2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include "transaction.h"
21 #include "print-tree.h"
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25 *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_key *ins_key,
28 struct btrfs_path *path, int data_size, int extend);
29 static int push_node_left(struct btrfs_trans_handle *trans,
30 struct btrfs_root *root, struct extent_buffer *dst,
31 struct extent_buffer *src, int empty);
32 static int balance_node_right(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root,
34 struct extent_buffer *dst_buf,
35 struct extent_buffer *src_buf);
37 inline void btrfs_init_path(struct btrfs_path *p)
39 memset(p, 0, sizeof(*p));
42 struct btrfs_path *btrfs_alloc_path(void)
44 struct btrfs_path *path;
45 path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
49 void btrfs_free_path(struct btrfs_path *p)
53 btrfs_release_path(p);
57 void btrfs_release_path(struct btrfs_path *p)
60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
63 free_extent_buffer(p->nodes[i]);
65 memset(p, 0, sizeof(*p));
68 void add_root_to_dirty_list(struct btrfs_root *root)
70 if (root->track_dirty && list_empty(&root->dirty_list)) {
71 list_add(&root->dirty_list,
72 &root->fs_info->dirty_cowonly_roots);
76 int btrfs_copy_root(struct btrfs_trans_handle *trans,
77 struct btrfs_root *root,
78 struct extent_buffer *buf,
79 struct extent_buffer **cow_ret, u64 new_root_objectid)
81 struct extent_buffer *cow;
84 struct btrfs_root *new_root;
85 struct btrfs_disk_key disk_key;
87 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
91 memcpy(new_root, root, sizeof(*new_root));
92 new_root->root_key.objectid = new_root_objectid;
94 WARN_ON(root->ref_cows && trans->transid !=
95 root->fs_info->running_transaction->transid);
96 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
98 level = btrfs_header_level(buf);
100 btrfs_item_key(buf, &disk_key, 0);
102 btrfs_node_key(buf, &disk_key, 0);
103 cow = btrfs_alloc_free_block(trans, new_root, buf->len,
104 new_root_objectid, &disk_key,
105 level, buf->start, 0);
111 copy_extent_buffer(cow, buf, 0, 0, cow->len);
112 btrfs_set_header_bytenr(cow, cow->start);
113 btrfs_set_header_generation(cow, trans->transid);
114 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
115 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
116 BTRFS_HEADER_FLAG_RELOC);
117 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
118 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
120 btrfs_set_header_owner(cow, new_root_objectid);
122 write_extent_buffer(cow, root->fs_info->fsid,
123 btrfs_header_fsid(), BTRFS_FSID_SIZE);
125 WARN_ON(btrfs_header_generation(buf) > trans->transid);
126 ret = btrfs_inc_ref(trans, new_root, cow, 0);
132 btrfs_mark_buffer_dirty(cow);
138 * check if the tree block can be shared by multiple trees
140 static int btrfs_block_can_be_shared(struct btrfs_root *root,
141 struct extent_buffer *buf)
144 * Tree blocks not in refernece counted trees and tree roots
145 * are never shared. If a block was allocated after the last
146 * snapshot and the block was not allocated by tree relocation,
147 * we know the block is not shared.
149 if (root->ref_cows &&
150 buf != root->node && buf != root->commit_root &&
151 (btrfs_header_generation(buf) <=
152 btrfs_root_last_snapshot(&root->root_item) ||
153 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
155 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
156 if (root->ref_cows &&
157 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
163 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
164 struct btrfs_root *root,
165 struct extent_buffer *buf,
166 struct extent_buffer *cow)
175 * Backrefs update rules:
177 * Always use full backrefs for extent pointers in tree block
178 * allocated by tree relocation.
180 * If a shared tree block is no longer referenced by its owner
181 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
182 * use full backrefs for extent pointers in tree block.
184 * If a tree block is been relocating
185 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
186 * use full backrefs for extent pointers in tree block.
187 * The reason for this is some operations (such as drop tree)
188 * are only allowed for blocks use full backrefs.
191 if (btrfs_block_can_be_shared(root, buf)) {
192 ret = btrfs_lookup_extent_info(trans, root, buf->start,
193 btrfs_header_level(buf), 1,
199 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
200 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
201 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
206 owner = btrfs_header_owner(buf);
207 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
208 owner == BTRFS_TREE_RELOC_OBJECTID);
211 if ((owner == root->root_key.objectid ||
212 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
213 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
214 ret = btrfs_inc_ref(trans, root, buf, 1);
217 if (root->root_key.objectid ==
218 BTRFS_TREE_RELOC_OBJECTID) {
219 ret = btrfs_dec_ref(trans, root, buf, 0);
221 ret = btrfs_inc_ref(trans, root, cow, 1);
224 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
227 if (root->root_key.objectid ==
228 BTRFS_TREE_RELOC_OBJECTID)
229 ret = btrfs_inc_ref(trans, root, cow, 1);
231 ret = btrfs_inc_ref(trans, root, cow, 0);
234 if (new_flags != 0) {
235 ret = btrfs_set_block_flags(trans, root, buf->start,
236 btrfs_header_level(buf),
241 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
242 if (root->root_key.objectid ==
243 BTRFS_TREE_RELOC_OBJECTID)
244 ret = btrfs_inc_ref(trans, root, cow, 1);
246 ret = btrfs_inc_ref(trans, root, cow, 0);
248 ret = btrfs_dec_ref(trans, root, buf, 1);
251 clean_tree_block(trans, root, buf);
256 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
257 struct btrfs_root *root,
258 struct extent_buffer *buf,
259 struct extent_buffer *parent, int parent_slot,
260 struct extent_buffer **cow_ret,
261 u64 search_start, u64 empty_size)
263 struct extent_buffer *cow;
264 struct btrfs_disk_key disk_key;
267 WARN_ON(root->ref_cows && trans->transid !=
268 root->fs_info->running_transaction->transid);
269 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
271 level = btrfs_header_level(buf);
274 btrfs_item_key(buf, &disk_key, 0);
276 btrfs_node_key(buf, &disk_key, 0);
278 cow = btrfs_alloc_free_block(trans, root, buf->len,
279 root->root_key.objectid, &disk_key,
280 level, search_start, empty_size);
284 copy_extent_buffer(cow, buf, 0, 0, cow->len);
285 btrfs_set_header_bytenr(cow, cow->start);
286 btrfs_set_header_generation(cow, trans->transid);
287 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
288 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
289 BTRFS_HEADER_FLAG_RELOC);
290 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
291 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
293 btrfs_set_header_owner(cow, root->root_key.objectid);
295 write_extent_buffer(cow, root->fs_info->fsid,
296 btrfs_header_fsid(), BTRFS_FSID_SIZE);
298 WARN_ON(!(buf->flags & EXTENT_BAD_TRANSID) &&
299 btrfs_header_generation(buf) > trans->transid);
301 update_ref_for_cow(trans, root, buf, cow);
303 if (buf == root->node) {
305 extent_buffer_get(cow);
307 btrfs_free_extent(trans, root, buf->start, buf->len,
308 0, root->root_key.objectid, level, 0);
309 free_extent_buffer(buf);
310 add_root_to_dirty_list(root);
312 btrfs_set_node_blockptr(parent, parent_slot,
314 WARN_ON(trans->transid == 0);
315 btrfs_set_node_ptr_generation(parent, parent_slot,
317 btrfs_mark_buffer_dirty(parent);
318 WARN_ON(btrfs_header_generation(parent) != trans->transid);
320 btrfs_free_extent(trans, root, buf->start, buf->len,
321 0, root->root_key.objectid, level, 1);
323 if (!list_empty(&buf->recow)) {
324 list_del_init(&buf->recow);
325 free_extent_buffer(buf);
327 free_extent_buffer(buf);
328 btrfs_mark_buffer_dirty(cow);
333 static inline int should_cow_block(struct btrfs_trans_handle *trans,
334 struct btrfs_root *root,
335 struct extent_buffer *buf)
337 if (btrfs_header_generation(buf) == trans->transid &&
338 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
339 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
340 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
345 int btrfs_cow_block(struct btrfs_trans_handle *trans,
346 struct btrfs_root *root, struct extent_buffer *buf,
347 struct extent_buffer *parent, int parent_slot,
348 struct extent_buffer **cow_ret)
353 if (trans->transaction != root->fs_info->running_transaction) {
354 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
355 root->fs_info->running_transaction->transid);
359 if (trans->transid != root->fs_info->generation) {
360 printk(KERN_CRIT "trans %llu running %llu\n",
361 (unsigned long long)trans->transid,
362 (unsigned long long)root->fs_info->generation);
365 if (!should_cow_block(trans, root, buf)) {
370 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
371 ret = __btrfs_cow_block(trans, root, buf, parent,
372 parent_slot, cow_ret, search_start, 0);
376 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
378 if (k1->objectid > k2->objectid)
380 if (k1->objectid < k2->objectid)
382 if (k1->type > k2->type)
384 if (k1->type < k2->type)
386 if (k1->offset > k2->offset)
388 if (k1->offset < k2->offset)
394 * compare two keys in a memcmp fashion
396 static int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
400 btrfs_disk_key_to_cpu(&k1, disk);
401 return btrfs_comp_cpu_keys(&k1, k2);
405 * The leaf data grows from end-to-front in the node.
