7645ab3259ea129cf86880e74d8b6c673c533d4c
[platform/upstream/btrfs-progs.git] / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 int split_node(struct ctree_root *root, struct ctree_path *path, int level);
10 int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size);
11 int push_node_left(struct ctree_root *root, struct ctree_path *path, int level);
12 int push_node_right(struct ctree_root *root,
13                     struct ctree_path *path, int level);
14 int del_ptr(struct ctree_root *root, struct ctree_path *path, int level);
15
16 inline void init_path(struct ctree_path *p)
17 {
18         memset(p, 0, sizeof(*p));
19 }
20
21 void release_path(struct ctree_root *root, struct ctree_path *p)
22 {
23         int i;
24         for (i = 0; i < MAX_LEVEL; i++) {
25                 if (!p->nodes[i])
26                         break;
27                 tree_block_release(root, p->nodes[i]);
28         }
29 }
30
31 /*
32  * The leaf data grows from end-to-front in the node.
33  * this returns the address of the start of the last item,
34  * which is the stop of the leaf data stack
35  */
36 static inline unsigned int leaf_data_end(struct leaf *leaf)
37 {
38         unsigned int nr = leaf->header.nritems;
39         if (nr == 0)
40                 return sizeof(leaf->data);
41         return leaf->items[nr-1].offset;
42 }
43
44 /*
45  * The space between the end of the leaf items and
46  * the start of the leaf data.  IOW, how much room
47  * the leaf has left for both items and data
48  */
49 int leaf_free_space(struct leaf *leaf)
50 {
51         int data_end = leaf_data_end(leaf);
52         int nritems = leaf->header.nritems;
53         char *items_end = (char *)(leaf->items + nritems + 1);
54         return (char *)(leaf->data + data_end) - (char *)items_end;
55 }
56
57 /*
58  * compare two keys in a memcmp fashion
59  */
60 int comp_keys(struct key *k1, struct key *k2)
61 {
62         if (k1->objectid > k2->objectid)
63                 return 1;
64         if (k1->objectid < k2->objectid)
65                 return -1;
66         if (k1->flags > k2->flags)
67                 return 1;
68         if (k1->flags < k2->flags)
69                 return -1;
70         if (k1->offset > k2->offset)
71                 return 1;
72         if (k1->offset < k2->offset)
73                 return -1;
74         return 0;
75 }
76
77 /*
78  * search for key in the array p.  items p are item_size apart
79  * and there are 'max' items in p
80  * the slot in the array is returned via slot, and it points to
81  * the place where you would insert key if it is not found in
82  * the array.
83  *
84  * slot may point to max if the key is bigger than all of the keys
85  */
86 int generic_bin_search(char *p, int item_size, struct key *key,
87                        int max, int *slot)
88 {
89         int low = 0;
90         int high = max;
91         int mid;
92         int ret;
93         struct key *tmp;
94
95         while(low < high) {
96                 mid = (low + high) / 2;
97                 tmp = (struct key *)(p + mid * item_size);
98                 ret = comp_keys(tmp, key);
99
100                 if (ret < 0)
101                         low = mid + 1;
102                 else if (ret > 0)
103                         high = mid;
104                 else {
105                         *slot = mid;
106                         return 0;
107                 }
108         }
109         *slot = low;
110         return 1;
111 }
112
113 /*
114  * simple bin_search frontend that does the right thing for
115  * leaves vs nodes
116  */
117 int bin_search(struct node *c, struct key *key, int *slot)
118 {
119         if (is_leaf(c->header.flags)) {
120                 struct leaf *l = (struct leaf *)c;
121                 return generic_bin_search((void *)l->items, sizeof(struct item),
122                                           key, c->header.nritems, slot);
123         } else {
124                 return generic_bin_search((void *)c->keys, sizeof(struct key),
125                                           key, c->header.nritems, slot);
126         }
127         return -1;
128 }
129
130 /*
131  * look for key in the tree.  path is filled in with nodes along the way
132  * if key is found, we return zero and you can find the item in the leaf
133  * level of the path (level 0)
134  *
135  * If the key isn't found, the path points to the slot where it should
136  * be inserted.
