2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include "transaction.h"
21 #include "print-tree.h"
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27 *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_key *ins_key,
30 struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32 struct btrfs_root *root, struct extent_buffer *dst,
33 struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35 struct btrfs_root *root,
36 struct extent_buffer *dst_buf,
37 struct extent_buffer *src_buf);
39 inline void btrfs_init_path(struct btrfs_path *p)
41 memset(p, 0, sizeof(*p));
44 struct btrfs_path *btrfs_alloc_path(void)
46 struct btrfs_path *path;
47 path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
51 void btrfs_free_path(struct btrfs_path *p)
55 btrfs_release_path(p);
59 void btrfs_release_path(struct btrfs_path *p)
62 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
65 free_extent_buffer(p->nodes[i]);
67 memset(p, 0, sizeof(*p));
70 void add_root_to_dirty_list(struct btrfs_root *root)
72 if (root->track_dirty && list_empty(&root->dirty_list)) {
73 list_add(&root->dirty_list,
74 &root->fs_info->dirty_cowonly_roots);
78 int btrfs_copy_root(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root,
80 struct extent_buffer *buf,
81 struct extent_buffer **cow_ret, u64 new_root_objectid)
83 struct extent_buffer *cow;
86 struct btrfs_root *new_root;
87 struct btrfs_disk_key disk_key;
89 new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
93 memcpy(new_root, root, sizeof(*new_root));
94 new_root->root_key.objectid = new_root_objectid;
96 WARN_ON(root->ref_cows && trans->transid !=
97 root->fs_info->running_transaction->transid);
98 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
100 level = btrfs_header_level(buf);
102 btrfs_item_key(buf, &disk_key, 0);
104 btrfs_node_key(buf, &disk_key, 0);
105 cow = btrfs_alloc_free_block(trans, new_root, buf->len,
106 new_root_objectid, &disk_key,
107 level, buf->start, 0);
113 copy_extent_buffer(cow, buf, 0, 0, cow->len);
114 btrfs_set_header_bytenr(cow, cow->start);
115 btrfs_set_header_generation(cow, trans->transid);
116 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
117 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
118 BTRFS_HEADER_FLAG_RELOC);
119 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
120 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
122 btrfs_set_header_owner(cow, new_root_objectid);
124 write_extent_buffer(cow, root->fs_info->fsid,
125 btrfs_header_fsid(), BTRFS_FSID_SIZE);
127 WARN_ON(btrfs_header_generation(buf) > trans->transid);
128 ret = btrfs_inc_ref(trans, new_root, cow, 0);
134 btrfs_mark_buffer_dirty(cow);
140 * check if the tree block can be shared by multiple trees
142 static int btrfs_block_can_be_shared(struct btrfs_root *root,
143 struct extent_buffer *buf)
146 * Tree blocks not in reference counted trees and tree roots
147 * are never shared. If a block was allocated after the last
148 * snapshot and the block was not allocated by tree relocation,
149 * we know the block is not shared.
151 if (root->ref_cows &&
152 buf != root->node && buf != root->commit_root &&
153 (btrfs_header_generation(buf) <=
154 btrfs_root_last_snapshot(&root->root_item) ||
155 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
157 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
158 if (root->ref_cows &&
159 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
165 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct extent_buffer *buf,
168 struct extent_buffer *cow)
177 * Backrefs update rules:
179 * Always use full backrefs for extent pointers in tree block
180 * allocated by tree relocation.
182 * If a shared tree block is no longer referenced by its owner
183 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
184 * use full backrefs for extent pointers in tree block.
186 * If a tree block is been relocating
187 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
188 * use full backrefs for extent pointers in tree block.
189 * The reason for this is some operations (such as drop tree)
190 * are only allowed for blocks use full backrefs.
193 if (btrfs_block_can_be_shared(root, buf)) {
194 ret = btrfs_lookup_extent_info(trans, root, buf->start,
195 btrfs_header_level(buf), 1,
201 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
202 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
203 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
208 owner = btrfs_header_owner(buf);
209 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
210 owner == BTRFS_TREE_RELOC_OBJECTID);
213 if ((owner == root->root_key.objectid ||
214 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
215 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
216 ret = btrfs_inc_ref(trans, root, buf, 1);
219 if (root->root_key.objectid ==
220 BTRFS_TREE_RELOC_OBJECTID) {
221 ret = btrfs_dec_ref(trans, root, buf, 0);
223 ret = btrfs_inc_ref(trans, root, cow, 1);
226 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
229 if (root->root_key.objectid ==
230 BTRFS_TREE_RELOC_OBJECTID)
231 ret = btrfs_inc_ref(trans, root, cow, 1);
233 ret = btrfs_inc_ref(trans, root, cow, 0);
236 if (new_flags != 0) {
237 ret = btrfs_set_block_flags(trans, root, buf->start,
238 btrfs_header_level(buf),
243 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
244 if (root->root_key.objectid ==
245 BTRFS_TREE_RELOC_OBJECTID)
246 ret = btrfs_inc_ref(trans, root, cow, 1);
248 ret = btrfs_inc_ref(trans, root, cow, 0);
250 ret = btrfs_dec_ref(trans, root, buf, 1);
253 clean_tree_block(trans, root, buf);
258 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
259 struct btrfs_root *root,
260 struct extent_buffer *buf,
261 struct extent_buffer *parent, int parent_slot,
262 struct extent_buffer **cow_ret,
263 u64 search_start, u64 empty_size)
265 struct extent_buffer *cow;
266 struct btrfs_disk_key disk_key;
269 WARN_ON(root->ref_cows && trans->transid !=
270 root->fs_info->running_transaction->transid);
271 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
273 level = btrfs_header_level(buf);
276 btrfs_item_key(buf, &disk_key, 0);
278 btrfs_node_key(buf, &disk_key, 0);
280 cow = btrfs_alloc_free_block(trans, root, buf->len,
281 root->root_key.objectid, &disk_key,
282 level, search_start, empty_size);
286 copy_extent_buffer(cow, buf, 0, 0, cow->len);
287 btrfs_set_header_bytenr(cow, cow->start);
288 btrfs_set_header_generation(cow, trans->transid);
289 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
290 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
291 BTRFS_HEADER_FLAG_RELOC);
292 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
293 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
295 btrfs_set_header_owner(cow, root->root_key.objectid);
297 write_extent_buffer(cow, root->fs_info->fsid,
298 btrfs_header_fsid(), BTRFS_FSID_SIZE);
300 WARN_ON(!(buf->flags & EXTENT_BAD_TRANSID) &&
301 btrfs_header_generation(buf) > trans->transid);
303 update_ref_for_cow(trans, root, buf, cow);
305 if (buf == root->node) {
307 extent_buffer_get(cow);
309 btrfs_free_extent(trans, root, buf->start, buf->len,
310 0, root->root_key.objectid, level, 0);
311 free_extent_buffer(buf);
312 add_root_to_dirty_list(root);
314 btrfs_set_node_blockptr(parent, parent_slot,
316 WARN_ON(trans->transid == 0);
317 btrfs_set_node_ptr_generation(parent, parent_slot,
319 btrfs_mark_buffer_dirty(parent);
320 WARN_ON(btrfs_header_generation(parent) != trans->transid);
322 btrfs_free_extent(trans, root, buf->start, buf->len,
323 0, root->root_key.objectid, level, 1);
325 if (!list_empty(&buf->recow)) {
326 list_del_init(&buf->recow);
327 free_extent_buffer(buf);
329 free_extent_buffer(buf);
330 btrfs_mark_buffer_dirty(cow);
335 static inline int should_cow_block(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root,
337 struct extent_buffer *buf)
339 if (btrfs_header_generation(buf) == trans->transid &&
340 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
341 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
342 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
347 int btrfs_cow_block(struct btrfs_trans_handle *trans,
348 struct btrfs_root *root, struct extent_buffer *buf,
349 struct extent_buffer *parent, int parent_slot,
350 struct extent_buffer **cow_ret)
355 if (trans->transaction != root->fs_info->running_transaction) {
356 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
357 root->fs_info->running_transaction->transid);
361 if (trans->transid != root->fs_info->generation) {
362 printk(KERN_CRIT "trans %llu running %llu\n",
363 (unsigned long long)trans->transid,
364 (unsigned long long)root->fs_info->generation);
367 if (!should_cow_block(trans, root, buf)) {
372 search_start = buf->start & ~((u64)SZ_1G - 1);
373 ret = __btrfs_cow_block(trans, root, buf, parent,
374 parent_slot, cow_ret, search_start, 0);
378 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
380 if (k1->objectid > k2->objectid)
382 if (k1->objectid < k2->objectid)
384 if (k1->type > k2->type)
386 if (k1->type < k2->type)
388 if (k1->offset > k2->offset)
390 if (k1->offset < k2->offset)
396 * compare two keys in a memcmp fashion
398 static int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
402 btrfs_disk_key_to_cpu(&k1, disk);
403 return btrfs_comp_cpu_keys(&k1, k2);
407 * The leaf data grows from end-to-front in the node.