406 * this returns the address of the start of the last item,
407 * which is the stop of the leaf data stack
409 static inline unsigned int leaf_data_end(struct btrfs_root *root,
410 struct extent_buffer *leaf)
412 u32 nr = btrfs_header_nritems(leaf);
414 return BTRFS_LEAF_DATA_SIZE(root);
415 return btrfs_item_offset_nr(leaf, nr - 1);
418 enum btrfs_tree_block_status
419 btrfs_check_node(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
420 struct extent_buffer *buf)
423 struct btrfs_key cpukey;
424 struct btrfs_disk_key key;
425 u32 nritems = btrfs_header_nritems(buf);
426 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
428 if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root))
431 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
432 if (parent_key && parent_key->type) {
433 btrfs_node_key(buf, &key, 0);
434 if (memcmp(parent_key, &key, sizeof(key)))
437 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
438 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
439 btrfs_node_key(buf, &key, i);
440 btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
441 if (btrfs_comp_keys(&key, &cpukey) >= 0)
444 return BTRFS_TREE_BLOCK_CLEAN;
446 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
448 btrfs_disk_key_to_cpu(&cpukey, parent_key);
450 btrfs_node_key_to_cpu(buf, &cpukey, 0);
451 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
452 buf->start, buf->len,
453 btrfs_header_level(buf));
458 enum btrfs_tree_block_status
459 btrfs_check_leaf(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
460 struct extent_buffer *buf)
463 struct btrfs_key cpukey;
464 struct btrfs_disk_key key;
465 u32 nritems = btrfs_header_nritems(buf);
466 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
468 if (nritems * sizeof(struct btrfs_item) > buf->len) {
469 fprintf(stderr, "invalid number of items %llu\n",
470 (unsigned long long)buf->start);
474 if (btrfs_header_level(buf) != 0) {
475 ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
476 fprintf(stderr, "leaf is not a leaf %llu\n",
477 (unsigned long long)btrfs_header_bytenr(buf));
480 if (btrfs_leaf_free_space(root, buf) < 0) {
481 ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
482 fprintf(stderr, "leaf free space incorrect %llu %d\n",
483 (unsigned long long)btrfs_header_bytenr(buf),
484 btrfs_leaf_free_space(root, buf));
489 return BTRFS_TREE_BLOCK_CLEAN;
491 btrfs_item_key(buf, &key, 0);
492 if (parent_key && parent_key->type &&
493 memcmp(parent_key, &key, sizeof(key))) {
494 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
495 fprintf(stderr, "leaf parent key incorrect %llu\n",
496 (unsigned long long)btrfs_header_bytenr(buf));
499 for (i = 0; nritems > 1 && i < nritems - 1; i++) {
500 btrfs_item_key(buf, &key, i);
501 btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
502 if (btrfs_comp_keys(&key, &cpukey) >= 0) {
503 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
504 fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
507 if (btrfs_item_offset_nr(buf, i) !=
508 btrfs_item_end_nr(buf, i + 1)) {
509 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
510 fprintf(stderr, "incorrect offsets %u %u\n",
511 btrfs_item_offset_nr(buf, i),
512 btrfs_item_end_nr(buf, i + 1));
515 if (i == 0 && btrfs_item_end_nr(buf, i) !=
516 BTRFS_LEAF_DATA_SIZE(root)) {
517 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
518 fprintf(stderr, "bad item end %u wanted %u\n",
519 btrfs_item_end_nr(buf, i),
520 (unsigned)BTRFS_LEAF_DATA_SIZE(root));
525 for (i = 0; i < nritems; i++) {
526 if (btrfs_item_end_nr(buf, i) > BTRFS_LEAF_DATA_SIZE(root)) {
527 btrfs_item_key(buf, &key, 0);
528 btrfs_print_key(&key);
530 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
531 fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
532 (unsigned long long)btrfs_item_end_nr(buf, i),
533 (unsigned long long)BTRFS_LEAF_DATA_SIZE(root));
538 return BTRFS_TREE_BLOCK_CLEAN;
540 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
542 btrfs_disk_key_to_cpu(&cpukey, parent_key);
544 btrfs_item_key_to_cpu(buf, &cpukey, 0);
546 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
547 buf->start, buf->len, 0);
552 static int noinline check_block(struct btrfs_root *root,
553 struct btrfs_path *path, int level)
555 struct btrfs_disk_key key;
556 struct btrfs_disk_key *key_ptr = NULL;
557 struct extent_buffer *parent;
558 enum btrfs_tree_block_status ret;
560 if (path->skip_check_block)
562 if (path->nodes[level + 1]) {
563 parent = path->nodes[level + 1];
564 btrfs_node_key(parent, &key, path->slots[level + 1]);
568 ret = btrfs_check_leaf(root, key_ptr, path->nodes[0]);
570 ret = btrfs_check_node(root, key_ptr, path->nodes[level]);
571 if (ret == BTRFS_TREE_BLOCK_CLEAN)
577 * search for key in the extent_buffer. The items start at offset p,
578 * and they are item_size apart. There are 'max' items in p.
580 * the slot in the array is returned via slot, and it points to
581 * the place where you would insert key if it is not found in
584 * slot may point to max if the key is bigger than all of the keys
586 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
587 int item_size, struct btrfs_key *key,
594 unsigned long offset;
595 struct btrfs_disk_key *tmp;
598 mid = (low + high) / 2;
599 offset = p + mid * item_size;
601 tmp = (struct btrfs_disk_key *)(eb->data + offset);
602 ret = btrfs_comp_keys(tmp, key);
618 * simple bin_search frontend that does the right thing for
621 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
622 int level, int *slot)
625 return generic_bin_search(eb,
626 offsetof(struct btrfs_leaf, items),
627 sizeof(struct btrfs_item),
628 key, btrfs_header_nritems(eb),
631 return generic_bin_search(eb,
632 offsetof(struct btrfs_node, ptrs),
633 sizeof(struct btrfs_key_ptr),
634 key, btrfs_header_nritems(eb),
638 struct extent_buffer *read_node_slot(struct btrfs_root *root,
639 struct extent_buffer *parent, int slot)
641 int level = btrfs_header_level(parent);
644 if (slot >= btrfs_header_nritems(parent))
650 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
651 btrfs_level_size(root, level - 1),
652 btrfs_node_ptr_generation(parent, slot));
655 static int balance_level(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root,
657 struct btrfs_path *path, int level)
659 struct extent_buffer *right = NULL;
660 struct extent_buffer *mid;
661 struct extent_buffer *left = NULL;
662 struct extent_buffer *parent = NULL;
666 int orig_slot = path->slots[level];
672 mid = path->nodes[level];
673 WARN_ON(btrfs_header_generation(mid) != trans->transid);
675 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
677 if (level < BTRFS_MAX_LEVEL - 1) {
678 parent = path->nodes[level + 1];
679 pslot = path->slots[level + 1];
683 * deal with the case where there is only one pointer in the root
684 * by promoting the node below to a root
687 struct extent_buffer *child;
689 if (btrfs_header_nritems(mid) != 1)
692 /* promote the child to a root */
693 child = read_node_slot(root, mid, 0);
694 BUG_ON(!extent_buffer_uptodate(child));
695 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
699 add_root_to_dirty_list(root);
700 path->nodes[level] = NULL;
701 clean_tree_block(trans, root, mid);
702 wait_on_tree_block_writeback(root, mid);
703 /* once for the path */
704 free_extent_buffer(mid);
706 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
707 0, root->root_key.objectid,
709 /* once for the root ptr */
710 free_extent_buffer(mid);
713 if (btrfs_header_nritems(mid) >
714 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
717 left = read_node_slot(root, parent, pslot - 1);
718 if (extent_buffer_uptodate(left)) {
719 wret = btrfs_cow_block(trans, root, left,
720 parent, pslot - 1, &left);
726 right = read_node_slot(root, parent, pslot + 1);
727 if (extent_buffer_uptodate(right)) {
728 wret = btrfs_cow_block(trans, root, right,
729 parent, pslot + 1, &right);
736 /* first, try to make some room in the middle buffer */
738 orig_slot += btrfs_header_nritems(left);
739 wret = push_node_left(trans, root, left, mid, 1);
745 * then try to empty the right most buffer into the middle
748 wret = push_node_left(trans, root, mid, right, 1);
749 if (wret < 0 && wret != -ENOSPC)
751 if (btrfs_header_nritems(right) == 0) {
752 u64 bytenr = right->start;
753 u32 blocksize = right->len;
755 clean_tree_block(trans, root, right);
756 wait_on_tree_block_writeback(root, right);
757 free_extent_buffer(right);
759 wret = btrfs_del_ptr(trans, root, path,
760 level + 1, pslot + 1);
763 wret = btrfs_free_extent(trans, root, bytenr,
765 root->root_key.objectid,
770 struct btrfs_disk_key right_key;
771 btrfs_node_key(right, &right_key, 0);
772 btrfs_set_node_key(parent, &right_key, pslot + 1);
773 btrfs_mark_buffer_dirty(parent);
776 if (btrfs_header_nritems(mid) == 1) {
778 * we're not allowed to leave a node with one item in the
779 * tree during a delete. A deletion from lower in the tree
780 * could try to delete the only pointer in this node.