137  *
138  * if ins_len > 0, nodes and leaves will be split as we walk down the
139  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
140  * possible)
141  */
142 int search_slot(struct ctree_root *root, struct key *key,
143                 struct ctree_path *p, int ins_len)
144 {
145         struct tree_buffer *b = root->node;
146         struct node *c;
147         int slot;
148         int ret;
149         int level;
150
151         b->count++;
152         while (b) {
153                 c = &b->node;
154                 level = node_level(c->header.flags);
155                 p->nodes[level] = b;
156                 ret = bin_search(c, key, &slot);
157                 if (!is_leaf(c->header.flags)) {
158                         if (ret && slot > 0)
159                                 slot -= 1;
160                         p->slots[level] = slot;
161                         if (ins_len > 0 &&
162                             c->header.nritems == NODEPTRS_PER_BLOCK) {
163                                 int sret = split_node(root, p, level);
164                                 BUG_ON(sret > 0);
165                                 if (sret)
166                                         return sret;
167                                 b = p->nodes[level];
168                                 c = &b->node;
169                                 slot = p->slots[level];
170                         } else if (ins_len < 0 &&
171                                    c->header.nritems <= NODEPTRS_PER_BLOCK/4) {
172                                 u64 blocknr = b->blocknr;
173                                 slot = p->slots[level +1];
174                                 b->count++;
175                                 if (push_node_left(root, p, level))
176                                         push_node_right(root, p, level);
177                                 if (c->header.nritems == 0 &&
178                                     level < MAX_LEVEL - 1 &&
179                                     p->nodes[level + 1]) {
180                                         int tslot = p->slots[level + 1];
181
182                                         p->slots[level + 1] = slot;
183                                         del_ptr(root, p, level + 1);
184                                         p->slots[level + 1] = tslot;
185                                         tree_block_release(root, b);
186                                         free_extent(root, blocknr, 1);
187                                 } else {
188                                         tree_block_release(root, b);
189                                 }
190                                 b = p->nodes[level];
191                                 c = &b->node;
192                                 slot = p->slots[level];
193                         }
194                         b = read_tree_block(root, c->blockptrs[slot]);
195                         continue;
196                 } else {
197                         struct leaf *l = (struct leaf *)c;
198                         p->slots[level] = slot;
199                         if (ins_len > 0 && leaf_free_space(l) <
200                             sizeof(struct item) + ins_len) {
201                                 int sret = split_leaf(root, p, ins_len);
202                                 BUG_ON(sret > 0);
203                                 if (sret)
204                                         return sret;
205                         }
206                         return ret;
207                 }
208         }
209         return -1;
210 }
211
212 /*
213  * adjust the pointers going up the tree, starting at level
214  * making sure the right key of each node is points to 'key'.
215  * This is used after shifting pointers to the left, so it stops
216  * fixing up pointers when a given leaf/node is not in slot 0 of the
217  * higher levels
218  */
219 static void fixup_low_keys(struct ctree_root *root,
220                            struct ctree_path *path, struct key *key,
221                            int level)
222 {
223         int i;
224         for (i = level; i < MAX_LEVEL; i++) {
225                 struct node *t;
226                 int tslot = path->slots[i];
227                 if (!path->nodes[i])
228                         break;
229                 t = &path->nodes[i]->node;
230                 memcpy(t->keys + tslot, key, sizeof(*key));
231                 write_tree_block(root, path->nodes[i]);
232                 if (tslot != 0)
233                         break;
234         }
235 }
236
237 /*
238  * try to push data from one node into the next node left in the
239  * tree.  The src node is found at specified level in the path.
240  * If some bytes were pushed, return 0, otherwise return 1.
241  *
242  * Lower nodes/leaves in the path are not touched, higher nodes may
243  * be modified to reflect the push.
244  *
245  * The path is altered to reflect the push.
246  */
247 int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
248 {
249         int slot;
250         struct node *left;
251         struct node *right;
252         int push_items = 0;
253         int left_nritems;
254         int right_nritems;
255         struct tree_buffer *t;
256         struct tree_buffer *right_buf;
257
258         if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
259                 return 1;
260         slot = path->slots[level + 1];
261         if (slot == 0)
262                 return 1;
263
264         t = read_tree_block(root,
265                             path->nodes[level + 1]->node.blockptrs[slot - 1]);
266         left = &t->node;
267         right_buf = path->nodes[level];
268         right = &right_buf->node;
269         left_nritems = left->header.nritems;
270         right_nritems = right->header.nritems;
271         push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
272         if (push_items <= 0) {
273                 tree_block_release(root, t);
274                 return 1;
275         }
276
277         if (right_nritems < push_items)
278                 push_items = right_nritems;
279         memcpy(left->keys + left_nritems, right->keys,
280                 push_items * sizeof(struct key));
281         memcpy(left->blockptrs + left_nritems, right->blockptrs,
282                 push_items * sizeof(u64));
283         memmove(right->keys, right->keys + push_items,
284                 (right_nritems - push_items) * sizeof(struct key));
285         memmove(right->blockptrs, right->blockptrs + push_items,
286                 (right_nritems - push_items) * sizeof(u64));
287         right->header.nritems -= push_items;
288         left->header.nritems += push_items;
289
290         /* adjust the pointers going up the tree */
291         fixup_low_keys(root, path, right->keys, level + 1);
292
293         write_tree_block(root, t);
294         write_tree_block(root, right_buf);
295
296         /* then fixup the leaf pointer in the path */
297         if (path->slots[level] < push_items) {
298                 path->slots[level] += left_nritems;
299                 tree_block_release(root, path->nodes[level]);
300                 path->nodes[level] = t;
301                 path->slots[level + 1] -= 1;
302         } else {
303                 path->slots[level] -= push_items;
304                 tree_block_release(root, t);
305         }
306         return 0;
307 }
308
309 /*
310  * try to push data from one node into the next node right in the
311  * tree.  The src node is found at specified level in the path.
312  * If some bytes were pushed, return 0, otherwise return 1.
313  *
314  * Lower nodes/leaves in the path are not touched, higher nodes may
315  * be modified to reflect the push.