408 * this returns the address of the start of the last item,
409 * which is the stop of the leaf data stack
411 static inline unsigned int leaf_data_end(struct btrfs_root *root,
412 struct extent_buffer *leaf)
414 u32 nr = btrfs_header_nritems(leaf);
416 return BTRFS_LEAF_DATA_SIZE(root);
417 return btrfs_item_offset_nr(leaf, nr - 1);
420 enum btrfs_tree_block_status
421 btrfs_check_node(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
422 struct extent_buffer *buf)
425 struct btrfs_key cpukey;
426 struct btrfs_disk_key key;
427 u32 nritems = btrfs_header_nritems(buf);
428 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
430 if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root))
433 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
434 if (parent_key && parent_key->type) {
435 btrfs_node_key(buf, &key, 0);
436 if (memcmp(parent_key, &key, sizeof(key)))
439 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
440 for (i = 0; nritems > 1 && i < nritems - 2; i++) {
441 btrfs_node_key(buf, &key, i);
442 btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
443 if (btrfs_comp_keys(&key, &cpukey) >= 0)
446 return BTRFS_TREE_BLOCK_CLEAN;
448 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
450 btrfs_disk_key_to_cpu(&cpukey, parent_key);
452 btrfs_node_key_to_cpu(buf, &cpukey, 0);
453 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
454 buf->start, buf->len,
455 btrfs_header_level(buf));
460 enum btrfs_tree_block_status
461 btrfs_check_leaf(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
462 struct extent_buffer *buf)
465 struct btrfs_key cpukey;
466 struct btrfs_disk_key key;
467 u32 nritems = btrfs_header_nritems(buf);
468 enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
470 if (nritems * sizeof(struct btrfs_item) > buf->len) {
471 fprintf(stderr, "invalid number of items %llu\n",
472 (unsigned long long)buf->start);
476 if (btrfs_header_level(buf) != 0) {
477 ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
478 fprintf(stderr, "leaf is not a leaf %llu\n",
479 (unsigned long long)btrfs_header_bytenr(buf));
482 if (btrfs_leaf_free_space(root, buf) < 0) {
483 ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
484 fprintf(stderr, "leaf free space incorrect %llu %d\n",
485 (unsigned long long)btrfs_header_bytenr(buf),
486 btrfs_leaf_free_space(root, buf));
491 return BTRFS_TREE_BLOCK_CLEAN;
493 btrfs_item_key(buf, &key, 0);
494 if (parent_key && parent_key->type &&
495 memcmp(parent_key, &key, sizeof(key))) {
496 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
497 fprintf(stderr, "leaf parent key incorrect %llu\n",
498 (unsigned long long)btrfs_header_bytenr(buf));
501 for (i = 0; nritems > 1 && i < nritems - 1; i++) {
502 btrfs_item_key(buf, &key, i);
503 btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
504 if (btrfs_comp_keys(&key, &cpukey) >= 0) {
505 ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
506 fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
509 if (btrfs_item_offset_nr(buf, i) !=
510 btrfs_item_end_nr(buf, i + 1)) {
511 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
512 fprintf(stderr, "incorrect offsets %u %u\n",
513 btrfs_item_offset_nr(buf, i),
514 btrfs_item_end_nr(buf, i + 1));
517 if (i == 0 && btrfs_item_end_nr(buf, i) !=
518 BTRFS_LEAF_DATA_SIZE(root)) {
519 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
520 fprintf(stderr, "bad item end %u wanted %u\n",
521 btrfs_item_end_nr(buf, i),
522 (unsigned)BTRFS_LEAF_DATA_SIZE(root));
527 for (i = 0; i < nritems; i++) {
528 if (btrfs_item_end_nr(buf, i) > BTRFS_LEAF_DATA_SIZE(root)) {
529 btrfs_item_key(buf, &key, 0);
530 btrfs_print_key(&key);
532 ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
533 fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
534 (unsigned long long)btrfs_item_end_nr(buf, i),
535 (unsigned long long)BTRFS_LEAF_DATA_SIZE(root));
540 return BTRFS_TREE_BLOCK_CLEAN;
542 if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
544 btrfs_disk_key_to_cpu(&cpukey, parent_key);
546 btrfs_item_key_to_cpu(buf, &cpukey, 0);
548 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
549 buf->start, buf->len, 0);
554 static int noinline check_block(struct btrfs_root *root,
555 struct btrfs_path *path, int level)
557 struct btrfs_disk_key key;
558 struct btrfs_disk_key *key_ptr = NULL;
559 struct extent_buffer *parent;
560 enum btrfs_tree_block_status ret;
562 if (path->skip_check_block)
564 if (path->nodes[level + 1]) {
565 parent = path->nodes[level + 1];
566 btrfs_node_key(parent, &key, path->slots[level + 1]);
570 ret = btrfs_check_leaf(root, key_ptr, path->nodes[0]);
572 ret = btrfs_check_node(root, key_ptr, path->nodes[level]);
573 if (ret == BTRFS_TREE_BLOCK_CLEAN)
579 * search for key in the extent_buffer. The items start at offset p,
580 * and they are item_size apart. There are 'max' items in p.
582 * the slot in the array is returned via slot, and it points to
583 * the place where you would insert key if it is not found in
586 * slot may point to max if the key is bigger than all of the keys
588 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
589 int item_size, struct btrfs_key *key,
596 unsigned long offset;
597 struct btrfs_disk_key *tmp;
600 mid = (low + high) / 2;
601 offset = p + mid * item_size;
603 tmp = (struct btrfs_disk_key *)(eb->data + offset);
604 ret = btrfs_comp_keys(tmp, key);
620 * simple bin_search frontend that does the right thing for
623 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
624 int level, int *slot)
627 return generic_bin_search(eb,
628 offsetof(struct btrfs_leaf, items),
629 sizeof(struct btrfs_item),
630 key, btrfs_header_nritems(eb),
633 return generic_bin_search(eb,
634 offsetof(struct btrfs_node, ptrs),
635 sizeof(struct btrfs_key_ptr),
636 key, btrfs_header_nritems(eb),
640 struct extent_buffer *read_node_slot(struct btrfs_fs_info *fs_info,
641 struct extent_buffer *parent, int slot)
643 int level = btrfs_header_level(parent);
646 if (slot >= btrfs_header_nritems(parent))
652 return read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
653 btrfs_node_ptr_generation(parent, slot));
656 static int balance_level(struct btrfs_trans_handle *trans,
657 struct btrfs_root *root,
658 struct btrfs_path *path, int level)
660 struct extent_buffer *right = NULL;
661 struct extent_buffer *mid;
662 struct extent_buffer *left = NULL;
663 struct extent_buffer *parent = NULL;
664 struct btrfs_fs_info *fs_info = root->fs_info;
668 int orig_slot = path->slots[level];
674 mid = path->nodes[level];
675 WARN_ON(btrfs_header_generation(mid) != trans->transid);
677 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
679 if (level < BTRFS_MAX_LEVEL - 1) {
680 parent = path->nodes[level + 1];
681 pslot = path->slots[level + 1];
685 * deal with the case where there is only one pointer in the root
686 * by promoting the node below to a root
689 struct extent_buffer *child;
691 if (btrfs_header_nritems(mid) != 1)
694 /* promote the child to a root */
695 child = read_node_slot(fs_info, mid, 0);
696 BUG_ON(!extent_buffer_uptodate(child));
697 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
701 add_root_to_dirty_list(root);
702 path->nodes[level] = NULL;
703 clean_tree_block(trans, root, mid);
704 /* once for the path */
705 free_extent_buffer(mid);
707 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
708 0, root->root_key.objectid,
710 /* once for the root ptr */
711 free_extent_buffer(mid);
714 if (btrfs_header_nritems(mid) >
715 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
718 left = read_node_slot(fs_info, parent, pslot - 1);
719 if (extent_buffer_uptodate(left)) {
720 wret = btrfs_cow_block(trans, root, left,
721 parent, pslot - 1, &left);
727 right = read_node_slot(fs_info, parent, pslot + 1);
728 if (extent_buffer_uptodate(right)) {
729 wret = btrfs_cow_block(trans, root, right,
730 parent, pslot + 1, &right);
737 /* first, try to make some room in the middle buffer */
739 orig_slot += btrfs_header_nritems(left);
740 wret = push_node_left(trans, root, left, mid, 1);
746 * then try to empty the right most buffer into the middle
749 wret = push_node_left(trans, root, mid, right, 1);
750 if (wret < 0 && wret != -ENOSPC)
752 if (btrfs_header_nritems(right) == 0) {
753 u64 bytenr = right->start;
754 u32 blocksize = right->len;
756 clean_tree_block(trans, root, right);
757 free_extent_buffer(right);
759 wret = btrfs_del_ptr(root, path, level + 1, pslot + 1);
762 wret = btrfs_free_extent(trans, root, bytenr,
764 root->root_key.objectid,
769 struct btrfs_disk_key right_key;
770 btrfs_node_key(right, &right_key, 0);
771 btrfs_set_node_key(parent, &right_key, pslot + 1);
772 btrfs_mark_buffer_dirty(parent);
775 if (btrfs_header_nritems(mid) == 1) {
777 * we're not allowed to leave a node with one item in the
778 * tree during a delete. A deletion from lower in the tree
779 * could try to delete the only pointer in this node.
