper->dirty));
874
875         /* then fixup the leaf pointer in the path */
876         if (path->slots[0] >= left_nritems) {
877                 path->slots[0] -= left_nritems;
878                 tree_block_release(root, path->nodes[0]);
879                 path->nodes[0] = right_buf;
880                 path->slots[1] += 1;
881         } else {
882                 tree_block_release(root, right_buf);
883         }
884         return 0;
885 }
886 /*
887  * push some data in the path leaf to the left, trying to free up at
888  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
889  */
890 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
891                           int data_size)
892 {
893         struct tree_buffer *right_buf = path->nodes[0];
894         struct leaf *right = &right_buf->leaf;
895         struct tree_buffer *t;
896         struct leaf *left;
897         int slot;
898         int i;
899         int free_space;
900         int push_space = 0;
901         int push_items = 0;
902         struct item *item;
903         u32 old_left_nritems;
904         int ret = 0;
905         int wret;
906
907         slot = path->slots[1];
908         if (slot == 0) {
909                 return 1;
910         }
911         if (!path->nodes[1]) {
912                 return 1;
913         }
914         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
915         left = &t->leaf;
916         free_space = leaf_free_space(left);
917         if (free_space < data_size + sizeof(struct item)) {
918                 tree_block_release(root, t);
919                 return 1;
920         }
921
922         /* cow and double check */
923         btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
924         left = &t->leaf;
925         free_space = leaf_free_space(left);
926         if (free_space < data_size + sizeof(struct item)) {
927                 tree_block_release(root, t);
928                 return 1;
929         }
930
931         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
932                 item = right->items + i;
933                 if (path->slots[0] == i)
934                         push_space += data_size + sizeof(*item);
935                 if (item->size + sizeof(*item) + push_space > free_space)
936                         break;
937                 push_items++;
938                 push_space += item->size + sizeof(*item);
939         }
940         if (push_items == 0) {
941                 tree_block_release(root, t);
942                 return 1;
943         }
944         /* push data from right to left */
945         memcpy(left->items + btrfs_header_nritems(&left->header),
946                 right->items, push_items * sizeof(struct item));
947         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
948         memcpy(left->data + leaf_data_end(left) - push_space,
949                 right->data + right->items[push_items - 1].offset,
950                 push_space);
951         old_left_nritems = btrfs_header_nritems(&left->header);
952         BUG_ON(old_left_nritems < 0);
953
954         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
955                 left->items[i].offset -= LEAF_DATA_SIZE -
956                         left->items[old_left_nritems -1].offset;
957         }
958         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
959
960         /* fixup right node */
961         push_space = right->items[push_items-1].offset - leaf_data_end(right);
962         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
963                 leaf_data_end(right), push_space);
964         memmove(right->items, right->items + push_items,
965                 (btrfs_header_nritems(&right->header) - push_items) *
966                 sizeof(struct item));
967         btrfs_set_header_nritems(&right->header,
968                                  btrfs_header_nritems(&right->header) -
969                                  push_items);
970         push_space = LEAF_DATA_SIZE;
971
972         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
973                 right->items[i].offset = push_space - right->items[i].size;
974                 push_space = right->items[i].offset;
975         }
976
977         BUG_ON(list_empty(&t->dirty));
978         BUG_ON(list_empty(&right_buf->dirty));
979
980         wret = fixup_low_keys(root, path, &right->items[0].key, 1);
981         if (wret)
982                 ret = wret;
983
984         /* then fixup the leaf pointer in the path */
985         if (path->slots[0] < push_items) {
986                 path->slots[0] += old_left_nritems;
987                 tree_block_release(root, path->nodes[0]);
988                 path->nodes[0] = t;
989                 path->slots[1] -= 1;
990         } else {
991                 tree_block_release(root, t);
992                 path->slots[0] -= push_items;
993         }
994         BUG_ON(path->slots[0] < 0);
995         return ret;
996 }
997
998 /*
999  * split the path's leaf in two, making sure there is at least data_size
1000  * available for the resulting leaf level of the path.
1001  *
1002  * returns 0 if all went well and < 0 on failure.