316  *
317  * The path is altered to reflect the push.
318  */
319 int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
320 {
321         int slot;
322         struct tree_buffer *t;
323         struct tree_buffer *src_buffer;
324         struct node *dst;
325         struct node *src;
326         int push_items = 0;
327         int dst_nritems;
328         int src_nritems;
329
330         /* can't push from the root */
331         if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
332                 return 1;
333
334         /* only try to push inside the node higher up */
335         slot = path->slots[level + 1];
336         if (slot == NODEPTRS_PER_BLOCK - 1)
337                 return 1;
338
339         if (slot >= path->nodes[level + 1]->node.header.nritems -1)
340                 return 1;
341
342         t = read_tree_block(root,
343                             path->nodes[level + 1]->node.blockptrs[slot + 1]);
344         dst = &t->node;
345         src_buffer = path->nodes[level];
346         src = &src_buffer->node;
347         dst_nritems = dst->header.nritems;
348         src_nritems = src->header.nritems;
349         push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
350         if (push_items <= 0) {
351                 tree_block_release(root, t);
352                 return 1;
353         }
354
355         if (src_nritems < push_items)
356                 push_items = src_nritems;
357         memmove(dst->keys + push_items, dst->keys,
358                 dst_nritems * sizeof(struct key));
359         memcpy(dst->keys, src->keys + src_nritems - push_items,
360                 push_items * sizeof(struct key));
361
362         memmove(dst->blockptrs + push_items, dst->blockptrs,
363                 dst_nritems * sizeof(u64));
364         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
365                 push_items * sizeof(u64));
366
367         src->header.nritems -= push_items;
368         dst->header.nritems += push_items;
369
370         /* adjust the pointers going up the tree */
371         memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
372                 dst->keys, sizeof(struct key));
373
374         write_tree_block(root, path->nodes[level + 1]);
375         write_tree_block(root, t);
376         write_tree_block(root, src_buffer);
377
378         /* then fixup the pointers in the path */
379         if (path->slots[level] >= src->header.nritems) {
380                 path->slots[level] -= src->header.nritems;
381                 tree_block_release(root, path->nodes[level]);
382                 path->nodes[level] = t;
383                 path->slots[level + 1] += 1;
384         } else {
385                 tree_block_release(root, t);
386         }
387         return 0;
388 }
389
390 /*
391  * helper function to insert a new root level in the tree.
392  * A new node is allocated, and a single item is inserted to
393  * point to the existing root
394  */
395 static int insert_new_root(struct ctree_root *root,
396                            struct ctree_path *path, int level)
397 {
398         struct tree_buffer *t;
399         struct node *lower;
400         struct node *c;
401         struct key *lower_key;
402
403         BUG_ON(path->nodes[level]);
404         BUG_ON(path->nodes[level-1] != root->node);
405
406         t = alloc_free_block(root);
407         c = &t->node;
408         memset(c, 0, sizeof(c));
409         c->header.nritems = 1;
410         c->header.flags = node_level(level);
411         c->header.blocknr = t->blocknr;
412         c->header.parentid = root->node->node.header.parentid;
413         lower = &path->nodes[level-1]->node;
414         if (is_leaf(lower->header.flags))
415                 lower_key = &((struct leaf *)lower)->items[0].key;
416         else
417                 lower_key = lower->keys;
418         memcpy(c->keys, lower_key, sizeof(struct key));
419         c->blockptrs[0] = path->nodes[level-1]->blocknr;
420         /* the super has an extra ref to root->node */
421         tree_block_release(root, root->node);
422         root->node = t;
423         t->count++;
424         write_tree_block(root, t);
425         path->nodes[level] = t;
426         path->slots[level] = 0;
427         return 0;
428 }
429
430 /*
431  * worker function to insert a single pointer in a node.
432  * the node should have enough room for the pointer already
433  *
434  * slot and level indicate where you want the key to go, and
435  * blocknr is the block the key points to.
436  */
437 int insert_ptr(struct ctree_root *root,
438                 struct ctree_path *path, struct key *key,
439                 u64 blocknr, int slot, int level)
440 {
441         struct node *lower;
442         int nritems;
443
444         BUG_ON(!path->nodes[level]);
445         lower = &path->nodes[level]->node;
446         nritems = lower->header.nritems;
447         if (slot > nritems)
448                 BUG();
449         if (nritems == NODEPTRS_PER_BLOCK)
450                 BUG();
451         if (slot != nritems) {
452                 memmove(lower->keys + slot + 1, lower->keys + slot,
453                         (nritems - slot) * sizeof(struct key));
454                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
455                         (nritems - slot) * sizeof(u64));
456         }
457         memcpy(lower->keys + slot, key, sizeof(struct key));
458         lower->blockptrs[slot] = blocknr;
459         lower->header.nritems++;
460         if (lower->keys[1].objectid == 0)
461                         BUG();
462         write_tree_block(root, path->nodes[level]);
463         return 0;
464 }
465
466 /*
467  * split the node at the specified level in path in two.