780 * So, pull some keys from the left.
781 * There has to be a left pointer at this point because
782 * otherwise we would have pulled some pointers from the
786 wret = balance_node_right(trans, root, mid, left);
792 wret = push_node_left(trans, root, left, mid, 1);
798 if (btrfs_header_nritems(mid) == 0) {
799 /* we've managed to empty the middle node, drop it */
800 u64 bytenr = mid->start;
801 u32 blocksize = mid->len;
802 clean_tree_block(trans, root, mid);
803 free_extent_buffer(mid);
805 wret = btrfs_del_ptr(root, path, level + 1, pslot);
808 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
809 0, root->root_key.objectid,
814 /* update the parent key to reflect our changes */
815 struct btrfs_disk_key mid_key;
816 btrfs_node_key(mid, &mid_key, 0);
817 btrfs_set_node_key(parent, &mid_key, pslot);
818 btrfs_mark_buffer_dirty(parent);
821 /* update the path */
823 if (btrfs_header_nritems(left) > orig_slot) {
824 extent_buffer_get(left);
825 path->nodes[level] = left;
826 path->slots[level + 1] -= 1;
827 path->slots[level] = orig_slot;
829 free_extent_buffer(mid);
831 orig_slot -= btrfs_header_nritems(left);
832 path->slots[level] = orig_slot;
835 /* double check we haven't messed things up */
836 check_block(root, path, level);
838 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
842 free_extent_buffer(right);
844 free_extent_buffer(left);
848 /* returns zero if the push worked, non-zero otherwise */
849 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
850 struct btrfs_root *root,
851 struct btrfs_path *path, int level)
853 struct extent_buffer *right = NULL;
854 struct extent_buffer *mid;
855 struct extent_buffer *left = NULL;
856 struct extent_buffer *parent = NULL;
857 struct btrfs_fs_info *fs_info = root->fs_info;
861 int orig_slot = path->slots[level];
866 mid = path->nodes[level];
867 WARN_ON(btrfs_header_generation(mid) != trans->transid);
869 if (level < BTRFS_MAX_LEVEL - 1) {
870 parent = path->nodes[level + 1];
871 pslot = path->slots[level + 1];
877 left = read_node_slot(fs_info, parent, pslot - 1);
879 /* first, try to make some room in the middle buffer */
880 if (extent_buffer_uptodate(left)) {
882 left_nr = btrfs_header_nritems(left);
883 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
886 ret = btrfs_cow_block(trans, root, left, parent,
891 wret = push_node_left(trans, root,
898 struct btrfs_disk_key disk_key;
899 orig_slot += left_nr;
900 btrfs_node_key(mid, &disk_key, 0);
901 btrfs_set_node_key(parent, &disk_key, pslot);
902 btrfs_mark_buffer_dirty(parent);
903 if (btrfs_header_nritems(left) > orig_slot) {
904 path->nodes[level] = left;
905 path->slots[level + 1] -= 1;
906 path->slots[level] = orig_slot;
907 free_extent_buffer(mid);
910 btrfs_header_nritems(left);
911 path->slots[level] = orig_slot;
912 free_extent_buffer(left);
916 free_extent_buffer(left);
918 right= read_node_slot(fs_info, parent, pslot + 1);
921 * then try to empty the right most buffer into the middle
923 if (extent_buffer_uptodate(right)) {
925 right_nr = btrfs_header_nritems(right);
926 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
929 ret = btrfs_cow_block(trans, root, right,
935 wret = balance_node_right(trans, root,
942 struct btrfs_disk_key disk_key;
944 btrfs_node_key(right, &disk_key, 0);
945 btrfs_set_node_key(parent, &disk_key, pslot + 1);
946 btrfs_mark_buffer_dirty(parent);
948 if (btrfs_header_nritems(mid) <= orig_slot) {
949 path->nodes[level] = right;
950 path->slots[level + 1] += 1;
951 path->slots[level] = orig_slot -
952 btrfs_header_nritems(mid);
953 free_extent_buffer(mid);
955 free_extent_buffer(right);
959 free_extent_buffer(right);
965 * readahead one full node of leaves
967 void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
968 int level, int slot, u64 objectid)
970 struct btrfs_fs_info *fs_info = root->fs_info;
971 struct extent_buffer *node;
972 struct btrfs_disk_key disk_key;
978 int direction = path->reada;
979 struct extent_buffer *eb;
986 if (!path->nodes[level])
989 node = path->nodes[level];
990 search = btrfs_node_blockptr(node, slot);
991 eb = btrfs_find_tree_block(fs_info, search, fs_info->nodesize);
993 free_extent_buffer(eb);
997 highest_read = search;
998 lowest_read = search;
1000 nritems = btrfs_header_nritems(node);
1003 if (direction < 0) {
1007 } else if (direction > 0) {
1012 if (path->reada < 0 && objectid) {
1013 btrfs_node_key(node, &disk_key, nr);
1014 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1017 search = btrfs_node_blockptr(node, nr);
1018 if ((search >= lowest_read && search <= highest_read) ||
1019 (search < lowest_read && lowest_read - search <= 32768) ||
1020 (search > highest_read && search - highest_read <= 32768)) {
1021 readahead_tree_block(fs_info, search,
1022 btrfs_node_ptr_generation(node, nr));
1023 nread += fs_info->nodesize;
1026 if (path->reada < 2 && (nread > SZ_256K || nscan > 32))
1028 if(nread > SZ_1M || nscan > 128)
1031 if (search < lowest_read)
1032 lowest_read = search;
1033 if (search > highest_read)
1034 highest_read = search;
1038 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
1039 u64 iobjectid, u64 ioff, u8 key_type,
1040 struct btrfs_key *found_key)
1043 struct btrfs_key key;
1044 struct extent_buffer *eb;
1045 struct btrfs_path *path;
1047 key.type = key_type;
1048 key.objectid = iobjectid;
1051 if (found_path == NULL) {
1052 path = btrfs_alloc_path();
1058 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1059 if ((ret < 0) || (found_key == NULL))
1062 eb = path->nodes[0];
1063 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1064 ret = btrfs_next_leaf(fs_root, path);
1067 eb = path->nodes[0];
1070 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1071 if (found_key->type != key.type ||
1072 found_key->objectid != key.objectid) {
1078 if (path != found_path)
1079 btrfs_free_path(path);
1084 * look for key in the tree. path is filled in with nodes along the way
1085 * if key is found, we return zero and you can find the item in the leaf
1086 * level of the path (level 0)
1088 * If the key isn't found, the path points to the slot where it should
1089 * be inserted, and 1 is returned. If there are other errors during the
1090 * search a negative error number is returned.
1092 * if ins_len > 0, nodes and leaves will be split as we walk down the
1093 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1096 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1097 *root, struct btrfs_key *key, struct btrfs_path *p, int
1100 struct extent_buffer *b;
1104 int should_reada = p->reada;
1105 struct btrfs_fs_info *fs_info = root->fs_info;
1106 u8 lowest_level = 0;
1108 lowest_level = p->lowest_level;
1109 WARN_ON(lowest_level && ins_len > 0);
1110 WARN_ON(p->nodes[0] != NULL);
1112 WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1116 extent_buffer_get(b);
1118 level = btrfs_header_level(b);
1121 wret = btrfs_cow_block(trans, root, b,
1122 p->nodes[level + 1],
1123 p->slots[level + 1],
1126 free_extent_buffer(b);
1130 BUG_ON(!cow && ins_len);
1131 if (level != btrfs_header_level(b))
1133 level = btrfs_header_level(b);
1134 p->nodes[level] = b;
1135 ret = check_block(root, p, level);
1138 ret = bin_search(b, key, level, &slot);
1140 if (ret && slot > 0)
1142 p->slots[level] = slot;
1143 if ((p->search_for_split || ins_len > 0) &&
1144 btrfs_header_nritems(b) >=
1145 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1146 int sret = split_node(trans, root, p, level);
1150 b = p->nodes[level];
1151 slot = p->slots[level];
1152 } else if (ins_len < 0) {
1153 int sret = balance_level(trans, root, p,
1157 b = p->nodes[level];
1159 btrfs_release_path(p);
1162 slot = p->slots[level];
1163 BUG_ON(btrfs_header_nritems(b) == 1);
1165 /* this is only true while dropping a snapshot */
1166 if (level == lowest_level)
1170 reada_for_search(root, p, level, slot,
1173 b = read_node_slot(fs_info, b, slot);
1174 if (!extent_buffer_uptodate(b))
1177 p->slots[level] = slot;
1179 ins_len > btrfs_leaf_free_space(root, b)) {
1180 int sret = split_leaf(trans, root, key,
1181 p, ins_len, ret == 0);
1193 * adjust the pointers going up the tree, starting at level
1194 * making sure the right key of each node is points to 'key'.