1003  */
1004 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
1005                       int data_size)
1006 {
1007         struct tree_buffer *l_buf;
1008         struct leaf *l;
1009         u32 nritems;
1010         int mid;
1011         int slot;
1012         struct leaf *right;
1013         struct tree_buffer *right_buffer;
1014         int space_needed = data_size + sizeof(struct item);
1015         int data_copy_size;
1016         int rt_data_off;
1017         int i;
1018         int ret;
1019         int wret;
1020
1021         l_buf = path->nodes[0];
1022         l = &l_buf->leaf;
1023
1024         /* did the pushes work? */
1025         if (leaf_free_space(l) >= sizeof(struct item) + data_size)
1026                 return 0;
1027
1028         if (!path->nodes[1]) {
1029                 ret = insert_new_root(root, path, 1);
1030                 if (ret)
1031                         return ret;
1032         }
1033         slot = path->slots[0];
1034         nritems = btrfs_header_nritems(&l->header);
1035         mid = (nritems + 1)/ 2;
1036         right_buffer = alloc_free_block(root);
1037         BUG_ON(!right_buffer);
1038         BUG_ON(mid == nritems);
1039         right = &right_buffer->leaf;
1040         memset(right, 0, sizeof(*right));
1041         if (mid <= slot) {
1042                 /* FIXME, just alloc a new leaf here */
1043                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1044                         LEAF_DATA_SIZE)
1045                         BUG();
1046         } else {
1047                 /* FIXME, just alloc a new leaf here */
1048                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1049                         LEAF_DATA_SIZE)
1050                         BUG();
1051         }
1052         btrfs_set_header_nritems(&right->header, nritems - mid);
1053         btrfs_set_header_blocknr(&right->header, right_buffer->blocknr);
1054         btrfs_set_header_level(&right->header, 0);
1055         btrfs_set_header_parentid(&right->header,
1056                                btrfs_header_parentid(&root->node->node.header));
1057         data_copy_size = l->items[mid].offset + l->items[mid].size -
1058                          leaf_data_end(l);
1059         memcpy(right->items, l->items + mid,
1060                (nritems - mid) * sizeof(struct item));
1061         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1062                l->data + leaf_data_end(l), data_copy_size);
1063         rt_data_off = LEAF_DATA_SIZE -
1064                      (l->items[mid].offset + l->items[mid].size);
1065
1066         for (i = 0; i < btrfs_header_nritems(&right->header); i++)
1067                 right->items[i].offset += rt_data_off;
1068
1069         btrfs_set_header_nritems(&l->header, mid);
1070         ret = 0;
1071         wret = insert_ptr(root, path, &right->items[0].key,
1072                           right_buffer->blocknr, path->slots[1] + 1, 1);
1073         if (wret)
1074                 ret = wret;
1075         BUG_ON(list_empty(&right_buffer->dirty));
1076         BUG_ON(list_empty(&l_buf->dirty));
1077         BUG_ON(path->slots[0] != slot);
1078         if (mid <= slot) {
1079                 tree_block_release(root, path->nodes[0]);
1080                 path->nodes[0] = right_buffer;
1081                 path->slots[0] -= mid;
1082                 path->slots[1] += 1;
1083         } else
1084                 tree_block_release(root, right_buffer);
1085         BUG_ON(path->slots[0] < 0);
1086         return ret;
1087 }
1088
1089 /*
1090  * Given a key and some data, insert an item into the tree.
1091  * This does all the path init required, making room in the tree if needed.