781 * So, pull some keys from the left.
782 * There has to be a left pointer at this point because
783 * otherwise we would have pulled some pointers from the
787 wret = balance_node_right(trans, root, mid, left);
793 wret = push_node_left(trans, root, left, mid, 1);
799 if (btrfs_header_nritems(mid) == 0) {
800 /* we've managed to empty the middle node, drop it */
801 u64 bytenr = mid->start;
802 u32 blocksize = mid->len;
803 clean_tree_block(trans, root, mid);
804 wait_on_tree_block_writeback(root, mid);
805 free_extent_buffer(mid);
807 wret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
810 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
811 0, root->root_key.objectid,
816 /* update the parent key to reflect our changes */
817 struct btrfs_disk_key mid_key;
818 btrfs_node_key(mid, &mid_key, 0);
819 btrfs_set_node_key(parent, &mid_key, pslot);
820 btrfs_mark_buffer_dirty(parent);
823 /* update the path */
825 if (btrfs_header_nritems(left) > orig_slot) {
826 extent_buffer_get(left);
827 path->nodes[level] = left;
828 path->slots[level + 1] -= 1;
829 path->slots[level] = orig_slot;
831 free_extent_buffer(mid);
833 orig_slot -= btrfs_header_nritems(left);
834 path->slots[level] = orig_slot;
837 /* double check we haven't messed things up */
838 check_block(root, path, level);
840 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
844 free_extent_buffer(right);
846 free_extent_buffer(left);
850 /* returns zero if the push worked, non-zero otherwise */
851 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
852 struct btrfs_root *root,
853 struct btrfs_path *path, int level)
855 struct extent_buffer *right = NULL;
856 struct extent_buffer *mid;
857 struct extent_buffer *left = NULL;
858 struct extent_buffer *parent = NULL;
862 int orig_slot = path->slots[level];
867 mid = path->nodes[level];
868 WARN_ON(btrfs_header_generation(mid) != trans->transid);
870 if (level < BTRFS_MAX_LEVEL - 1) {
871 parent = path->nodes[level + 1];
872 pslot = path->slots[level + 1];
878 left = read_node_slot(root, parent, pslot - 1);
880 /* first, try to make some room in the middle buffer */
881 if (extent_buffer_uptodate(left)) {
883 left_nr = btrfs_header_nritems(left);
884 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
887 ret = btrfs_cow_block(trans, root, left, parent,
892 wret = push_node_left(trans, root,
899 struct btrfs_disk_key disk_key;
900 orig_slot += left_nr;
901 btrfs_node_key(mid, &disk_key, 0);
902 btrfs_set_node_key(parent, &disk_key, pslot);
903 btrfs_mark_buffer_dirty(parent);
904 if (btrfs_header_nritems(left) > orig_slot) {
905 path->nodes[level] = left;
906 path->slots[level + 1] -= 1;
907 path->slots[level] = orig_slot;
908 free_extent_buffer(mid);
911 btrfs_header_nritems(left);
912 path->slots[level] = orig_slot;
913 free_extent_buffer(left);
917 free_extent_buffer(left);
919 right= read_node_slot(root, parent, pslot + 1);
922 * then try to empty the right most buffer into the middle
924 if (extent_buffer_uptodate(right)) {
926 right_nr = btrfs_header_nritems(right);
927 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
930 ret = btrfs_cow_block(trans, root, right,
936 wret = balance_node_right(trans, root,
943 struct btrfs_disk_key disk_key;
945 btrfs_node_key(right, &disk_key, 0);
946 btrfs_set_node_key(parent, &disk_key, pslot + 1);
947 btrfs_mark_buffer_dirty(parent);
949 if (btrfs_header_nritems(mid) <= orig_slot) {
950 path->nodes[level] = right;
951 path->slots[level + 1] += 1;
952 path->slots[level] = orig_slot -
953 btrfs_header_nritems(mid);
954 free_extent_buffer(mid);
956 free_extent_buffer(right);
960 free_extent_buffer(right);
966 * readahead one full node of leaves
968 void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
969 int level, int slot, u64 objectid)
971 struct extent_buffer *node;
972 struct btrfs_disk_key disk_key;
978 int direction = path->reada;
979 struct extent_buffer *eb;
987 if (!path->nodes[level])
990 node = path->nodes[level];
991 search = btrfs_node_blockptr(node, slot);
992 blocksize = btrfs_level_size(root, level - 1);
993 eb = btrfs_find_tree_block(root, search, blocksize);
995 free_extent_buffer(eb);
999 highest_read = search;
1000 lowest_read = search;
1002 nritems = btrfs_header_nritems(node);
1005 if (direction < 0) {
1009 } else if (direction > 0) {
1014 if (path->reada < 0 && objectid) {
1015 btrfs_node_key(node, &disk_key, nr);
1016 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1019 search = btrfs_node_blockptr(node, nr);
1020 if ((search >= lowest_read && search <= highest_read) ||
1021 (search < lowest_read && lowest_read - search <= 32768) ||
1022 (search > highest_read && search - highest_read <= 32768)) {
1023 readahead_tree_block(root, search, blocksize,
1024 btrfs_node_ptr_generation(node, nr));
1028 if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
1030 if(nread > (1024 * 1024) || nscan > 128)
1033 if (search < lowest_read)
1034 lowest_read = search;
1035 if (search > highest_read)
1036 highest_read = search;
1040 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
1041 u64 iobjectid, u64 ioff, u8 key_type,
1042 struct btrfs_key *found_key)
1045 struct btrfs_key key;
1046 struct extent_buffer *eb;
1047 struct btrfs_path *path;
1049 key.type = key_type;
1050 key.objectid = iobjectid;
1053 if (found_path == NULL) {
1054 path = btrfs_alloc_path();
1060 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1061 if ((ret < 0) || (found_key == NULL)) {
1062 if (path != found_path)
1063 btrfs_free_path(path);
1067 eb = path->nodes[0];
1068 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1069 ret = btrfs_next_leaf(fs_root, path);
1072 eb = path->nodes[0];
1075 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1076 if (found_key->type != key.type ||
1077 found_key->objectid != key.objectid)
1084 * look for key in the tree. path is filled in with nodes along the way
1085 * if key is found, we return zero and you can find the item in the leaf
1086 * level of the path (level 0)
1088 * If the key isn't found, the path points to the slot where it should
1089 * be inserted, and 1 is returned. If there are other errors during the
1090 * search a negative error number is returned.