1195 * This is used after shifting pointers to the left, so it stops
1196 * fixing up pointers when a given leaf/node is not in slot 0 of the
1199 void btrfs_fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
1200 struct btrfs_disk_key *key, int level)
1203 struct extent_buffer *t;
1205 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1206 int tslot = path->slots[i];
1207 if (!path->nodes[i])
1210 btrfs_set_node_key(t, key, tslot);
1211 btrfs_mark_buffer_dirty(path->nodes[i]);
1220 * This function isn't completely safe. It's the caller's responsibility
1221 * that the new key won't break the order
1223 int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
1224 struct btrfs_key *new_key)
1226 struct btrfs_disk_key disk_key;
1227 struct extent_buffer *eb;
1230 eb = path->nodes[0];
1231 slot = path->slots[0];
1233 btrfs_item_key(eb, &disk_key, slot - 1);
1234 if (btrfs_comp_keys(&disk_key, new_key) >= 0)
1237 if (slot < btrfs_header_nritems(eb) - 1) {
1238 btrfs_item_key(eb, &disk_key, slot + 1);
1239 if (btrfs_comp_keys(&disk_key, new_key) <= 0)
1243 btrfs_cpu_key_to_disk(&disk_key, new_key);
1244 btrfs_set_item_key(eb, &disk_key, slot);
1245 btrfs_mark_buffer_dirty(eb);
1247 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1252 * update an item key without the safety checks. This is meant to be called by
1255 void btrfs_set_item_key_unsafe(struct btrfs_root *root,
1256 struct btrfs_path *path,
1257 struct btrfs_key *new_key)
1259 struct btrfs_disk_key disk_key;
1260 struct extent_buffer *eb;
1263 eb = path->nodes[0];
1264 slot = path->slots[0];
1266 btrfs_cpu_key_to_disk(&disk_key, new_key);
1267 btrfs_set_item_key(eb, &disk_key, slot);
1268 btrfs_mark_buffer_dirty(eb);
1270 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1274 * try to push data from one node into the next node left in the
1277 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1278 * error, and > 0 if there was no room in the left hand block.
1280 static int push_node_left(struct btrfs_trans_handle *trans,
1281 struct btrfs_root *root, struct extent_buffer *dst,
1282 struct extent_buffer *src, int empty)
1289 src_nritems = btrfs_header_nritems(src);
1290 dst_nritems = btrfs_header_nritems(dst);
1291 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1292 WARN_ON(btrfs_header_generation(src) != trans->transid);
1293 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1295 if (!empty && src_nritems <= 8)
1298 if (push_items <= 0) {
1303 push_items = min(src_nritems, push_items);
1304 if (push_items < src_nritems) {
1305 /* leave at least 8 pointers in the node if
1306 * we aren't going to empty it
1308 if (src_nritems - push_items < 8) {
1309 if (push_items <= 8)
1315 push_items = min(src_nritems - 8, push_items);
1317 copy_extent_buffer(dst, src,
1318 btrfs_node_key_ptr_offset(dst_nritems),
1319 btrfs_node_key_ptr_offset(0),
1320 push_items * sizeof(struct btrfs_key_ptr));
1322 if (push_items < src_nritems) {
1323 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1324 btrfs_node_key_ptr_offset(push_items),
1325 (src_nritems - push_items) *
1326 sizeof(struct btrfs_key_ptr));
1328 btrfs_set_header_nritems(src, src_nritems - push_items);
1329 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1330 btrfs_mark_buffer_dirty(src);
1331 btrfs_mark_buffer_dirty(dst);
1337 * try to push data from one node into the next node right in the
1340 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1341 * error, and > 0 if there was no room in the right hand block.
1343 * this will only push up to 1/2 the contents of the left node over
1345 static int balance_node_right(struct btrfs_trans_handle *trans,
1346 struct btrfs_root *root,
1347 struct extent_buffer *dst,
1348 struct extent_buffer *src)
1356 WARN_ON(btrfs_header_generation(src) != trans->transid);
1357 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1359 src_nritems = btrfs_header_nritems(src);
1360 dst_nritems = btrfs_header_nritems(dst);
1361 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1362 if (push_items <= 0) {
1366 if (src_nritems < 4) {
1370 max_push = src_nritems / 2 + 1;
1371 /* don't try to empty the node */
1372 if (max_push >= src_nritems) {
1376 if (max_push < push_items)
1377 push_items = max_push;
1379 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1380 btrfs_node_key_ptr_offset(0),
1382 sizeof(struct btrfs_key_ptr));
1384 copy_extent_buffer(dst, src,
1385 btrfs_node_key_ptr_offset(0),
1386 btrfs_node_key_ptr_offset(src_nritems - push_items),
1387 push_items * sizeof(struct btrfs_key_ptr));
1389 btrfs_set_header_nritems(src, src_nritems - push_items);
1390 btrfs_set_header_nritems(dst, dst_nritems + push_items);
1392 btrfs_mark_buffer_dirty(src);
1393 btrfs_mark_buffer_dirty(dst);
1399 * helper function to insert a new root level in the tree.
1400 * A new node is allocated, and a single item is inserted to
1401 * point to the existing root
1403 * returns zero on success or < 0 on failure.
1405 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1406 struct btrfs_root *root,
1407 struct btrfs_path *path, int level)
1410 struct extent_buffer *lower;
1411 struct extent_buffer *c;
1412 struct extent_buffer *old;
1413 struct btrfs_disk_key lower_key;
1415 BUG_ON(path->nodes[level]);
1416 BUG_ON(path->nodes[level-1] != root->node);
1418 lower = path->nodes[level-1];
1420 btrfs_item_key(lower, &lower_key, 0);
1422 btrfs_node_key(lower, &lower_key, 0);
1424 c = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
1425 root->root_key.objectid, &lower_key,
1426 level, root->node->start, 0);
1431 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1432 btrfs_set_header_nritems(c, 1);
1433 btrfs_set_header_level(c, level);
1434 btrfs_set_header_bytenr(c, c->start);
1435 btrfs_set_header_generation(c, trans->transid);
1436 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1437 btrfs_set_header_owner(c, root->root_key.objectid);
1439 write_extent_buffer(c, root->fs_info->fsid,
1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1442 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1443 btrfs_header_chunk_tree_uuid(c),
1446 btrfs_set_node_key(c, &lower_key, 0);
1447 btrfs_set_node_blockptr(c, 0, lower->start);
1448 lower_gen = btrfs_header_generation(lower);
1449 WARN_ON(lower_gen != trans->transid);
1451 btrfs_set_node_ptr_generation(c, 0, lower_gen);
1453 btrfs_mark_buffer_dirty(c);
1458 /* the super has an extra ref to root->node */
1459 free_extent_buffer(old);
1461 add_root_to_dirty_list(root);
1462 extent_buffer_get(c);
1463 path->nodes[level] = c;
1464 path->slots[level] = 0;
1469 * worker function to insert a single pointer in a node.
1470 * the node should have enough room for the pointer already
1472 * slot and level indicate where you want the key to go, and
1473 * blocknr is the block the key points to.
1475 * returns zero on success and < 0 on any error
1477 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1478 *root, struct btrfs_path *path, struct btrfs_disk_key
1479 *key, u64 bytenr, int slot, int level)
1481 struct extent_buffer *lower;
1484 BUG_ON(!path->nodes[level]);
1485 lower = path->nodes[level];
1486 nritems = btrfs_header_nritems(lower);
1489 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1491 if (slot < nritems) {
1492 /* shift the items */
1493 memmove_extent_buffer(lower,
1494 btrfs_node_key_ptr_offset(slot + 1),
1495 btrfs_node_key_ptr_offset(slot),
1496 (nritems - slot) * sizeof(struct btrfs_key_ptr));
1498 btrfs_set_node_key(lower, key, slot);
1499 btrfs_set_node_blockptr(lower, slot, bytenr);
1500 WARN_ON(trans->transid == 0);
1501 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1502 btrfs_set_header_nritems(lower, nritems + 1);
1503 btrfs_mark_buffer_dirty(lower);
1508 * split the node at the specified level in path in two.
1509 * The path is corrected to point to the appropriate node after the split
1511 * Before splitting this tries to make some room in the node by pushing
1512 * left and right, if either one works, it returns right away.