1092  */
1093 int insert_item(struct ctree_root *root, struct key *key,
1094                           void *data, int data_size)
1095 {
1096         int ret = 0;
1097         int slot;
1098         int slot_orig;
1099         struct leaf *leaf;
1100         struct tree_buffer *leaf_buf;
1101         u32 nritems;
1102         unsigned int data_end;
1103         struct ctree_path path;
1104
1105         /* create a root if there isn't one */
1106         if (!root->node)
1107                 BUG();
1108         init_path(&path);
1109         ret = search_slot(root, key, &path, data_size, 1);
1110         if (ret == 0) {
1111                 release_path(root, &path);
1112                 return -EEXIST;
1113         }
1114         if (ret < 0)
1115                 goto out;
1116
1117         slot_orig = path.slots[0];
1118         leaf_buf = path.nodes[0];
1119         leaf = &leaf_buf->leaf;
1120
1121         nritems = btrfs_header_nritems(&leaf->header);
1122         data_end = leaf_data_end(leaf);
1123
1124         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
1125                 BUG();
1126
1127         slot = path.slots[0];
1128         BUG_ON(slot < 0);
1129         if (slot != nritems) {
1130                 int i;
1131                 unsigned int old_data = leaf->items[slot].offset +
1132                                         leaf->items[slot].size;
1133
1134                 /*
1135                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1136                  */
1137                 /* first correct the data pointers */
1138                 for (i = slot; i < nritems; i++)
1139                         leaf->items[i].offset -= data_size;
1140
1141                 /* shift the items */
1142                 memmove(leaf->items + slot + 1, leaf->items + slot,
1143                         (nritems - slot) * sizeof(struct item));
1144
1145                 /* shift the data */
1146                 memmove(leaf->data + data_end - data_size, leaf->data +
1147                         data_end, old_data - data_end);
1148                 data_end = old_data;
1149         }
1150         /* copy the new data in */
1151         memcpy(&leaf->items[slot].key, key, sizeof(struct key));
1152         leaf->items[slot].offset = data_end - data_size;
1153         leaf->items[slot].size = data_size;
1154         memcpy(leaf->data + data_end - data_size, data, data_size);
1155         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1156
1157         ret = 0;
1158         if (slot == 0)
1159                 ret = fixup_low_keys(root, &path, key, 1);
1160
1161         BUG_ON(list_empty(&leaf_buf->dirty));
1162         if (leaf_free_space(leaf) < 0)
1163                 BUG();
1164         check_leaf(&path, 0);
1165 out:
1166         release_path(root, &path);
1167         return ret;
1168 }
1169
1170 /*
1171  * delete the pointer from a given node.
1172  *
1173  * If the delete empties a node, the node is removed from the tree,
1174  * continuing all the way the root if required.  The root is converted into
1175  * a leaf if all the nodes are emptied.
1176  */
1177 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1178                    int slot)
1179 {
1180         struct node *node;
1181         struct tree_buffer *parent = path->nodes[level];
1182         u32 nritems;
1183         int ret = 0;
1184         int wret;
1185
1186         node = &parent->node;
1187         nritems = btrfs_header_nritems(&node->header);
1188         if (slot != nritems -1) {
1189                 memmove(node->keys + slot, node->keys + slot + 1,
1190                         sizeof(struct key) * (nritems - slot - 1));
1191                 memmove(node->blockptrs + slot,
1192                         node->blockptrs + slot + 1,
1193                         sizeof(u64) * (nritems - slot - 1));
1194         }
1195         nritems--;
1196         btrfs_set_header_nritems(&node->header, nritems);
1197         if (nritems == 0 && parent == root->node) {
1198                 BUG_ON(btrfs_header_level(&root->node->node.header) != 1);
1199                 /* just turn the root into a leaf and break */
1200                 btrfs_set_header_level(&root->node->node.header, 0);
1201         } else if (slot == 0) {
1202                 wret = fixup_low_keys(root, path, node->keys, level + 1);
1203                 if (wret)
1204                         ret = wret;
1205         }
1206         BUG_ON(list_empty(&parent->dirty));
1207         return ret;
1208 }
1209
1210 /*
1211  * delete the item at the leaf level in path.  If that empties
1212  * the leaf, remove it from the tree
1213  */
1214 int del_item(struct ctree_root *root, struct ctree_path *path)
1215 {
1216         int slot;
1217         struct leaf *leaf;
1218         struct tree_buffer *leaf_buf;
1219         int doff;
1220         int dsize;
1221         int ret = 0;
1222         int wret;
1223         u32 nritems;
1224
1225         leaf_buf = path->nodes[0];
1226         leaf = &leaf_buf->leaf;
1227         slot = path->slots[0];
1228         doff = leaf->items[slot].offset;
1229         dsize = leaf->items[slot].size;
1230         nritems = btrfs_header_nritems(&leaf->header);
1231