1092 * if ins_len > 0, nodes and leaves will be split as we walk down the
1093 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1096 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1097 *root, struct btrfs_key *key, struct btrfs_path *p, int
1100 struct extent_buffer *b;
1104 int should_reada = p->reada;
1105 u8 lowest_level = 0;
1107 lowest_level = p->lowest_level;
1108 WARN_ON(lowest_level && ins_len > 0);
1109 WARN_ON(p->nodes[0] != NULL);
1111 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1115 extent_buffer_get(b);
1117 level = btrfs_header_level(b);
1120 wret = btrfs_cow_block(trans, root, b,
1121 p->nodes[level + 1],
1122 p->slots[level + 1],
1125 free_extent_buffer(b);
1129 BUG_ON(!cow && ins_len);
1130 if (level != btrfs_header_level(b))
1132 level = btrfs_header_level(b);
1133 p->nodes[level] = b;
1134 ret = check_block(root, p, level);
1137 ret = bin_search(b, key, level, &slot);
1139 if (ret && slot > 0)
1141 p->slots[level] = slot;
1142 if ((p->search_for_split || ins_len > 0) &&
1143 btrfs_header_nritems(b) >=
1144 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1145 int sret = split_node(trans, root, p, level);
1149 b = p->nodes[level];
1150 slot = p->slots[level];
1151 } else if (ins_len < 0) {
1152 int sret = balance_level(trans, root, p,
1156 b = p->nodes[level];
1158 btrfs_release_path(p);
1161 slot = p->slots[level];
1162 BUG_ON(btrfs_header_nritems(b) == 1);
1164 /* this is only true while dropping a snapshot */
1165 if (level == lowest_level)
1169 reada_for_search(root, p, level, slot,
1172 b = read_node_slot(root, b, slot);
1173 if (!extent_buffer_uptodate(b))
1176 p->slots[level] = slot;
1178 ins_len > btrfs_leaf_free_space(root, b)) {
1179 int sret = split_leaf(trans, root, key,
1180 p, ins_len, ret == 0);
1192 * adjust the pointers going up the tree, starting at level
1193 * making sure the right key of each node is points to 'key'.
1194 * This is used after shifting pointers to the left, so it stops
1195 * fixing up pointers when a given leaf/node is not in slot 0 of the
1198 void btrfs_fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
1199 struct btrfs_disk_key *key, int level)
1202 struct extent_buffer *t;
1204 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1205 int tslot = path->slots[i];
1206 if (!path->nodes[i])
1209 btrfs_set_node_key(t, key, tslot);
1210 btrfs_mark_buffer_dirty(path->nodes[i]);
1219 * This function isn't completely safe. It's the caller's responsibility
1220 * that the new key won't break the order
1222 int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
1223 struct btrfs_key *new_key)
1225 struct btrfs_disk_key disk_key;
1226 struct extent_buffer *eb;
1229 eb = path->nodes[0];
1230 slot = path->slots[0];
1232 btrfs_item_key(eb, &disk_key, slot - 1);
1233 if (btrfs_comp_keys(&disk_key, new_key) >= 0)
1236 if (slot < btrfs_header_nritems(eb) - 1) {
1237 btrfs_item_key(eb, &disk_key, slot + 1);
1238 if (btrfs_comp_keys(&disk_key, new_key) <= 0)
1242 btrfs_cpu_key_to_disk(&disk_key, new_key);
1243 btrfs_set_item_key(eb, &disk_key, slot);
1244 btrfs_mark_buffer_dirty(eb);
1246 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1251 * update an item key without the safety checks. This is meant to be called by
1254 void btrfs_set_item_key_unsafe(struct btrfs_root *root,
1255 struct btrfs_path *path,
1256 struct btrfs_key *new_key)
1258 struct btrfs_disk_key disk_key;
1259 struct extent_buffer *eb;
1262 eb = path->nodes[0];
1263 slot = path->slots[0];
1265 btrfs_cpu_key_to_disk(&disk_key, new_key);
1266 btrfs_set_item_key(eb, &disk_key, slot);
1267 btrfs_mark_buffer_dirty(eb);
1269 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1273 * try to push data from one node into the next node left in the
1276 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1277 * error, and > 0 if there was no room in the left hand block.
1279 static int push_node_left(struct btrfs_trans_handle *trans,
1280 struct btrfs_root *root, struct extent_buffer *dst,
1281 struct extent_buffer *src, int empty)
1288 src_nritems = btrfs_header_nritems(src);
1289 dst_nritems = btrfs_header_nritems(dst);
1290 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1291 WARN_ON(btrfs_header_generation(src) != trans->transid);
1292 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1294 if (!empty && src_nritems <= 8)
1297 if (push_items <= 0) {
1302 push_items = min(src_nritems, push_items);
1303 if (push_items < src_nritems) {
1304 /* leave at least 8 pointers in the node if
1305 * we aren't going to empty it
1307 if (src_nritems - push_items < 8) {
1308 if (push_items <= 8)
1314 push_items = min(src_nritems - 8, push_items);
1316 copy_extent_buffer(dst, src,
1317 btrfs_node_key_ptr_offset(dst_nritems),
1318 btrfs_node_key_ptr_offset(0),
1319 push_items * sizeof(struct btrfs_key_ptr));
1321 if (push_items < src_nritems) {
1322 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1323 btrfs_node_key_ptr_offset(push_items),
1324 (src_nritems - push_items) *
1325 sizeof(struct btrfs_key_ptr));
1327 btrfs_set_header_nritems(src, src_nritems - push_items);
1328 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1329 btrfs_mark_buffer_dirty(src);
1330 btrfs_mark_buffer_dirty(dst);
1336 * try to push data from one node into the next node right in the
1339 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1340 * error, and > 0 if there was no room in the right hand block.
1342 * this will only push up to 1/2 the contents of the left node over
1344 static int balance_node_right(struct btrfs_trans_handle *trans,
1345 struct btrfs_root *root,
1346 struct extent_buffer *dst,
1347 struct extent_buffer *src)
1355 WARN_ON(btrfs_header_generation(src) != trans->transid);
1356 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1358 src_nritems = btrfs_header_nritems(src);
1359 dst_nritems = btrfs_header_nritems(dst);
1360 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1361 if (push_items <= 0) {
1365 if (src_nritems < 4) {
1369 max_push = src_nritems / 2 + 1;
1370 /* don't try to empty the node */
1371 if (max_push >= src_nritems) {
1375 if (max_push < push_items)
1376 push_items = max_push;
1378 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1379 btrfs_node_key_ptr_offset(0),
1381 sizeof(struct btrfs_key_ptr));
1383 copy_extent_buffer(dst, src,
1384 btrfs_node_key_ptr_offset(0),
1385 btrfs_node_key_ptr_offset(src_nritems - push_items),
1386 push_items * sizeof(struct btrfs_key_ptr));
1388 btrfs_set_header_nritems(src, src_nritems - push_items);
1389 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1391 btrfs_mark_buffer_dirty(src);
1392 btrfs_mark_buffer_dirty(dst);
1398 * helper function to insert a new root level in the tree.
1399 * A new node is allocated, and a single item is inserted to
1400 * point to the existing root
1402 * returns zero on success or < 0 on failure.
1404 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1405 struct btrfs_root *root,
1406 struct btrfs_path *path, int level)
1409 struct extent_buffer *lower;
1410 struct extent_buffer *c;
1411 struct extent_buffer *old;
1412 struct btrfs_disk_key lower_key;
1414 BUG_ON(path->nodes[level]);
1415 BUG_ON(path->nodes[level-1] != root->node);
1417 lower = path->nodes[level-1];
1419 btrfs_item_key(lower, &lower_key, 0);
1421 btrfs_node_key(lower, &lower_key, 0);
1423 c = btrfs_alloc_free_block(trans, root, root->nodesize,
1424 root->root_key.objectid, &lower_key,
1425 level, root->node->start, 0);
1430 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1431 btrfs_set_header_nritems(c, 1);
1432 btrfs_set_header_level(c, level);
1433 btrfs_set_header_bytenr(c, c->start);
1434 btrfs_set_header_generation(c, trans->transid);
1435 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(c, root->root_key.objectid);
1438 write_extent_buffer(c, root->fs_info->fsid,
1439 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1441 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1442 btrfs_header_chunk_tree_uuid(c),
1445 btrfs_set_node_key(c, &lower_key, 0);
1446 btrfs_set_node_blockptr(c, 0, lower->start);
1447 lower_gen = btrfs_header_generation(lower);
1448 WARN_ON(lower_gen != trans->transid);
1450 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1452 btrfs_mark_buffer_dirty(c);
1457 /* the super has an extra ref to root->node */
1458 free_extent_buffer(old);
1460 add_root_to_dirty_list(root);
1461 extent_buffer_get(c);
1462 path->nodes[level] = c;
1463 path->slots[level] = 0;
1468 * worker function to insert a single pointer in a node.
1469 * the node should have enough room for the pointer already
1471 * slot and level indicate where you want the key to go, and
1472 * blocknr is the block the key points to.
1474 * returns zero on success and < 0 on any error
1476 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1477 *root, struct btrfs_path *path, struct btrfs_disk_key
1478 *key, u64 bytenr, int slot, int level)
1480 struct extent_buffer *lower;
1483 BUG_ON(!path->nodes[level]);
1484 lower = path->nodes[level];
1485 nritems = btrfs_header_nritems(lower);
1488 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1490 if (slot != nritems) {
1491 memmove_extent_buffer(lower,
1492 btrfs_node_key_ptr_offset(slot + 1),
1493 btrfs_node_key_ptr_offset(slot),
1494 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1496 btrfs_set_node_key(lower, key, slot);
1497 btrfs_set_node_blockptr(lower, slot, bytenr);
1498 WARN_ON(trans->transid == 0);
1499 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1500 btrfs_set_header_nritems(lower, nritems + 1);
1501 btrfs_mark_buffer_dirty(lower);
1506 * split the node at the specified level in path in two.