1514 * returns 0 on success and < 0 on failure
1516 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1517 *root, struct btrfs_path *path, int level)
1519 struct extent_buffer *c;
1520 struct extent_buffer *split;
1521 struct btrfs_disk_key disk_key;
1527 c = path->nodes[level];
1528 WARN_ON(btrfs_header_generation(c) != trans->transid);
1529 if (c == root->node) {
1530 /* trying to split the root, lets make a new one */
1531 ret = insert_new_root(trans, root, path, level + 1);
1535 ret = push_nodes_for_insert(trans, root, path, level);
1536 c = path->nodes[level];
1537 if (!ret && btrfs_header_nritems(c) <
1538 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
1544 c_nritems = btrfs_header_nritems(c);
1545 mid = (c_nritems + 1) / 2;
1546 btrfs_node_key(c, &disk_key, mid);
1548 split = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
1549 root->root_key.objectid,
1550 &disk_key, level, c->start, 0);
1552 return PTR_ERR(split);
1554 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
1555 btrfs_set_header_level(split, btrfs_header_level(c));
1556 btrfs_set_header_bytenr(split, split->start);
1557 btrfs_set_header_generation(split, trans->transid);
1558 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
1559 btrfs_set_header_owner(split, root->root_key.objectid);
1560 write_extent_buffer(split, root->fs_info->fsid,
1561 btrfs_header_fsid(), BTRFS_FSID_SIZE);
1562 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1563 btrfs_header_chunk_tree_uuid(split),
1567 copy_extent_buffer(split, c,
1568 btrfs_node_key_ptr_offset(0),
1569 btrfs_node_key_ptr_offset(mid),
1570 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1571 btrfs_set_header_nritems(split, c_nritems - mid);
1572 btrfs_set_header_nritems(c, mid);
1575 btrfs_mark_buffer_dirty(c);
1576 btrfs_mark_buffer_dirty(split);
1578 wret = insert_ptr(trans, root, path, &disk_key, split->start,
1579 path->slots[level + 1] + 1,
1584 if (path->slots[level] >= mid) {
1585 path->slots[level] -= mid;
1586 free_extent_buffer(c);
1587 path->nodes[level] = split;
1588 path->slots[level + 1] += 1;
1590 free_extent_buffer(split);
1596 * how many bytes are required to store the items in a leaf. start
1597 * and nr indicate which items in the leaf to check. This totals up the
1598 * space used both by the item structs and the item data
1600 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1603 int nritems = btrfs_header_nritems(l);
1604 int end = min(nritems, start + nr) - 1;
1608 data_len = btrfs_item_end_nr(l, start);
1609 data_len = data_len - btrfs_item_offset_nr(l, end);
1610 data_len += sizeof(struct btrfs_item) * nr;
1611 WARN_ON(data_len < 0);
1616 * The space between the end of the leaf items and
1617 * the start of the leaf data. IOW, how much room
1618 * the leaf has left for both items and data
1620 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1622 u32 nodesize = (root ? BTRFS_LEAF_DATA_SIZE(root) : leaf->len);
1623 int nritems = btrfs_header_nritems(leaf);
1625 ret = nodesize - leaf_space_used(leaf, 0, nritems);
1627 printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
1628 ret, nodesize, leaf_space_used(leaf, 0, nritems),
1635 * push some data in the path leaf to the right, trying to free up at
1636 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1638 * returns 1 if the push failed because the other node didn't have enough
1639 * room, 0 if everything worked out and < 0 if there were major errors.
1641 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1642 *root, struct btrfs_path *path, int data_size,
1645 struct extent_buffer *left = path->nodes[0];
1646 struct extent_buffer *right;
1647 struct extent_buffer *upper;
1648 struct btrfs_disk_key disk_key;
1649 struct btrfs_fs_info *fs_info = root->fs_info;
1655 struct btrfs_item *item;
1663 slot = path->slots[1];
1664 if (!path->nodes[1]) {
1667 upper = path->nodes[1];
1668 if (slot >= btrfs_header_nritems(upper) - 1)
1671 right = read_node_slot(fs_info, upper, slot + 1);
1672 if (!extent_buffer_uptodate(right)) {
1674 return PTR_ERR(right);
1677 free_space = btrfs_leaf_free_space(root, right);
1678 if (free_space < data_size) {
1679 free_extent_buffer(right);
1683 /* cow and double check */
1684 ret = btrfs_cow_block(trans, root, right, upper,
1687 free_extent_buffer(right);
1690 free_space = btrfs_leaf_free_space(root, right);
1691 if (free_space < data_size) {
1692 free_extent_buffer(right);
1696 left_nritems = btrfs_header_nritems(left);
1697 if (left_nritems == 0) {
1698 free_extent_buffer(right);
1707 i = left_nritems - 1;
1709 item = btrfs_item_nr(i);
1711 if (path->slots[0] == i)
1712 push_space += data_size + sizeof(*item);
1714 this_item_size = btrfs_item_size(left, item);
1715 if (this_item_size + sizeof(*item) + push_space > free_space)
1718 push_space += this_item_size + sizeof(*item);
1724 if (push_items == 0) {
1725 free_extent_buffer(right);
1729 if (!empty && push_items == left_nritems)
1732 /* push left to right */
1733 right_nritems = btrfs_header_nritems(right);
1735 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1736 push_space -= leaf_data_end(root, left);
1738 /* make room in the right data area */
1739 data_end = leaf_data_end(root, right);
1740 memmove_extent_buffer(right,
1741 btrfs_leaf_data(right) + data_end - push_space,
1742 btrfs_leaf_data(right) + data_end,
1743 BTRFS_LEAF_DATA_SIZE(root) - data_end);
1745 /* copy from the left data area */
1746 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1747 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1748 btrfs_leaf_data(left) + leaf_data_end(root, left),
1751 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1752 btrfs_item_nr_offset(0),
1753 right_nritems * sizeof(struct btrfs_item));
1755 /* copy the items from left to right */
1756 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1757 btrfs_item_nr_offset(left_nritems - push_items),
1758 push_items * sizeof(struct btrfs_item));
1760 /* update the item pointers */
1761 right_nritems += push_items;
1762 btrfs_set_header_nritems(right, right_nritems);
1763 push_space = BTRFS_LEAF_DATA_SIZE(root);
1764 for (i = 0; i < right_nritems; i++) {
1765 item = btrfs_item_nr(i);
1766 push_space -= btrfs_item_size(right, item);
1767 btrfs_set_item_offset(right, item, push_space);
1770 left_nritems -= push_items;
1771 btrfs_set_header_nritems(left, left_nritems);
1774 btrfs_mark_buffer_dirty(left);
1775 btrfs_mark_buffer_dirty(right);
1777 btrfs_item_key(right, &disk_key, 0);
1778 btrfs_set_node_key(upper, &disk_key, slot + 1);
1779 btrfs_mark_buffer_dirty(upper);
1781 /* then fixup the leaf pointer in the path */
1782 if (path->slots[0] >= left_nritems) {
1783 path->slots[0] -= left_nritems;
1784 free_extent_buffer(path->nodes[0]);
1785 path->nodes[0] = right;
1786 path->slots[1] += 1;
1788 free_extent_buffer(right);
1793 * push some data in the path leaf to the left, trying to free up at
1794 * least data_size bytes. returns zero if the push worked, nonzero otherwise
1796 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1797 *root, struct btrfs_path *path, int data_size,
1800 struct btrfs_disk_key disk_key;
1801 struct extent_buffer *right = path->nodes[0];
1802 struct extent_buffer *left;
1803 struct btrfs_fs_info *fs_info = root->fs_info;
1809 struct btrfs_item *item;
1810 u32 old_left_nritems;
1815 u32 old_left_item_size;
1817 slot = path->slots[1];
1820 if (!path->nodes[1])
1823 right_nritems = btrfs_header_nritems(right);
1824 if (right_nritems == 0) {
1828 left = read_node_slot(fs_info, path->nodes[1], slot - 1);
1829 free_space = btrfs_leaf_free_space(root, left);
1830 if (free_space < data_size) {
1831 free_extent_buffer(left);
1835 /* cow and double check */
1836 ret = btrfs_cow_block(trans, root, left,
1837 path->nodes[1], slot - 1, &left);
1839 /* we hit -ENOSPC, but it isn't fatal here */
1840 free_extent_buffer(left);
1844 free_space = btrfs_leaf_free_space(root, left);
1845 if (free_space < data_size) {
1846 free_extent_buffer(left);
1853 nr = right_nritems - 1;
1855 for (i = 0; i < nr; i++) {
1856 item = btrfs_item_nr(i);