468  * The path is corrected to point to the appropriate node after the split
469  *
470  * Before splitting this tries to make some room in the node by pushing
471  * left and right, if either one works, it returns right away.
472  */
473 int split_node(struct ctree_root *root, struct ctree_path *path, int level)
474 {
475         struct tree_buffer *t;
476         struct node *c;
477         struct tree_buffer *split_buffer;
478         struct node *split;
479         int mid;
480         int ret;
481
482         ret = push_node_left(root, path, level);
483         if (!ret)
484                 return 0;
485         ret = push_node_right(root, path, level);
486         if (!ret)
487                 return 0;
488         t = path->nodes[level];
489         c = &t->node;
490         if (t == root->node) {
491                 /* trying to split the root, lets make a new one */
492                 ret = insert_new_root(root, path, level + 1);
493                 if (ret)
494                         return ret;
495         }
496         split_buffer = alloc_free_block(root);
497         split = &split_buffer->node;
498         split->header.flags = c->header.flags;
499         split->header.blocknr = split_buffer->blocknr;
500         split->header.parentid = root->node->node.header.parentid;
501         mid = (c->header.nritems + 1) / 2;
502         memcpy(split->keys, c->keys + mid,
503                 (c->header.nritems - mid) * sizeof(struct key));
504         memcpy(split->blockptrs, c->blockptrs + mid,
505                 (c->header.nritems - mid) * sizeof(u64));
506         split->header.nritems = c->header.nritems - mid;
507         c->header.nritems = mid;
508         write_tree_block(root, t);
509         write_tree_block(root, split_buffer);
510         insert_ptr(root, path, split->keys, split_buffer->blocknr,
511                      path->slots[level + 1] + 1, level + 1);
512         if (path->slots[level] >= mid) {
513                 path->slots[level] -= mid;
514                 tree_block_release(root, t);
515                 path->nodes[level] = split_buffer;
516                 path->slots[level + 1] += 1;
517         } else {
518                 tree_block_release(root, split_buffer);
519         }
520         return 0;
521 }
522
523 /*
524  * how many bytes are required to store the items in a leaf.  start
525  * and nr indicate which items in the leaf to check.  This totals up the
526  * space used both by the item structs and the item data
527  */
528 int leaf_space_used(struct leaf *l, int start, int nr)
529 {
530         int data_len;
531         int end = start + nr - 1;
532
533         if (!nr)
534                 return 0;
535         data_len = l->items[start].offset + l->items[start].size;
536         data_len = data_len - l->items[end].offset;
537         data_len += sizeof(struct item) * nr;
538         return data_len;
539 }
540
541 /*
542  * push some data in the path leaf to the right, trying to free up at
543  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
544  */
545 int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
546                    int data_size)
547 {
548         struct tree_buffer *left_buf = path->nodes[0];
549         struct leaf *left = &left_buf->leaf;
550         struct leaf *right;
551         struct tree_buffer *right_buf;
552         struct tree_buffer *upper;
553         int slot;
554         int i;
555         int free_space;
556         int push_space = 0;
557         int push_items = 0;
558         struct item *item;
559
560         slot = path->slots[1];
561         if (!path->nodes[1]) {
562                 return 1;
563         }
564         upper = path->nodes[1];
565         if (slot >= upper->node.header.nritems - 1) {
566                 return 1;
567         }
568         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
569         right = &right_buf->leaf;
570         free_space = leaf_free_space(right);
571         if (free_space < data_size + sizeof(struct item)) {
572                 tree_block_release(root, right_buf);
573                 return 1;
574         }
575         for (i = left->header.nritems - 1; i >= 0; i--) {
576                 item = left->items + i;
577                 if (path->slots[0] == i)
578                         push_space += data_size + sizeof(*item);
579                 if (item->size + sizeof(*item) + push_space > free_space)
580                         break;
581                 push_items++;
582                 push_space += item->size + sizeof(*item);
583         }
584         if (push_items == 0) {
585                 tree_block_release(root, right_buf);
586                 return 1;
587         }
588         /* push left to right */
589         push_space = left->items[left->header.nritems - push_items].offset +
590                      left->items[left->header.nritems - push_items].size;
591         push_space -= leaf_data_end(left);
592         /* make room in the right data area */
593         memmove(right->data + leaf_data_end(right) - push_space,
594                 right->data + leaf_data_end(right),
595                 LEAF_DATA_SIZE - leaf_data_end(right));
596         /* copy from the left data area */
597         memcpy(right->data + LEAF_DATA_SIZE - push_space,
598                 left->data + leaf_data_end(left),
599                 push_space);