1507 * The path is corrected to point to the appropriate node after the split
1509 * Before splitting this tries to make some room in the node by pushing
1510 * left and right, if either one works, it returns right away.
1512 * returns 0 on success and < 0 on failure
1514 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1515 *root, struct btrfs_path *path, int level)
1517 struct extent_buffer *c;
1518 struct extent_buffer *split;
1519 struct btrfs_disk_key disk_key;
1525 c = path->nodes[level];
1526 WARN_ON(btrfs_header_generation(c) != trans->transid);
1527 if (c == root->node) {
1528 /* trying to split the root, lets make a new one */
1529 ret = insert_new_root(trans, root, path, level + 1);
1533 ret = push_nodes_for_insert(trans, root, path, level);
1534 c = path->nodes[level];
1535 if (!ret && btrfs_header_nritems(c) <
1536 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
1542 c_nritems = btrfs_header_nritems(c);
1543 mid = (c_nritems + 1) / 2;
1544 btrfs_node_key(c, &disk_key, mid);
1546 split = btrfs_alloc_free_block(trans, root, root->nodesize,
1547 root->root_key.objectid,
1548 &disk_key, level, c->start, 0);
1550 return PTR_ERR(split);
1552 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
1553 btrfs_set_header_level(split, btrfs_header_level(c));
1554 btrfs_set_header_bytenr(split, split->start);
1555 btrfs_set_header_generation(split, trans->transid);
1556 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
1557 btrfs_set_header_owner(split, root->root_key.objectid);
1558 write_extent_buffer(split, root->fs_info->fsid,
1559 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1560 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1561 btrfs_header_chunk_tree_uuid(split),
1565 copy_extent_buffer(split, c,
1566 btrfs_node_key_ptr_offset(0),
1567 btrfs_node_key_ptr_offset(mid),
1568 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1569 btrfs_set_header_nritems(split, c_nritems - mid);
1570 btrfs_set_header_nritems(c, mid);
1573 btrfs_mark_buffer_dirty(c);
1574 btrfs_mark_buffer_dirty(split);
1576 wret = insert_ptr(trans, root, path, &disk_key, split->start,
1577 path->slots[level + 1] + 1,
1582 if (path->slots[level] >= mid) {
1583 path->slots[level] -= mid;
1584 free_extent_buffer(c);
1585 path->nodes[level] = split;
1586 path->slots[level + 1] += 1;
1588 free_extent_buffer(split);
1594 * how many bytes are required to store the items in a leaf. start
1595 * and nr indicate which items in the leaf to check. This totals up the
1596 * space used both by the item structs and the item data
1598 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1601 int nritems = btrfs_header_nritems(l);
1602 int end = min(nritems, start + nr) - 1;
1606 data_len = btrfs_item_end_nr(l, start);
1607 data_len = data_len - btrfs_item_offset_nr(l, end);
1608 data_len += sizeof(struct btrfs_item) * nr;
1609 WARN_ON(data_len < 0);
1614 * The space between the end of the leaf items and
1615 * the start of the leaf data. IOW, how much room
1616 * the leaf has left for both items and data
1618 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1620 int nritems = btrfs_header_nritems(leaf);
1622 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
1624 printk("leaf free space ret %d, leaf data size %lu, used %d nritems %d\n",
1625 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
1626 leaf_space_used(leaf, 0, nritems), nritems);
1632 * push some data in the path leaf to the right, trying to free up at
1633 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1635 * returns 1 if the push failed because the other node didn't have enough
1636 * room, 0 if everything worked out and < 0 if there were major errors.
1638 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1639 *root, struct btrfs_path *path, int data_size,
1642 struct extent_buffer *left = path->nodes[0];
1643 struct extent_buffer *right;
1644 struct extent_buffer *upper;
1645 struct btrfs_disk_key disk_key;
1651 struct btrfs_item *item;
1659 slot = path->slots[1];
1660 if (!path->nodes[1]) {
1663 upper = path->nodes[1];
1664 if (slot >= btrfs_header_nritems(upper) - 1)
1667 right = read_node_slot(root, upper, slot + 1);
1668 if (!extent_buffer_uptodate(right)) {
1670 return PTR_ERR(right);
1673 free_space = btrfs_leaf_free_space(root, right);
1674 if (free_space < data_size) {
1675 free_extent_buffer(right);
1679 /* cow and double check */
1680 ret = btrfs_cow_block(trans, root, right, upper,
1683 free_extent_buffer(right);
1686 free_space = btrfs_leaf_free_space(root, right);
1687 if (free_space < data_size) {
1688 free_extent_buffer(right);
1692 left_nritems = btrfs_header_nritems(left);
1693 if (left_nritems == 0) {
1694 free_extent_buffer(right);
1703 i = left_nritems - 1;
1705 item = btrfs_item_nr(i);
1707 if (path->slots[0] == i)
1708 push_space += data_size + sizeof(*item);
1710 this_item_size = btrfs_item_size(left, item);
1711 if (this_item_size + sizeof(*item) + push_space > free_space)
1714 push_space += this_item_size + sizeof(*item);
1720 if (push_items == 0) {
1721 free_extent_buffer(right);
1725 if (!empty && push_items == left_nritems)
1728 /* push left to right */
1729 right_nritems = btrfs_header_nritems(right);
1731 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1732 push_space -= leaf_data_end(root, left);
1734 /* make room in the right data area */
1735 data_end = leaf_data_end(root, right);
1736 memmove_extent_buffer(right,
1737 btrfs_leaf_data(right) + data_end - push_space,
1738 btrfs_leaf_data(right) + data_end,
1739 BTRFS_LEAF_DATA_SIZE(root) - data_end);
1741 /* copy from the left data area */
1742 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1743 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1744 btrfs_leaf_data(left) + leaf_data_end(root, left),
1747 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1748 btrfs_item_nr_offset(0),
1749 right_nritems * sizeof(struct btrfs_item));
1751 /* copy the items from left to right */
1752 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1753 btrfs_item_nr_offset(left_nritems - push_items),
1754 push_items * sizeof(struct btrfs_item));
1756 /* update the item pointers */
1757 right_nritems += push_items;
1758 btrfs_set_header_nritems(right, right_nritems);
1759 push_space = BTRFS_LEAF_DATA_SIZE(root);
1760 for (i = 0; i < right_nritems; i++) {
1761 item = btrfs_item_nr(i);
1762 push_space -= btrfs_item_size(right, item);
1763 btrfs_set_item_offset(right, item, push_space);
1766 left_nritems -= push_items;
1767 btrfs_set_header_nritems(left, left_nritems);
1770 btrfs_mark_buffer_dirty(left);
1771 btrfs_mark_buffer_dirty(right);
1773 btrfs_item_key(right, &disk_key, 0);
1774 btrfs_set_node_key(upper, &disk_key, slot + 1);
1775 btrfs_mark_buffer_dirty(upper);
1777 /* then fixup the leaf pointer in the path */
1778 if (path->slots[0] >= left_nritems) {
1779 path->slots[0] -= left_nritems;
1780 free_extent_buffer(path->nodes[0]);
1781 path->nodes[0] = right;
1782 path->slots[1] += 1;
1784 free_extent_buffer(right);
1789 * push some data in the path leaf to the left, trying to free up at
1790 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1792 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1793 *root, struct btrfs_path *path, int data_size,
1796 struct btrfs_disk_key disk_key;
1797 struct extent_buffer *right = path->nodes[0];
1798 struct extent_buffer *left;
1804 struct btrfs_item *item;
1805 u32 old_left_nritems;
1810 u32 old_left_item_size;
1812 slot = path->slots[1];
1815 if (!path->nodes[1])
1818 right_nritems = btrfs_header_nritems(right);
1819 if (right_nritems == 0) {
1823 left = read_node_slot(root, path->nodes[1], slot - 1);
1824 free_space = btrfs_leaf_free_space(root, left);
1825 if (free_space < data_size) {
1826 free_extent_buffer(left);
1830 /* cow and double check */
1831 ret = btrfs_cow_block(trans, root, left,
1832 path->nodes[1], slot - 1, &left);
1834 /* we hit -ENOSPC, but it isn't fatal here */
1835 free_extent_buffer(left);
1839 free_space = btrfs_leaf_free_space(root, left);
1840 if (free_space < data_size) {
1841 free_extent_buffer(left);
1848 nr = right_nritems - 1;