1858 if (path->slots[0] == i)
1859 push_space += data_size + sizeof(*item);
1861 this_item_size = btrfs_item_size(right, item);
1862 if (this_item_size + sizeof(*item) + push_space > free_space)
1866 push_space += this_item_size + sizeof(*item);
1869 if (push_items == 0) {
1870 free_extent_buffer(left);
1873 if (!empty && push_items == btrfs_header_nritems(right))
1876 /* push data from right to left */
1877 copy_extent_buffer(left, right,
1878 btrfs_item_nr_offset(btrfs_header_nritems(left)),
1879 btrfs_item_nr_offset(0),
1880 push_items * sizeof(struct btrfs_item));
1882 push_space = BTRFS_LEAF_DATA_SIZE(root) -
1883 btrfs_item_offset_nr(right, push_items -1);
1885 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1886 leaf_data_end(root, left) - push_space,
1887 btrfs_leaf_data(right) +
1888 btrfs_item_offset_nr(right, push_items - 1),
1890 old_left_nritems = btrfs_header_nritems(left);
1891 BUG_ON(old_left_nritems == 0);
1893 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1894 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1897 item = btrfs_item_nr(i);
1898 ioff = btrfs_item_offset(left, item);
1899 btrfs_set_item_offset(left, item,
1900 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
1902 btrfs_set_header_nritems(left, old_left_nritems + push_items);
1904 /* fixup right node */
1905 if (push_items > right_nritems) {
1906 printk("push items %d nr %u\n", push_items, right_nritems);
1910 if (push_items < right_nritems) {
1911 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1912 leaf_data_end(root, right);
1913 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1914 BTRFS_LEAF_DATA_SIZE(root) - push_space,
1915 btrfs_leaf_data(right) +
1916 leaf_data_end(root, right), push_space);
1918 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1919 btrfs_item_nr_offset(push_items),
1920 (btrfs_header_nritems(right) - push_items) *
1921 sizeof(struct btrfs_item));
1923 right_nritems -= push_items;
1924 btrfs_set_header_nritems(right, right_nritems);
1925 push_space = BTRFS_LEAF_DATA_SIZE(root);
1926 for (i = 0; i < right_nritems; i++) {
1927 item = btrfs_item_nr(i);
1928 push_space = push_space - btrfs_item_size(right, item);
1929 btrfs_set_item_offset(right, item, push_space);
1932 btrfs_mark_buffer_dirty(left);
1934 btrfs_mark_buffer_dirty(right);
1936 btrfs_item_key(right, &disk_key, 0);
1937 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1939 /* then fixup the leaf pointer in the path */
1940 if (path->slots[0] < push_items) {
1941 path->slots[0] += old_left_nritems;
1942 free_extent_buffer(path->nodes[0]);
1943 path->nodes[0] = left;
1944 path->slots[1] -= 1;
1946 free_extent_buffer(left);
1947 path->slots[0] -= push_items;
1949 BUG_ON(path->slots[0] < 0);
1954 * split the path's leaf in two, making sure there is at least data_size
1955 * available for the resulting leaf level of the path.
1957 * returns 0 if all went well and < 0 on failure.
1959 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
1960 struct btrfs_root *root,
1961 struct btrfs_path *path,
1962 struct extent_buffer *l,
1963 struct extent_buffer *right,
1964 int slot, int mid, int nritems)
1971 struct btrfs_disk_key disk_key;
1973 nritems = nritems - mid;
1974 btrfs_set_header_nritems(right, nritems);
1975 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
1977 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1978 btrfs_item_nr_offset(mid),
1979 nritems * sizeof(struct btrfs_item));
1981 copy_extent_buffer(right, l,
1982 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1983 data_copy_size, btrfs_leaf_data(l) +
1984 leaf_data_end(root, l), data_copy_size);
1986 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1987 btrfs_item_end_nr(l, mid);
1989 for (i = 0; i < nritems; i++) {
1990 struct btrfs_item *item = btrfs_item_nr(i);
1991 u32 ioff = btrfs_item_offset(right, item);
1992 btrfs_set_item_offset(right, item, ioff + rt_data_off);
1995 btrfs_set_header_nritems(l, mid);
1997 btrfs_item_key(right, &disk_key, 0);
1998 wret = insert_ptr(trans, root, path, &disk_key, right->start,
1999 path->slots[1] + 1, 1);
2003 btrfs_mark_buffer_dirty(right);
2004 btrfs_mark_buffer_dirty(l);
2005 BUG_ON(path->slots[0] != slot);
2008 free_extent_buffer(path->nodes[0]);
2009 path->nodes[0] = right;
2010 path->slots[0] -= mid;
2011 path->slots[1] += 1;
2013 free_extent_buffer(right);
2016 BUG_ON(path->slots[0] < 0);
2022 * split the path's leaf in two, making sure there is at least data_size
2023 * available for the resulting leaf level of the path.
2025 * returns 0 if all went well and < 0 on failure.
2027 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2028 struct btrfs_root *root,
2029 struct btrfs_key *ins_key,
2030 struct btrfs_path *path, int data_size,
2033 struct btrfs_disk_key disk_key;
2034 struct extent_buffer *l;
2038 struct extent_buffer *right;
2042 int num_doubles = 0;
2045 slot = path->slots[0];
2046 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2047 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2050 /* first try to make some room by pushing left and right */
2051 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2052 wret = push_leaf_right(trans, root, path, data_size, 0);
2056 wret = push_leaf_left(trans, root, path, data_size, 0);
2062 /* did the pushes work? */
2063 if (btrfs_leaf_free_space(root, l) >= data_size)
2067 if (!path->nodes[1]) {
2068 ret = insert_new_root(trans, root, path, 1);
2075 slot = path->slots[0];
2076 nritems = btrfs_header_nritems(l);
2077 mid = (nritems + 1) / 2;
2081 leaf_space_used(l, mid, nritems - mid) + data_size >
2082 BTRFS_LEAF_DATA_SIZE(root)) {
2083 if (slot >= nritems) {
2087 if (mid != nritems &&
2088 leaf_space_used(l, mid, nritems - mid) +
2089 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2095 if (leaf_space_used(l, 0, mid) + data_size >
2096 BTRFS_LEAF_DATA_SIZE(root)) {
2097 if (!extend && data_size && slot == 0) {
2099 } else if ((extend || !data_size) && slot == 0) {
2103 if (mid != nritems &&
2104 leaf_space_used(l, mid, nritems - mid) +
2105 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2113 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2115 btrfs_item_key(l, &disk_key, mid);
2117 right = btrfs_alloc_free_block(trans, root, root->fs_info->nodesize,
2118 root->root_key.objectid,
2119 &disk_key, 0, l->start, 0);
2120 if (IS_ERR(right)) {
2122 return PTR_ERR(right);
2125 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2126 btrfs_set_header_bytenr(right, right->start);
2127 btrfs_set_header_generation(right, trans->transid);
2128 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2129 btrfs_set_header_owner(right, root->root_key.objectid);
2130 btrfs_set_header_level(right, 0);
2131 write_extent_buffer(right, root->fs_info->fsid,
2132 btrfs_header_fsid(), BTRFS_FSID_SIZE);
2134 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2135 btrfs_header_chunk_tree_uuid(right),
2140 btrfs_set_header_nritems(right, 0);
2141 wret = insert_ptr(trans, root, path,
2142 &disk_key, right->start,
2143 path->slots[1] + 1, 1);
2147 free_extent_buffer(path->nodes[0]);
2148 path->nodes[0] = right;
2150 path->slots[1] += 1;
2152 btrfs_set_header_nritems(right, 0);
2153 wret = insert_ptr(trans, root, path,
2159 free_extent_buffer(path->nodes[0]);
2160 path->nodes[0] = right;
2162 if (path->slots[1] == 0) {
2163 btrfs_fixup_low_keys(root, path,
2167 btrfs_mark_buffer_dirty(right);
2171 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2175 BUG_ON(num_doubles != 0);
2184 * This function splits a single item into two items,
2185 * giving 'new_key' to the new item and splitting the
2186 * old one at split_offset (from the start of the item).
2188 * The path may be released by this operation. After
2189 * the split, the path is pointing to the old item. The
2190 * new item is going to be in the same node as the old one.
2192 * Note, the item being split must be smaller enough to live alone on
2193 * a tree block with room for one extra struct btrfs_item
2195 * This allows us to split the item in place, keeping a lock on the
2196 * leaf the entire time.