600         memmove(right->items + push_items, right->items,
601                 right->header.nritems * sizeof(struct item));
602         /* copy the items from left to right */
603         memcpy(right->items, left->items + left->header.nritems - push_items,
604                 push_items * sizeof(struct item));
605
606         /* update the item pointers */
607         right->header.nritems += push_items;
608         push_space = LEAF_DATA_SIZE;
609         for (i = 0; i < right->header.nritems; i++) {
610                 right->items[i].offset = push_space - right->items[i].size;
611                 push_space = right->items[i].offset;
612         }
613         left->header.nritems -= push_items;
614
615         write_tree_block(root, left_buf);
616         write_tree_block(root, right_buf);
617         memcpy(upper->node.keys + slot + 1,
618                 &right->items[0].key, sizeof(struct key));
619         write_tree_block(root, upper);
620         /* then fixup the leaf pointer in the path */
621         // FIXME use nritems in here somehow
622         if (path->slots[0] >= left->header.nritems) {
623                 path->slots[0] -= left->header.nritems;
624                 tree_block_release(root, path->nodes[0]);
625                 path->nodes[0] = right_buf;
626                 path->slots[1] += 1;
627         } else {
628                 tree_block_release(root, right_buf);
629         }
630         return 0;
631 }
632 /*
633  * push some data in the path leaf to the left, trying to free up at
634  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
635  */
636 int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
637                    int data_size)
638 {
639         struct tree_buffer *right_buf = path->nodes[0];
640         struct leaf *right = &right_buf->leaf;
641         struct tree_buffer *t;
642         struct leaf *left;
643         int slot;
644         int i;
645         int free_space;
646         int push_space = 0;
647         int push_items = 0;
648         struct item *item;
649         int old_left_nritems;
650
651         slot = path->slots[1];
652         if (slot == 0) {
653                 return 1;
654         }
655         if (!path->nodes[1]) {
656                 return 1;
657         }
658         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
659         left = &t->leaf;
660         free_space = leaf_free_space(left);
661         if (free_space < data_size + sizeof(struct item)) {
662                 tree_block_release(root, t);
663                 return 1;
664         }
665         for (i = 0; i < right->header.nritems; i++) {
666                 item = right->items + i;
667                 if (path->slots[0] == i)
668                         push_space += data_size + sizeof(*item);
669                 if (item->size + sizeof(*item) + push_space > free_space)
670                         break;
671                 push_items++;
672                 push_space += item->size + sizeof(*item);
673         }
674         if (push_items == 0) {
675                 tree_block_release(root, t);
676                 return 1;
677         }
678         /* push data from right to left */
679         memcpy(left->items + left->header.nritems,
680                 right->items, push_items * sizeof(struct item));
681         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
682         memcpy(left->data + leaf_data_end(left) - push_space,
683                 right->data + right->items[push_items - 1].offset,
684                 push_space);
685         old_left_nritems = left->header.nritems;
686         BUG_ON(old_left_nritems < 0);
687
688         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
689                 left->items[i].offset -= LEAF_DATA_SIZE -
690                         left->items[old_left_nritems -1].offset;
691         }
692         left->header.nritems += push_items;
693
694         /* fixup right node */
695         push_space = right->items[push_items-1].offset - leaf_data_end(right);
696         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
697                 leaf_data_end(right), push_space);
698         memmove(right->items, right->items + push_items,
699                 (right->header.nritems - push_items) * sizeof(struct item));
700         right->header.nritems -= push_items;
701         push_space = LEAF_DATA_SIZE;
702
703         for (i = 0; i < right->header.nritems; i++) {
704                 right->items[i].offset = push_space - right->items[i].size;
705                 push_space = right->items[i].offset;
706         }
707
708         write_tree_block(root, t);
709         write_tree_block(root, right_buf);
710
711         fixup_low_keys(root, path, &right->items[0].key, 1);
712
713         /* then fixup the leaf pointer in the path */
714         if (path->slots[0] < push_items) {
715                 path->slots[0] += old_left_nritems;
716                 tree_block_release(root, path->nodes[0]);
717                 path->nodes[0] = t;
718                 path->slots[1] -= 1;
719         } else {
720                 tree_block_release(root, t);
721                 path->slots[0] -= push_items;
722         }
723         BUG_ON(path->slots[0] < 0);
724         return 0;
725 }
726
727 /*
728  * split the path's leaf in two, making sure there is at least data_size
729  * available for the resulting leaf level of the path.