1232         if (slot != nritems - 1) {
1233                 int i;
1234                 int data_end = leaf_data_end(leaf);
1235                 memmove(leaf->data + data_end + dsize,
1236                         leaf->data + data_end,
1237                         doff - data_end);
1238                 for (i = slot + 1; i < nritems; i++)
1239                         leaf->items[i].offset += dsize;
1240                 memmove(leaf->items + slot, leaf->items + slot + 1,
1241                         sizeof(struct item) *
1242                         (nritems - slot - 1));
1243         }
1244         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1245         nritems--;
1246         /* delete the leaf if we've emptied it */
1247         if (nritems == 0) {
1248                 if (leaf_buf == root->node) {
1249                         btrfs_set_header_level(&leaf->header, 0);
1250                         BUG_ON(list_empty(&leaf_buf->dirty));
1251                 } else {
1252                         clean_tree_block(root, leaf_buf);
1253                         wret = del_ptr(root, path, 1, path->slots[1]);
1254                         if (wret)
1255                                 ret = wret;
1256                         wret = free_extent(root, leaf_buf->blocknr, 1);
1257                         if (wret)
1258                                 ret = wret;
1259                 }
1260         } else {
1261                 int used = leaf_space_used(leaf, 0, nritems);
1262                 if (slot == 0) {
1263                         wret = fixup_low_keys(root, path,
1264                                                    &leaf->items[0].key, 1);
1265                         if (wret)
1266                                 ret = wret;
1267                 }
1268                 BUG_ON(list_empty(&leaf_buf->dirty));
1269
1270                 /* delete the leaf if it is mostly empty */
1271                 if (used < LEAF_DATA_SIZE / 3) {
1272                         /* push_leaf_left fixes the path.
1273                          * make sure the path still points to our leaf
1274                          * for possible call to del_ptr below
1275                          */
1276                         slot = path->slots[1];
1277                         leaf_buf->count++;
1278                         wret = push_leaf_left(root, path, 1);
1279                         if (wret < 0)
1280                                 ret = wret;
1281                         if (path->nodes[0] == leaf_buf &&
1282                             btrfs_header_nritems(&leaf->header)) {
1283                                 wret = push_leaf_right(root, path, 1);
1284                                 if (wret < 0)
1285                                         ret = wret;
1286                         }
1287                         if (btrfs_header_nritems(&leaf->header) == 0) {
1288                                 u64 blocknr = leaf_buf->blocknr;
1289                                 clean_tree_block(root, leaf_buf);
1290                                 wret = del_ptr(root, path, 1, slot);
1291                                 if (wret)
1292                                         ret = wret;
1293                                 tree_block_release(root, leaf_buf);
1294                                 wret = free_extent(root, blocknr, 1);
1295                                 if (wret)
1296                                         ret = wret;
1297                         } else {
1298                                 tree_block_release(root, leaf_buf);
1299                         }
1300                 }
1301         }
1302         return ret;
1303 }
1304
1305 /*
1306  * walk up the tree as far as required to find the next leaf.
1307  * returns 0 if it found something or 1 if there are no greater leaves.
1308  * returns < 0 on io errors.
1309  */
1310 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1311 {
1312         int slot;
1313         int level = 1;
1314         u64 blocknr;
1315         struct tree_buffer *c;
1316         struct tree_buffer *next = NULL;
1317
1318         while(level < MAX_LEVEL) {
1319                 if (!path->nodes[level])
1320                         return 1;
1321                 slot = path->slots[level] + 1;
1322                 c = path->nodes[level];
1323                 if (slot >= btrfs_header_nritems(&c->node.header)) {
1324                         level++;
1325                         continue;
1326                 }
1327                 blocknr = c->node.blockptrs[slot];
1328                 if (next)
1329                         tree_block_release(root, next);
1330                 next = read_tree_block(root, blocknr);
1331                 break;
1332         }
1333         path->slots[level] = slot;
1334         while(1) {
1335                 level--;
1336                 c = path->nodes[level];
1337                 tree_block_release(root, c);
1338                 path->nodes[level] = next;
1339                 path->slots[level] = 0;
1340                 if (!level)
1341                         break;
1342                 next = read_tree_block(root, next->node.blockptrs[0]);
1343         }
1344         return 0;
1345 }
1346
1347