2198 int btrfs_split_item(struct btrfs_trans_handle *trans,
2199 struct btrfs_root *root,
2200 struct btrfs_path *path,
2201 struct btrfs_key *new_key,
2202 unsigned long split_offset)
2205 struct extent_buffer *leaf;
2206 struct btrfs_key orig_key;
2207 struct btrfs_item *item;
2208 struct btrfs_item *new_item;
2213 struct btrfs_disk_key disk_key;
2216 leaf = path->nodes[0];
2217 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2218 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2221 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2222 btrfs_release_path(path);
2224 path->search_for_split = 1;
2226 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2227 path->search_for_split = 0;
2229 /* if our item isn't there or got smaller, return now */
2230 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2235 ret = split_leaf(trans, root, &orig_key, path, 0, 0);
2238 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2239 leaf = path->nodes[0];
2242 item = btrfs_item_nr(path->slots[0]);
2243 orig_offset = btrfs_item_offset(leaf, item);
2244 item_size = btrfs_item_size(leaf, item);
2247 buf = kmalloc(item_size, GFP_NOFS);
2249 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2250 path->slots[0]), item_size);
2251 slot = path->slots[0] + 1;
2252 leaf = path->nodes[0];
2254 nritems = btrfs_header_nritems(leaf);
2256 if (slot < nritems) {
2257 /* shift the items */
2258 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2259 btrfs_item_nr_offset(slot),
2260 (nritems - slot) * sizeof(struct btrfs_item));
2264 btrfs_cpu_key_to_disk(&disk_key, new_key);
2265 btrfs_set_item_key(leaf, &disk_key, slot);
2267 new_item = btrfs_item_nr(slot);
2269 btrfs_set_item_offset(leaf, new_item, orig_offset);
2270 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2272 btrfs_set_item_offset(leaf, item,
2273 orig_offset + item_size - split_offset);
2274 btrfs_set_item_size(leaf, item, split_offset);
2276 btrfs_set_header_nritems(leaf, nritems + 1);
2278 /* write the data for the start of the original item */
2279 write_extent_buffer(leaf, buf,
2280 btrfs_item_ptr_offset(leaf, path->slots[0]),
2283 /* write the data for the new item */
2284 write_extent_buffer(leaf, buf + split_offset,
2285 btrfs_item_ptr_offset(leaf, slot),
2286 item_size - split_offset);
2287 btrfs_mark_buffer_dirty(leaf);
2290 if (btrfs_leaf_free_space(root, leaf) < 0) {
2291 btrfs_print_leaf(root, leaf);
2298 int btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
2299 u32 new_size, int from_end)
2303 struct extent_buffer *leaf;
2304 struct btrfs_item *item;
2306 unsigned int data_end;
2307 unsigned int old_data_start;
2308 unsigned int old_size;
2309 unsigned int size_diff;
2312 leaf = path->nodes[0];
2313 slot = path->slots[0];
2315 old_size = btrfs_item_size_nr(leaf, slot);
2316 if (old_size == new_size)
2319 nritems = btrfs_header_nritems(leaf);
2320 data_end = leaf_data_end(root, leaf);
2322 old_data_start = btrfs_item_offset_nr(leaf, slot);
2324 size_diff = old_size - new_size;
2327 BUG_ON(slot >= nritems);
2330 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2332 /* first correct the data pointers */
2333 for (i = slot; i < nritems; i++) {
2335 item = btrfs_item_nr(i);
2336 ioff = btrfs_item_offset(leaf, item);
2337 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2340 /* shift the data */
2342 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2343 data_end + size_diff, btrfs_leaf_data(leaf) +
2344 data_end, old_data_start + new_size - data_end);
2346 struct btrfs_disk_key disk_key;
2349 btrfs_item_key(leaf, &disk_key, slot);
2351 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2353 struct btrfs_file_extent_item *fi;
2355 fi = btrfs_item_ptr(leaf, slot,
2356 struct btrfs_file_extent_item);
2357 fi = (struct btrfs_file_extent_item *)(
2358 (unsigned long)fi - size_diff);
2360 if (btrfs_file_extent_type(leaf, fi) ==
2361 BTRFS_FILE_EXTENT_INLINE) {
2362 ptr = btrfs_item_ptr_offset(leaf, slot);
2363 memmove_extent_buffer(leaf, ptr,
2365 offsetof(struct btrfs_file_extent_item,
2370 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2371 data_end + size_diff, btrfs_leaf_data(leaf) +
2372 data_end, old_data_start - data_end);
2374 offset = btrfs_disk_key_offset(&disk_key);
2375 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2376 btrfs_set_item_key(leaf, &disk_key, slot);
2378 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2381 item = btrfs_item_nr(slot);
2382 btrfs_set_item_size(leaf, item, new_size);
2383 btrfs_mark_buffer_dirty(leaf);
2386 if (btrfs_leaf_free_space(root, leaf) < 0) {
2387 btrfs_print_leaf(root, leaf);
2393 int btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
2398 struct extent_buffer *leaf;
2399 struct btrfs_item *item;
2401 unsigned int data_end;
2402 unsigned int old_data;
2403 unsigned int old_size;
2406 leaf = path->nodes[0];
2408 nritems = btrfs_header_nritems(leaf);
2409 data_end = leaf_data_end(root, leaf);
2411 if (btrfs_leaf_free_space(root, leaf) < data_size) {
2412 btrfs_print_leaf(root, leaf);
2415 slot = path->slots[0];
2416 old_data = btrfs_item_end_nr(leaf, slot);
2419 if (slot >= nritems) {
2420 btrfs_print_leaf(root, leaf);
2421 printk("slot %d too large, nritems %d\n", slot, nritems);
2426 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2428 /* first correct the data pointers */
2429 for (i = slot; i < nritems; i++) {
2431 item = btrfs_item_nr(i);
2432 ioff = btrfs_item_offset(leaf, item);
2433 btrfs_set_item_offset(leaf, item, ioff - data_size);
2436 /* shift the data */
2437 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2438 data_end - data_size, btrfs_leaf_data(leaf) +
2439 data_end, old_data - data_end);
2441 data_end = old_data;
2442 old_size = btrfs_item_size_nr(leaf, slot);
2443 item = btrfs_item_nr(slot);
2444 btrfs_set_item_size(leaf, item, old_size + data_size);
2445 btrfs_mark_buffer_dirty(leaf);
2448 if (btrfs_leaf_free_space(root, leaf) < 0) {
2449 btrfs_print_leaf(root, leaf);
2456 * Given a key and some data, insert an item into the tree.
2457 * This does all the path init required, making room in the tree if needed.
2459 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2460 struct btrfs_root *root,
2461 struct btrfs_path *path,
2462 struct btrfs_key *cpu_key, u32 *data_size,
2465 struct extent_buffer *leaf;
2466 struct btrfs_item *item;
2473 unsigned int data_end;
2474 struct btrfs_disk_key disk_key;
2476 for (i = 0; i < nr; i++) {
2477 total_data += data_size[i];
2480 /* create a root if there isn't one */
2484 total_size = total_data + nr * sizeof(struct btrfs_item);
2485 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2492 leaf = path->nodes[0];
2494 nritems = btrfs_header_nritems(leaf);
2495 data_end = leaf_data_end(root, leaf);
2497 if (btrfs_leaf_free_space(root, leaf) < total_size) {
2498 btrfs_print_leaf(root, leaf);
2499 printk("not enough freespace need %u have %d\n",
2500 total_size, btrfs_leaf_free_space(root, leaf));
2504 slot = path->slots[0];
2507 if (slot < nritems) {
2508 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2510 if (old_data < data_end) {
2511 btrfs_print_leaf(root, leaf);
2512 printk("slot %d old_data %d data_end %d\n",
2513 slot, old_data, data_end);
2517 * item0..itemN ... dataN.offset..dataN.size .. data0.size
2519 /* first correct the data pointers */
2520 for (i = slot; i < nritems; i++) {
2523 item = btrfs_item_nr(i);
2524 ioff = btrfs_item_offset(leaf, item);
2525 btrfs_set_item_offset(leaf, item, ioff - total_data);
2528 /* shift the items */
2529 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2530 btrfs_item_nr_offset(slot),
2531 (nritems - slot) * sizeof(struct btrfs_item));
2533 /* shift the data */
2534 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2535 data_end - total_data, btrfs_leaf_data(leaf) +
2536 data_end, old_data - data_end);
2537 data_end = old_data;
2540 /* setup the item for the new data */
2541 for (i = 0; i < nr; i++) {
2542 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2543 btrfs_set_item_key(leaf, &disk_key, slot + i);
2544 item = btrfs_item_nr(slot + i);
2545 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2546 data_end -= data_size[i];
2547 btrfs_set_item_size(leaf, item, data_size[i]);
2549 btrfs_set_header_nritems(leaf, nritems + nr);
2550 btrfs_mark_buffer_dirty(leaf);
2554 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2555 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2558 if (btrfs_leaf_free_space(root, leaf) < 0) {
2559 btrfs_print_leaf(root, leaf);
2568 * Given a key and some data, insert an item into the tree.
2569 * This does all the path init required, making room in the tree if needed.
2571 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2572 *root, struct btrfs_key *cpu_key, void *data, u32
2576 struct btrfs_path *path;
2577 struct extent_buffer *leaf;
2580 path = btrfs_alloc_path();
2584 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2586 leaf = path->nodes[0];
2587 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2588 write_extent_buffer(leaf, data, ptr, data_size);
2589 btrfs_mark_buffer_dirty(leaf);
2591 btrfs_free_path(path);
2596 * delete the pointer from a given node.