730  */
731 int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
732 {
733         struct tree_buffer *l_buf = path->nodes[0];
734         struct leaf *l = &l_buf->leaf;
735         int nritems;
736         int mid;
737         int slot;
738         struct leaf *right;
739         struct tree_buffer *right_buffer;
740         int space_needed = data_size + sizeof(struct item);
741         int data_copy_size;
742         int rt_data_off;
743         int i;
744         int ret;
745
746         if (push_leaf_left(root, path, data_size) == 0 ||
747             push_leaf_right(root, path, data_size) == 0) {
748                 l_buf = path->nodes[0];
749                 l = &l_buf->leaf;
750                 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
751                         return 0;
752         }
753         if (!path->nodes[1]) {
754                 ret = insert_new_root(root, path, 1);
755                 if (ret)
756                         return ret;
757         }
758         slot = path->slots[0];
759         nritems = l->header.nritems;
760         mid = (nritems + 1)/ 2;
761
762         right_buffer = alloc_free_block(root);
763         BUG_ON(!right_buffer);
764         BUG_ON(mid == nritems);
765         right = &right_buffer->leaf;
766         memset(right, 0, sizeof(*right));
767         if (mid <= slot) {
768                 /* FIXME, just alloc a new leaf here */
769                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
770                         LEAF_DATA_SIZE)
771                         BUG();
772         } else {
773                 /* FIXME, just alloc a new leaf here */
774                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
775                         LEAF_DATA_SIZE)
776                         BUG();
777         }
778         right->header.nritems = nritems - mid;
779         right->header.blocknr = right_buffer->blocknr;
780         right->header.flags = node_level(0);
781         right->header.parentid = root->node->node.header.parentid;
782         data_copy_size = l->items[mid].offset + l->items[mid].size -
783                          leaf_data_end(l);
784         memcpy(right->items, l->items + mid,
785                (nritems - mid) * sizeof(struct item));
786         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
787                l->data + leaf_data_end(l), data_copy_size);
788         rt_data_off = LEAF_DATA_SIZE -
789                      (l->items[mid].offset + l->items[mid].size);
790
791         for (i = 0; i < right->header.nritems; i++)
792                 right->items[i].offset += rt_data_off;
793
794         l->header.nritems = mid;
795         ret = insert_ptr(root, path, &right->items[0].key,
796                           right_buffer->blocknr, path->slots[1] + 1, 1);
797         write_tree_block(root, right_buffer);
798         write_tree_block(root, l_buf);
799
800         BUG_ON(path->slots[0] != slot);
801         if (mid <= slot) {
802                 tree_block_release(root, path->nodes[0]);
803                 path->nodes[0] = right_buffer;
804                 path->slots[0] -= mid;
805                 path->slots[1] += 1;
806         } else
807                 tree_block_release(root, right_buffer);
808         BUG_ON(path->slots[0] < 0);
809         return ret;
810 }
811
812 /*
813  * Given a key and some data, insert an item into the tree.
814  * This does all the path init required, making room in the tree if needed.
815  */
816 int insert_item(struct ctree_root *root, struct key *key,
817                           void *data, int data_size)
818 {
819         int ret;
820         int slot;
821         int slot_orig;
822         struct leaf *leaf;
823         struct tree_buffer *leaf_buf;
824         unsigned int nritems;
825         unsigned int data_end;
826         struct ctree_path path;
827
828         /* create a root if there isn't one */
829         if (!root->node)
830                 BUG();
831         init_path(&path);
832         ret = search_slot(root, key, &path, data_size);
833         if (ret == 0) {
834                 release_path(root, &path);
835                 return -EEXIST;
836         }
837
838         slot_orig = path.slots[0];
839         leaf_buf = path.nodes[0];
840         leaf = &leaf_buf->leaf;
841
842         nritems = leaf->header.nritems;
843         data_end = leaf_data_end(leaf);
844
845         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
846                 BUG();
847
848         slot = path.slots[0];
849         BUG_ON(slot < 0);
850         if (slot == 0)
851                 fixup_low_keys(root, &path, key, 1);
852         if (slot != nritems) {
853                 int i;
854                 unsigned int old_data = leaf->items[slot].offset +
855                                         leaf->items[slot].size;
856
857                 /*
858                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
859                  */
860                 /* first correct the data pointers */
861                 for (i = slot; i < nritems; i++)
862                         leaf->items[i].offset -= data_size;
863
864                 /* shift the items */
865                 memmove(leaf->items + slot + 1, leaf->items + slot,
866                         (nritems - slot) * sizeof(struct item));
867
868                 /* shift the data */
869                 memmove(leaf->data + data_end - data_size, leaf->data +
870                         data_end, old_data - data_end);
871                 data_end = old_data;
872         }
873         /* copy the new data in */
874         memcpy(&leaf->items[slot].key, key, sizeof(struct key));
875         leaf->items[slot].offset = data_end - data_size;
876         leaf->items[slot].size = data_size;
877         memcpy(leaf->data + data_end - data_size, data, data_size);
878         leaf->header.nritems += 1;
879         write_tree_block(root, leaf_buf);
880         if (leaf_free_space(leaf) < 0)
881                 BUG();
882         release_path(root, &path);
883         return 0;
884 }
885
886 /*
887  * delete the pointer from a given node.
888  *
889  * If the delete empties a node, the node is removed from the tree,
890  * continuing all the way the root if required.  The root is converted into
891  * a leaf if all the nodes are emptied.