1850 for (i = 0; i < nr; i++) {
1851 item = btrfs_item_nr(i);
1853 if (path->slots[0] == i)
1854 push_space += data_size + sizeof(*item);
1856 this_item_size = btrfs_item_size(right, item);
1857 if (this_item_size + sizeof(*item) + push_space > free_space)
1861 push_space += this_item_size + sizeof(*item);
1864 if (push_items == 0) {
1865 free_extent_buffer(left);
1868 if (!empty && push_items == btrfs_header_nritems(right))
1871 /* push data from right to left */
1872 copy_extent_buffer(left, right,
1873 btrfs_item_nr_offset(btrfs_header_nritems(left)),
1874 btrfs_item_nr_offset(0),
1875 push_items * sizeof(struct btrfs_item));
1877 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1878 btrfs_item_offset_nr(right, push_items -1);
1880 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1881 leaf_data_end(root, left) - push_space,
1882 btrfs_leaf_data(right) +
1883 btrfs_item_offset_nr(right, push_items - 1),
1885 old_left_nritems = btrfs_header_nritems(left);
1886 BUG_ON(old_left_nritems == 0);
1888 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1889 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1892 item = btrfs_item_nr(i);
1893 ioff = btrfs_item_offset(left, item);
1894 btrfs_set_item_offset(left, item,
1895 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
1897 btrfs_set_header_nritems(left, old_left_nritems + push_items);
1899 /* fixup right node */
1900 if (push_items > right_nritems) {
1901 printk("push items %d nr %u\n", push_items, right_nritems);
1905 if (push_items < right_nritems) {
1906 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1907 leaf_data_end(root, right);
1908 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1909 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1910 btrfs_leaf_data(right) +
1911 leaf_data_end(root, right), push_space);
1913 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1914 btrfs_item_nr_offset(push_items),
1915 (btrfs_header_nritems(right) - push_items) *
1916 sizeof(struct btrfs_item));
1918 right_nritems -= push_items;
1919 btrfs_set_header_nritems(right, right_nritems);
1920 push_space = BTRFS_LEAF_DATA_SIZE(root);
1921 for (i = 0; i < right_nritems; i++) {
1922 item = btrfs_item_nr(i);
1923 push_space = push_space - btrfs_item_size(right, item);
1924 btrfs_set_item_offset(right, item, push_space);
1927 btrfs_mark_buffer_dirty(left);
1929 btrfs_mark_buffer_dirty(right);
1931 btrfs_item_key(right, &disk_key, 0);
1932 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1934 /* then fixup the leaf pointer in the path */
1935 if (path->slots[0] < push_items) {
1936 path->slots[0] += old_left_nritems;
1937 free_extent_buffer(path->nodes[0]);
1938 path->nodes[0] = left;
1939 path->slots[1] -= 1;
1941 free_extent_buffer(left);
1942 path->slots[0] -= push_items;
1944 BUG_ON(path->slots[0] < 0);
1949 * split the path's leaf in two, making sure there is at least data_size
1950 * available for the resulting leaf level of the path.
1952 * returns 0 if all went well and < 0 on failure.
1954 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_path *path,
1957 struct extent_buffer *l,
1958 struct extent_buffer *right,
1959 int slot, int mid, int nritems)
1966 struct btrfs_disk_key disk_key;
1968 nritems = nritems - mid;
1969 btrfs_set_header_nritems(right, nritems);
1970 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
1972 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1973 btrfs_item_nr_offset(mid),
1974 nritems * sizeof(struct btrfs_item));
1976 copy_extent_buffer(right, l,
1977 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1978 data_copy_size, btrfs_leaf_data(l) +
1979 leaf_data_end(root, l), data_copy_size);
1981 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1982 btrfs_item_end_nr(l, mid);
1984 for (i = 0; i < nritems; i++) {
1985 struct btrfs_item *item = btrfs_item_nr(i);
1986 u32 ioff = btrfs_item_offset(right, item);
1987 btrfs_set_item_offset(right, item, ioff + rt_data_off);
1990 btrfs_set_header_nritems(l, mid);
1992 btrfs_item_key(right, &disk_key, 0);
1993 wret = insert_ptr(trans, root, path, &disk_key, right->start,
1994 path->slots[1] + 1, 1);
1998 btrfs_mark_buffer_dirty(right);
1999 btrfs_mark_buffer_dirty(l);
2000 BUG_ON(path->slots[0] != slot);
2003 free_extent_buffer(path->nodes[0]);
2004 path->nodes[0] = right;
2005 path->slots[0] -= mid;
2006 path->slots[1] += 1;
2008 free_extent_buffer(right);
2011 BUG_ON(path->slots[0] < 0);
2017 * split the path's leaf in two, making sure there is at least data_size
2018 * available for the resulting leaf level of the path.
2020 * returns 0 if all went well and < 0 on failure.
2022 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2023 struct btrfs_root *root,
2024 struct btrfs_key *ins_key,
2025 struct btrfs_path *path, int data_size,
2028 struct btrfs_disk_key disk_key;
2029 struct extent_buffer *l;
2033 struct extent_buffer *right;
2037 int num_doubles = 0;
2040 slot = path->slots[0];
2041 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2042 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2045 /* first try to make some room by pushing left and right */
2046 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2047 wret = push_leaf_right(trans, root, path, data_size, 0);
2051 wret = push_leaf_left(trans, root, path, data_size, 0);
2057 /* did the pushes work? */
2058 if (btrfs_leaf_free_space(root, l) >= data_size)
2062 if (!path->nodes[1]) {
2063 ret = insert_new_root(trans, root, path, 1);
2070 slot = path->slots[0];
2071 nritems = btrfs_header_nritems(l);
2072 mid = (nritems + 1) / 2;
2076 leaf_space_used(l, mid, nritems - mid) + data_size >
2077 BTRFS_LEAF_DATA_SIZE(root)) {
2078 if (slot >= nritems) {
2082 if (mid != nritems &&
2083 leaf_space_used(l, mid, nritems - mid) +
2084 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2090 if (leaf_space_used(l, 0, mid) + data_size >
2091 BTRFS_LEAF_DATA_SIZE(root)) {
2092 if (!extend && data_size && slot == 0) {
2094 } else if ((extend || !data_size) && slot == 0) {
2098 if (mid != nritems &&
2099 leaf_space_used(l, mid, nritems - mid) +
2100 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2108 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2110 btrfs_item_key(l, &disk_key, mid);
2112 right = btrfs_alloc_free_block(trans, root, root->leafsize,
2113 root->root_key.objectid,
2114 &disk_key, 0, l->start, 0);
2115 if (IS_ERR(right)) {
2117 return PTR_ERR(right);
2120 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2121 btrfs_set_header_bytenr(right, right->start);
2122 btrfs_set_header_generation(right, trans->transid);
2123 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2124 btrfs_set_header_owner(right, root->root_key.objectid);
2125 btrfs_set_header_level(right, 0);
2126 write_extent_buffer(right, root->fs_info->fsid,
2127 btrfs_header_fsid(), BTRFS_FSID_SIZE);
2129 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2130 btrfs_header_chunk_tree_uuid(right),
2135 btrfs_set_header_nritems(right, 0);
2136 wret = insert_ptr(trans, root, path,
2137 &disk_key, right->start,
2138 path->slots[1] + 1, 1);
2142 free_extent_buffer(path->nodes[0]);
2143 path->nodes[0] = right;
2145 path->slots[1] += 1;
2147 btrfs_set_header_nritems(right, 0);
2148 wret = insert_ptr(trans, root, path,
2154 free_extent_buffer(path->nodes[0]);
2155 path->nodes[0] = right;
2157 if (path->slots[1] == 0) {
2158 btrfs_fixup_low_keys(root, path,
2162 btrfs_mark_buffer_dirty(right);
2166 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2170 BUG_ON(num_doubles != 0);
2179 * This function splits a single item into two items,
2180 * giving 'new_key' to the new item and splitting the
2181 * old one at split_offset (from the start of the item).
2183 * The path may be released by this operation. After
2184 * the split, the path is pointing to the old item. The
2185 * new item is going to be in the same node as the old one.
2187 * Note, the item being split must be smaller enough to live alone on
2188 * a tree block with room for one extra struct btrfs_item
2190 * This allows us to split the item in place, keeping a lock on the
2191 * leaf the entire time.