2598 * If the delete empties a node, the node is removed from the tree,
2599 * continuing all the way the root if required. The root is converted into
2600 * a leaf if all the nodes are emptied.
2602 int btrfs_del_ptr(struct btrfs_root *root, struct btrfs_path *path,
2603 int level, int slot)
2605 struct extent_buffer *parent = path->nodes[level];
2609 nritems = btrfs_header_nritems(parent);
2610 if (slot < nritems - 1) {
2611 /* shift the items */
2612 memmove_extent_buffer(parent,
2613 btrfs_node_key_ptr_offset(slot),
2614 btrfs_node_key_ptr_offset(slot + 1),
2615 sizeof(struct btrfs_key_ptr) *
2616 (nritems - slot - 1));
2619 btrfs_set_header_nritems(parent, nritems);
2620 if (nritems == 0 && parent == root->node) {
2621 BUG_ON(btrfs_header_level(root->node) != 1);
2622 /* just turn the root into a leaf and break */
2623 btrfs_set_header_level(root->node, 0);
2624 } else if (slot == 0) {
2625 struct btrfs_disk_key disk_key;
2627 btrfs_node_key(parent, &disk_key, 0);
2628 btrfs_fixup_low_keys(root, path, &disk_key, level + 1);
2630 btrfs_mark_buffer_dirty(parent);
2635 * a helper function to delete the leaf pointed to by path->slots[1] and
2638 * This deletes the pointer in path->nodes[1] and frees the leaf
2639 * block extent. zero is returned if it all worked out, < 0 otherwise.
2641 * The path must have already been setup for deleting the leaf, including
2642 * all the proper balancing. path->nodes[1] must be locked.
2644 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
2645 struct btrfs_root *root,
2646 struct btrfs_path *path,
2647 struct extent_buffer *leaf)
2651 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
2652 ret = btrfs_del_ptr(root, path, 1, path->slots[1]);
2656 ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
2657 0, root->root_key.objectid, 0, 0);
2662 * delete the item at the leaf level in path. If that empties
2663 * the leaf, remove it from the tree
2665 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2666 struct btrfs_path *path, int slot, int nr)
2668 struct extent_buffer *leaf;
2669 struct btrfs_item *item;
2677 leaf = path->nodes[0];
2678 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2680 for (i = 0; i < nr; i++)
2681 dsize += btrfs_item_size_nr(leaf, slot + i);
2683 nritems = btrfs_header_nritems(leaf);
2685 if (slot + nr != nritems) {
2686 int data_end = leaf_data_end(root, leaf);
2688 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2690 btrfs_leaf_data(leaf) + data_end,
2691 last_off - data_end);
2693 for (i = slot + nr; i < nritems; i++) {
2696 item = btrfs_item_nr(i);
2697 ioff = btrfs_item_offset(leaf, item);
2698 btrfs_set_item_offset(leaf, item, ioff + dsize);
2701 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2702 btrfs_item_nr_offset(slot + nr),
2703 sizeof(struct btrfs_item) *
2704 (nritems - slot - nr));
2706 btrfs_set_header_nritems(leaf, nritems - nr);
2709 /* delete the leaf if we've emptied it */
2711 if (leaf == root->node) {
2712 btrfs_set_header_level(leaf, 0);
2714 clean_tree_block(trans, root, leaf);
2715 wret = btrfs_del_leaf(trans, root, path, leaf);
2721 int used = leaf_space_used(leaf, 0, nritems);
2723 struct btrfs_disk_key disk_key;
2725 btrfs_item_key(leaf, &disk_key, 0);
2726 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2729 /* delete the leaf if it is mostly empty */
2730 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2731 /* push_leaf_left fixes the path.
2732 * make sure the path still points to our leaf
2733 * for possible call to del_ptr below
2735 slot = path->slots[1];
2736 extent_buffer_get(leaf);
2738 wret = push_leaf_left(trans, root, path, 1, 1);
2739 if (wret < 0 && wret != -ENOSPC)
2742 if (path->nodes[0] == leaf &&
2743 btrfs_header_nritems(leaf)) {
2744 wret = push_leaf_right(trans, root, path, 1, 1);
2745 if (wret < 0 && wret != -ENOSPC)
2749 if (btrfs_header_nritems(leaf) == 0) {
2750 clean_tree_block(trans, root, leaf);
2751 path->slots[1] = slot;
2752 ret = btrfs_del_leaf(trans, root, path, leaf);
2754 free_extent_buffer(leaf);
2757 btrfs_mark_buffer_dirty(leaf);
2758 free_extent_buffer(leaf);
2761 btrfs_mark_buffer_dirty(leaf);
2768 * walk up the tree as far as required to find the previous leaf.
2769 * returns 0 if it found something or 1 if there are no lesser leaves.
2770 * returns < 0 on io errors.
2772 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2776 struct extent_buffer *c;
2777 struct extent_buffer *next = NULL;
2778 struct btrfs_fs_info *fs_info = root->fs_info;
2780 while(level < BTRFS_MAX_LEVEL) {
2781 if (!path->nodes[level])
2784 slot = path->slots[level];
2785 c = path->nodes[level];
2788 if (level == BTRFS_MAX_LEVEL)
2794 next = read_node_slot(fs_info, c, slot);
2795 if (!extent_buffer_uptodate(next)) {
2797 return PTR_ERR(next);
2802 path->slots[level] = slot;
2805 c = path->nodes[level];
2806 free_extent_buffer(c);
2807 slot = btrfs_header_nritems(next);
2810 path->nodes[level] = next;
2811 path->slots[level] = slot;
2814 next = read_node_slot(fs_info, next, slot);
2815 if (!extent_buffer_uptodate(next)) {
2817 return PTR_ERR(next);
2825 * walk up the tree as far as required to find the next leaf.
2826 * returns 0 if it found something or 1 if there are no greater leaves.
2827 * returns < 0 on io errors.
2829 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2833 struct extent_buffer *c;
2834 struct extent_buffer *next = NULL;
2835 struct btrfs_fs_info *fs_info = root->fs_info;
2837 while(level < BTRFS_MAX_LEVEL) {
2838 if (!path->nodes[level])
2841 slot = path->slots[level] + 1;
2842 c = path->nodes[level];
2843 if (slot >= btrfs_header_nritems(c)) {
2845 if (level == BTRFS_MAX_LEVEL)
2851 reada_for_search(root, path, level, slot, 0);
2853 next = read_node_slot(fs_info, c, slot);
2854 if (!extent_buffer_uptodate(next))
2858 path->slots[level] = slot;
2861 c = path->nodes[level];
2862 free_extent_buffer(c);
2863 path->nodes[level] = next;
2864 path->slots[level] = 0;
2868 reada_for_search(root, path, level, 0, 0);
2869 next = read_node_slot(fs_info, next, 0);
2870 if (!extent_buffer_uptodate(next))
2876 int btrfs_previous_item(struct btrfs_root *root,
2877 struct btrfs_path *path, u64 min_objectid,
2880 struct btrfs_key found_key;
2881 struct extent_buffer *leaf;
2886 if (path->slots[0] == 0) {
2887 ret = btrfs_prev_leaf(root, path);
2893 leaf = path->nodes[0];
2894 nritems = btrfs_header_nritems(leaf);
2897 if (path->slots[0] == nritems)
2900 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2901 if (found_key.objectid < min_objectid)
2903 if (found_key.type == type)
2905 if (found_key.objectid == min_objectid &&
2906 found_key.type < type)
2913 * search in extent tree to find a previous Metadata/Data extent item with
2916 * returns 0 if something is found, 1 if nothing was found and < 0 on error
2918 int btrfs_previous_extent_item(struct btrfs_root *root,
2919 struct btrfs_path *path, u64 min_objectid)
2921 struct btrfs_key found_key;
2922 struct extent_buffer *leaf;
2927 if (path->slots[0] == 0) {
2928 ret = btrfs_prev_leaf(root, path);
2934 leaf = path->nodes[0];
2935 nritems = btrfs_header_nritems(leaf);
2938 if (path->slots[0] == nritems)
2941 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2942 if (found_key.objectid < min_objectid)
2944 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2945 found_key.type == BTRFS_METADATA_ITEM_KEY)
2947 if (found_key.objectid == min_objectid &&
2948 found_key.type < BTRFS_EXTENT_ITEM_KEY)
2955 * Search in extent tree to found next meta/data extent
2956 * Caller needs to check for no-hole or skinny metadata features.
2958 int btrfs_next_extent_item(struct btrfs_root *root,
2959 struct btrfs_path *path, u64 max_objectid)
2961 struct btrfs_key found_key;
2965 ret = btrfs_next_item(root, path);
2968 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2970 if (found_key.objectid > max_objectid)
2972 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2973 found_key.type == BTRFS_METADATA_ITEM_KEY)