892  */
893 int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
894 {
895         int slot;
896         struct tree_buffer *t;
897         struct node *node;
898         int nritems;
899         u64 blocknr;
900
901         while(1) {
902                 t = path->nodes[level];
903                 if (!t)
904                         break;
905                 node = &t->node;
906                 slot = path->slots[level];
907                 nritems = node->header.nritems;
908
909                 if (slot != nritems -1) {
910                         memmove(node->keys + slot, node->keys + slot + 1,
911                                 sizeof(struct key) * (nritems - slot - 1));
912                         memmove(node->blockptrs + slot,
913                                 node->blockptrs + slot + 1,
914                                 sizeof(u64) * (nritems - slot - 1));
915                 }
916                 node->header.nritems--;
917                 write_tree_block(root, t);
918                 blocknr = t->blocknr;
919                 if (node->header.nritems != 0) {
920                         if (slot == 0)
921                                 fixup_low_keys(root, path, node->keys,
922                                                level + 1);
923                         break;
924                 }
925                 if (t == root->node) {
926                         /* just turn the root into a leaf and break */
927                         root->node->node.header.flags = node_level(0);
928                         write_tree_block(root, t);
929                         break;
930                 }
931                 level++;
932                 free_extent(root, blocknr, 1);
933                 if (!path->nodes[level])
934                         BUG();
935         }
936         return 0;
937 }
938
939 /*
940  * delete the item at the leaf level in path.  If that empties
941  * the leaf, remove it from the tree
942  */
943 int del_item(struct ctree_root *root, struct ctree_path *path)
944 {
945         int slot;
946         struct leaf *leaf;
947         struct tree_buffer *leaf_buf;
948         int doff;
949         int dsize;
950
951         leaf_buf = path->nodes[0];
952         leaf = &leaf_buf->leaf;
953         slot = path->slots[0];
954         doff = leaf->items[slot].offset;
955         dsize = leaf->items[slot].size;
956
957         if (slot != leaf->header.nritems - 1) {
958                 int i;
959                 int data_end = leaf_data_end(leaf);
960                 memmove(leaf->data + data_end + dsize,
961                         leaf->data + data_end,
962                         doff - data_end);
963                 for (i = slot + 1; i < leaf->header.nritems; i++)
964                         leaf->items[i].offset += dsize;
965                 memmove(leaf->items + slot, leaf->items + slot + 1,
966                         sizeof(struct item) *
967                         (leaf->header.nritems - slot - 1));
968         }
969         leaf->header.nritems -= 1;
970         /* delete the leaf if we've emptied it */
971         if (leaf->header.nritems == 0) {
972                 if (leaf_buf == root->node) {
973                         leaf->header.flags = node_level(0);
974                         write_tree_block(root, leaf_buf);
975                 } else {
976                         del_ptr(root, path, 1);
977                         free_extent(root, leaf_buf->blocknr, 1);
978                 }
979         } else {
980                 int used = leaf_space_used(leaf, 0, leaf->header.nritems);
981                 if (slot == 0)
982                         fixup_low_keys(root, path, &leaf->items[0].key, 1);
983                 write_tree_block(root, leaf_buf);
984                 /* delete the leaf if it is mostly empty */
985                 if (used < LEAF_DATA_SIZE / 3) {
986                         /* push_leaf_left fixes the path.
987                          * make sure the path still points to our leaf
988                          * for possible call to del_ptr below
989                          */
990                         slot = path->slots[1];
991                         leaf_buf->count++;
992                         push_leaf_left(root, path, 1);
993                         if (leaf->header.nritems)
994                                 push_leaf_right(root, path, 1);
995                         if (leaf->header.nritems == 0) {
996                                 u64 blocknr = leaf_buf->blocknr;
997                                 path->slots[1] = slot;
998                                 del_ptr(root, path, 1);
999                                 tree_block_release(root, leaf_buf);
1000                                 free_extent(root, blocknr, 1);
1001                         } else {
1002                                 tree_block_release(root, leaf_buf);
1003                         }
1004                 }
1005         }
1006         return 0;
1007 }
1008
1009 /*
1010  * walk up the tree as far as required to find the next leaf.
1011  * returns 0 if it found something or -1 if there are no greater leaves.
1012  */
1013 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1014 {
1015         int slot;
1016         int level = 1;
1017         u64 blocknr;
1018         struct tree_buffer *c;
1019         struct tree_buffer *next = NULL;
1020
1021         while(level < MAX_LEVEL) {
1022                 if (!path->nodes[level])
1023                         return -1;
1024                 slot = path->slots[level] + 1;
1025                 c = path->nodes[level];
1026                 if (slot >= c->node.header.nritems) {
1027                         level++;
1028                         continue;
1029                 }
1030                 blocknr = c->node.blockptrs[slot];
1031                 if (next)
1032                         tree_block_release(root, next);
1033                 next = read_tree_block(root, blocknr);
1034                 break;
1035         }
1036         path->slots[level] = slot;
1037         while(1) {
1038                 level--;
1039                 c = path->nodes[level];
1040                 tree_block_release(root, c);
1041                 path->nodes[level] = next;
1042                 path->slots[level] = 0;
1043                 if (!level)
1044                         break;
1045                 next = read_tree_block(root, next->node.blockptrs[0]);
1046         }
1047         return 0;
1048 }
1049
1050 /* for testing only */
1051 int next_key(int i, int max_key) {