2193 int btrfs_split_item(struct btrfs_trans_handle *trans,
2194 struct btrfs_root *root,
2195 struct btrfs_path *path,
2196 struct btrfs_key *new_key,
2197 unsigned long split_offset)
2200 struct extent_buffer *leaf;
2201 struct btrfs_key orig_key;
2202 struct btrfs_item *item;
2203 struct btrfs_item *new_item;
2208 struct btrfs_disk_key disk_key;
2211 leaf = path->nodes[0];
2212 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2213 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2216 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2217 btrfs_release_path(path);
2219 path->search_for_split = 1;
2221 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2222 path->search_for_split = 0;
2224 /* if our item isn't there or got smaller, return now */
2225 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2230 ret = split_leaf(trans, root, &orig_key, path, 0, 0);
2233 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2234 leaf = path->nodes[0];
2237 item = btrfs_item_nr(path->slots[0]);
2238 orig_offset = btrfs_item_offset(leaf, item);
2239 item_size = btrfs_item_size(leaf, item);
2242 buf = kmalloc(item_size, GFP_NOFS);
2243 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2244 path->slots[0]), item_size);
2245 slot = path->slots[0] + 1;
2246 leaf = path->nodes[0];
2248 nritems = btrfs_header_nritems(leaf);
2250 if (slot != nritems) {
2251 /* shift the items */
2252 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2253 btrfs_item_nr_offset(slot),
2254 (nritems - slot) * sizeof(struct btrfs_item));
2258 btrfs_cpu_key_to_disk(&disk_key, new_key);
2259 btrfs_set_item_key(leaf, &disk_key, slot);
2261 new_item = btrfs_item_nr(slot);
2263 btrfs_set_item_offset(leaf, new_item, orig_offset);
2264 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2266 btrfs_set_item_offset(leaf, item,
2267 orig_offset + item_size - split_offset);
2268 btrfs_set_item_size(leaf, item, split_offset);
2270 btrfs_set_header_nritems(leaf, nritems + 1);
2272 /* write the data for the start of the original item */
2273 write_extent_buffer(leaf, buf,
2274 btrfs_item_ptr_offset(leaf, path->slots[0]),
2277 /* write the data for the new item */
2278 write_extent_buffer(leaf, buf + split_offset,
2279 btrfs_item_ptr_offset(leaf, slot),
2280 item_size - split_offset);
2281 btrfs_mark_buffer_dirty(leaf);
2284 if (btrfs_leaf_free_space(root, leaf) < 0) {
2285 btrfs_print_leaf(root, leaf);
2292 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2293 struct btrfs_root *root,
2294 struct btrfs_path *path,
2295 u32 new_size, int from_end)
2299 struct extent_buffer *leaf;
2300 struct btrfs_item *item;
2302 unsigned int data_end;
2303 unsigned int old_data_start;
2304 unsigned int old_size;
2305 unsigned int size_diff;
2308 leaf = path->nodes[0];
2309 slot = path->slots[0];
2311 old_size = btrfs_item_size_nr(leaf, slot);
2312 if (old_size == new_size)
2315 nritems = btrfs_header_nritems(leaf);
2316 data_end = leaf_data_end(root, leaf);
2318 old_data_start = btrfs_item_offset_nr(leaf, slot);
2320 size_diff = old_size - new_size;
2323 BUG_ON(slot >= nritems);
2326 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2328 /* first correct the data pointers */
2329 for (i = slot; i < nritems; i++) {
2331 item = btrfs_item_nr(i);
2332 ioff = btrfs_item_offset(leaf, item);
2333 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2336 /* shift the data */
2338 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2339 data_end + size_diff, btrfs_leaf_data(leaf) +
2340 data_end, old_data_start + new_size - data_end);
2342 struct btrfs_disk_key disk_key;
2345 btrfs_item_key(leaf, &disk_key, slot);
2347 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2349 struct btrfs_file_extent_item *fi;
2351 fi = btrfs_item_ptr(leaf, slot,
2352 struct btrfs_file_extent_item);
2353 fi = (struct btrfs_file_extent_item *)(
2354 (unsigned long)fi - size_diff);
2356 if (btrfs_file_extent_type(leaf, fi) ==
2357 BTRFS_FILE_EXTENT_INLINE) {
2358 ptr = btrfs_item_ptr_offset(leaf, slot);
2359 memmove_extent_buffer(leaf, ptr,
2361 offsetof(struct btrfs_file_extent_item,
2366 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2367 data_end + size_diff, btrfs_leaf_data(leaf) +
2368 data_end, old_data_start - data_end);
2370 offset = btrfs_disk_key_offset(&disk_key);
2371 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2372 btrfs_set_item_key(leaf, &disk_key, slot);
2374 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2377 item = btrfs_item_nr(slot);
2378 btrfs_set_item_size(leaf, item, new_size);
2379 btrfs_mark_buffer_dirty(leaf);
2382 if (btrfs_leaf_free_space(root, leaf) < 0) {
2383 btrfs_print_leaf(root, leaf);
2389 int btrfs_extend_item(struct btrfs_trans_handle *trans,
2390 struct btrfs_root *root, struct btrfs_path *path,
2395 struct extent_buffer *leaf;
2396 struct btrfs_item *item;
2398 unsigned int data_end;
2399 unsigned int old_data;
2400 unsigned int old_size;
2403 leaf = path->nodes[0];
2405 nritems = btrfs_header_nritems(leaf);
2406 data_end = leaf_data_end(root, leaf);
2408 if (btrfs_leaf_free_space(root, leaf) < data_size) {
2409 btrfs_print_leaf(root, leaf);
2412 slot = path->slots[0];
2413 old_data = btrfs_item_end_nr(leaf, slot);
2416 if (slot >= nritems) {
2417 btrfs_print_leaf(root, leaf);
2418 printk("slot %d too large, nritems %d\n", slot, nritems);
2423 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2425 /* first correct the data pointers */
2426 for (i = slot; i < nritems; i++) {
2428 item = btrfs_item_nr(i);
2429 ioff = btrfs_item_offset(leaf, item);
2430 btrfs_set_item_offset(leaf, item, ioff - data_size);
2433 /* shift the data */
2434 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2435 data_end - data_size, btrfs_leaf_data(leaf) +
2436 data_end, old_data - data_end);
2438 data_end = old_data;
2439 old_size = btrfs_item_size_nr(leaf, slot);
2440 item = btrfs_item_nr(slot);
2441 btrfs_set_item_size(leaf, item, old_size + data_size);
2442 btrfs_mark_buffer_dirty(leaf);
2445 if (btrfs_leaf_free_space(root, leaf) < 0) {
2446 btrfs_print_leaf(root, leaf);
2453 * Given a key and some data, insert an item into the tree.
2454 * This does all the path init required, making room in the tree if needed.
2456 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2457 struct btrfs_root *root,
2458 struct btrfs_path *path,
2459 struct btrfs_key *cpu_key, u32 *data_size,
2462 struct extent_buffer *leaf;
2463 struct btrfs_item *item;
2470 unsigned int data_end;
2471 struct btrfs_disk_key disk_key;
2473 for (i = 0; i < nr; i++) {
2474 total_data += data_size[i];
2477 /* create a root if there isn't one */
2481 total_size = total_data + nr * sizeof(struct btrfs_item);
2482 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2489 leaf = path->nodes[0];
2491 nritems = btrfs_header_nritems(leaf);
2492 data_end = leaf_data_end(root, leaf);
2494 if (btrfs_leaf_free_space(root, leaf) < total_size) {
2495 btrfs_print_leaf(root, leaf);
2496 printk("not enough freespace need %u have %d\n",
2497 total_size, btrfs_leaf_free_space(root, leaf));
2501 slot = path->slots[0];
2504 if (slot != nritems) {
2505 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2507 if (old_data < data_end) {
2508 btrfs_print_leaf(root, leaf);
2509 printk("slot %d old_data %d data_end %d\n",
2510 slot, old_data, data_end);
2514 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2516 /* first correct the data pointers */
2517 for (i = slot; i < nritems; i++) {
2520 item = btrfs_item_nr(i);
2521 ioff = btrfs_item_offset(leaf, item);
2522 btrfs_set_item_offset(leaf, item, ioff - total_data);
2525 /* shift the items */
2526 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2527 btrfs_item_nr_offset(slot),
2528 (nritems - slot) * sizeof(struct btrfs_item));
2530 /* shift the data */
2531 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2532 data_end - total_data, btrfs_leaf_data(leaf) +
2533 data_end, old_data - data_end);
2534 data_end = old_data;
2537 /* setup the item for the new data */
2538 for (i = 0; i < nr; i++) {
2539 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2540 btrfs_set_item_key(leaf, &disk_key, slot + i);
2541 item = btrfs_item_nr(slot + i);
2542 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2543 data_end -= data_size[i];
2544 btrfs_set_item_size(leaf, item, data_size[i]);
2546 btrfs_set_header_nritems(leaf, nritems + nr);
2547 btrfs_mark_buffer_dirty(leaf);
2551 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2552 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2555 if (btrfs_leaf_free_space(root, leaf) < 0) {
2556 btrfs_print_leaf(root, leaf);
2565 * Given a key and some data, insert an item into the tree.