1052         return rand() % max_key;
1053         //return i;
1054 }
1055
1056 int main() {
1057         struct ctree_root *root;
1058         struct key ins;
1059         struct key last = { (u64)-1, 0, 0};
1060         char *buf;
1061         int i;
1062         int num;
1063         int ret;
1064         int run_size = 20000000;
1065         int max_key =  100000000;
1066         int tree_size = 0;
1067         struct ctree_path path;
1068         struct ctree_super_block super;
1069
1070         radix_tree_init();
1071
1072
1073         root = open_ctree("dbfile", &super);
1074         srand(55);
1075         for (i = 0; i < run_size; i++) {
1076                 buf = malloc(64);
1077                 num = next_key(i, max_key);
1078                 // num = i;
1079                 sprintf(buf, "string-%d", num);
1080                 if (i % 10000 == 0)
1081                         fprintf(stderr, "insert %d:%d\n", num, i);
1082                 ins.objectid = num;
1083                 ins.offset = 0;
1084                 ins.flags = 0;
1085                 ret = insert_item(root, &ins, buf, strlen(buf));
1086                 if (!ret)
1087                         tree_size++;
1088                 free(buf);
1089         }
1090         write_ctree_super(root, &super);
1091         close_ctree(root);
1092
1093         root = open_ctree("dbfile", &super);
1094         printf("starting search\n");
1095         srand(55);
1096         for (i = 0; i < run_size; i++) {
1097                 num = next_key(i, max_key);
1098                 ins.objectid = num;
1099                 init_path(&path);
1100                 if (i % 10000 == 0)
1101                         fprintf(stderr, "search %d:%d\n", num, i);
1102                 ret = search_slot(root, &ins, &path, 0);
1103                 if (ret) {
1104                         print_tree(root, root->node);
1105                         printf("unable to find %d\n", num);
1106                         exit(1);
1107                 }
1108                 release_path(root, &path);
1109         }
1110         write_ctree_super(root, &super);
1111         close_ctree(root);
1112         root = open_ctree("dbfile", &super);
1113         printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
1114                 node_level(root->node->node.header.flags),
1115                 root->node->node.header.nritems,
1116                 NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
1117         printf("all searches good, deleting some items\n");
1118         i = 0;
1119         srand(55);
1120         for (i = 0 ; i < run_size/4; i++) {
1121                 num = next_key(i, max_key);
1122                 ins.objectid = num;
1123                 init_path(&path);
1124                 ret = search_slot(root, &ins, &path, -1);
1125                 if (!ret) {
1126                         if (i % 10000 == 0)
1127                                 fprintf(stderr, "del %d:%d\n", num, i);
1128                         ret = del_item(root, &path);
1129                         if (ret != 0)
1130                                 BUG();
1131                         tree_size--;
1132                 }
1133                 release_path(root, &path);
1134         }
1135         write_ctree_super(root, &super);
1136         close_ctree(root);
1137         root = open_ctree("dbfile", &super);
1138         srand(128);
1139         for (i = 0; i < run_size; i++) {
1140                 buf = malloc(64);
1141                 num = next_key(i, max_key);
1142                 sprintf(buf, "string-%d", num);
1143                 ins.objectid = num;
1144                 if (i % 10000 == 0)
1145                         fprintf(stderr, "insert %d:%d\n", num, i);
1146                 ret = insert_item(root, &ins, buf, strlen(buf));
1147                 if (!ret)
1148                         tree_size++;
1149                 free(buf);
1150         }
1151         write_ctree_super(root, &super);
1152         close_ctree(root);
1153         root = open_ctree("dbfile", &super);
1154         srand(128);
1155         printf("starting search2\n");
1156         for (i = 0; i < run_size; i++) {
1157                 num = next_key(i, max_key);
1158                 ins.objectid = num;
1159                 init_path(&path);
1160                 if (i % 10000 == 0)
1161                         fprintf(stderr, "search %d:%d\n", num, i);
1162                 ret = search_slot(root, &ins, &path, 0);
1163                 if (ret) {
1164                         print_tree(root, root->node);
1165                         printf("unable to find %d\n", num);
1166                         exit(1);
1167                 }
1168                 release_path(root, &path);
1169         }
1170         printf("starting big long delete run\n");
1171         while(root->node && root->node->node.header.nritems > 0) {
1172                 struct leaf *leaf;
1173                 int slot;
1174                 ins.objectid = (u64)-1;
1175                 init_path(&path);
1176                 ret = search_slot(root, &ins, &path, -1);
1177                 if (ret == 0)
1178                         BUG();
1179
1180                 leaf = &path.nodes[0]->leaf;
1181                 slot = path.slots[0];
1182                 if (slot != leaf->header.nritems)
1183                         BUG();
1184                 while(path.slots[0] > 0) {
1185                         path.slots[0] -= 1;
1186                         slot = path.slots[0];
1187                         leaf = &path.nodes[0]->leaf;
1188
1189                         if (comp_keys(&last, &leaf->items[slot].key) <= 0)
1190                                 BUG();
1191                         memcpy(&last, &leaf->items[slot].key, sizeof(last));
1192                         if (tree_size % 10000 == 0)
1193                                 printf("big del %d:%d\n", tree_size, i);
1194                         ret = del_item(root, &path);
1195                         if (ret != 0) {
1196                                 printf("del_item returned %d\n", ret);
1197                                 BUG();
1198                         }
1199                         tree_size--;
1200                 }
1201                 release_path(root, &path);
1202         }
1203         printf("tree size is now %d\n", tree_size);
1204         printf("map tree\n");
1205         print_tree(root->extent_root, root->extent_root->node);
1206         write_ctree_super(root, &super);
1207         close_ctree(root);
1208         return 0;
1209 }