2566 * This does all the path init required, making room in the tree if needed.
2568 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2569 *root, struct btrfs_key *cpu_key, void *data, u32
2573 struct btrfs_path *path;
2574 struct extent_buffer *leaf;
2577 path = btrfs_alloc_path();
2579 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2581 leaf = path->nodes[0];
2582 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2583 write_extent_buffer(leaf, data, ptr, data_size);
2584 btrfs_mark_buffer_dirty(leaf);
2586 btrfs_free_path(path);
2591 * delete the pointer from a given node.
2593 * If the delete empties a node, the node is removed from the tree,
2594 * continuing all the way the root if required. The root is converted into
2595 * a leaf if all the nodes are emptied.
2597 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2598 struct btrfs_path *path, int level, int slot)
2600 struct extent_buffer *parent = path->nodes[level];
2604 nritems = btrfs_header_nritems(parent);
2605 if (slot != nritems -1) {
2606 memmove_extent_buffer(parent,
2607 btrfs_node_key_ptr_offset(slot),
2608 btrfs_node_key_ptr_offset(slot + 1),
2609 sizeof(struct btrfs_key_ptr) *
2610 (nritems - slot - 1));
2613 btrfs_set_header_nritems(parent, nritems);
2614 if (nritems == 0 && parent == root->node) {
2615 BUG_ON(btrfs_header_level(root->node) != 1);
2616 /* just turn the root into a leaf and break */
2617 btrfs_set_header_level(root->node, 0);
2618 } else if (slot == 0) {
2619 struct btrfs_disk_key disk_key;
2621 btrfs_node_key(parent, &disk_key, 0);
2622 btrfs_fixup_low_keys(root, path, &disk_key, level + 1);
2624 btrfs_mark_buffer_dirty(parent);
2629 * a helper function to delete the leaf pointed to by path->slots[1] and
2632 * This deletes the pointer in path->nodes[1] and frees the leaf
2633 * block extent. zero is returned if it all worked out, < 0 otherwise.
2635 * The path must have already been setup for deleting the leaf, including
2636 * all the proper balancing. path->nodes[1] must be locked.
2638 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
2639 struct btrfs_root *root,
2640 struct btrfs_path *path,
2641 struct extent_buffer *leaf)
2645 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
2646 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
2650 ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
2651 0, root->root_key.objectid, 0, 0);
2656 * delete the item at the leaf level in path. If that empties
2657 * the leaf, remove it from the tree
2659 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2660 struct btrfs_path *path, int slot, int nr)
2662 struct extent_buffer *leaf;
2663 struct btrfs_item *item;
2671 leaf = path->nodes[0];
2672 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2674 for (i = 0; i < nr; i++)
2675 dsize += btrfs_item_size_nr(leaf, slot + i);
2677 nritems = btrfs_header_nritems(leaf);
2679 if (slot + nr != nritems) {
2680 int data_end = leaf_data_end(root, leaf);
2682 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2684 btrfs_leaf_data(leaf) + data_end,
2685 last_off - data_end);
2687 for (i = slot + nr; i < nritems; i++) {
2690 item = btrfs_item_nr(i);
2691 ioff = btrfs_item_offset(leaf, item);
2692 btrfs_set_item_offset(leaf, item, ioff + dsize);
2695 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2696 btrfs_item_nr_offset(slot + nr),
2697 sizeof(struct btrfs_item) *
2698 (nritems - slot - nr));
2700 btrfs_set_header_nritems(leaf, nritems - nr);
2703 /* delete the leaf if we've emptied it */
2705 if (leaf == root->node) {
2706 btrfs_set_header_level(leaf, 0);
2708 clean_tree_block(trans, root, leaf);
2709 wait_on_tree_block_writeback(root, leaf);
2711 wret = btrfs_del_leaf(trans, root, path, leaf);
2717 int used = leaf_space_used(leaf, 0, nritems);
2719 struct btrfs_disk_key disk_key;
2721 btrfs_item_key(leaf, &disk_key, 0);
2722 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2725 /* delete the leaf if it is mostly empty */
2726 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2727 /* push_leaf_left fixes the path.
2728 * make sure the path still points to our leaf
2729 * for possible call to del_ptr below
2731 slot = path->slots[1];
2732 extent_buffer_get(leaf);
2734 wret = push_leaf_left(trans, root, path, 1, 1);
2735 if (wret < 0 && wret != -ENOSPC)
2738 if (path->nodes[0] == leaf &&
2739 btrfs_header_nritems(leaf)) {
2740 wret = push_leaf_right(trans, root, path, 1, 1);
2741 if (wret < 0 && wret != -ENOSPC)
2745 if (btrfs_header_nritems(leaf) == 0) {
2746 clean_tree_block(trans, root, leaf);
2747 wait_on_tree_block_writeback(root, leaf);
2749 path->slots[1] = slot;
2750 ret = btrfs_del_leaf(trans, root, path, leaf);
2752 free_extent_buffer(leaf);
2755 btrfs_mark_buffer_dirty(leaf);
2756 free_extent_buffer(leaf);
2759 btrfs_mark_buffer_dirty(leaf);
2766 * walk up the tree as far as required to find the previous leaf.
2767 * returns 0 if it found something or 1 if there are no lesser leaves.
2768 * returns < 0 on io errors.
2770 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2774 struct extent_buffer *c;
2775 struct extent_buffer *next = NULL;
2777 while(level < BTRFS_MAX_LEVEL) {
2778 if (!path->nodes[level])
2781 slot = path->slots[level];
2782 c = path->nodes[level];
2785 if (level == BTRFS_MAX_LEVEL)
2791 next = read_node_slot(root, c, slot);
2792 if (!extent_buffer_uptodate(next)) {
2794 return PTR_ERR(next);
2799 path->slots[level] = slot;
2802 c = path->nodes[level];
2803 free_extent_buffer(c);
2804 slot = btrfs_header_nritems(next);
2807 path->nodes[level] = next;
2808 path->slots[level] = slot;
2811 next = read_node_slot(root, next, slot);
2812 if (!extent_buffer_uptodate(next)) {
2814 return PTR_ERR(next);
2822 * walk up the tree as far as required to find the next leaf.
2823 * returns 0 if it found something or 1 if there are no greater leaves.
2824 * returns < 0 on io errors.
2826 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2830 struct extent_buffer *c;
2831 struct extent_buffer *next = NULL;
2833 while(level < BTRFS_MAX_LEVEL) {
2834 if (!path->nodes[level])
2837 slot = path->slots[level] + 1;
2838 c = path->nodes[level];
2839 if (slot >= btrfs_header_nritems(c)) {
2841 if (level == BTRFS_MAX_LEVEL)
2847 reada_for_search(root, path, level, slot, 0);
2849 next = read_node_slot(root, c, slot);
2850 if (!extent_buffer_uptodate(next))
2854 path->slots[level] = slot;
2857 c = path->nodes[level];
2858 free_extent_buffer(c);
2859 path->nodes[level] = next;
2860 path->slots[level] = 0;
2864 reada_for_search(root, path, level, 0, 0);
2865 next = read_node_slot(root, next, 0);
2866 if (!extent_buffer_uptodate(next))
2872 int btrfs_previous_item(struct btrfs_root *root,
2873 struct btrfs_path *path, u64 min_objectid,
2876 struct btrfs_key found_key;
2877 struct extent_buffer *leaf;
2881 if (path->slots[0] == 0) {
2882 ret = btrfs_prev_leaf(root, path);
2888 leaf = path->nodes[0];
2889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2890 if (found_key.type == type)
2897 * search in extent tree to find a previous Metadata/Data extent item with
2900 * returns 0 if something is found, 1 if nothing was found and < 0 on error
2902 int btrfs_previous_extent_item(struct btrfs_root *root,
2903 struct btrfs_path *path, u64 min_objectid)
2905 struct btrfs_key found_key;
2906 struct extent_buffer *leaf;
2911 if (path->slots[0] == 0) {
2912 ret = btrfs_prev_leaf(root, path);
2918 leaf = path->nodes[0];
2919 nritems = btrfs_header_nritems(leaf);
2922 if (path->slots[0] == nritems)
2925 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2926 if (found_key.objectid < min_objectid)
2928 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2929 found_key.type == BTRFS_METADATA_ITEM_KEY)
2931 if (found_key.objectid == min_objectid &&
2932 found_key.type < BTRFS_EXTENT_ITEM_KEY)