489019ac04b8db1c587679cacf109665cfbc5847
[platform/upstream/btrfs-progs.git] / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7 #include "print-tree.h"
8
9 static int split_node(struct ctree_root *root, struct ctree_path *path,
10                       int level);
11 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
12                       int data_size);
13 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst,
14                           struct tree_buffer *src);
15 static int balance_node_right(struct ctree_root *root,
16                               struct tree_buffer *dst_buf,
17                               struct tree_buffer *src_buf);
18 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
19                    int slot);
20
21 inline void init_path(struct ctree_path *p)
22 {
23         memset(p, 0, sizeof(*p));
24 }
25
26 void release_path(struct ctree_root *root, struct ctree_path *p)
27 {
28         int i;
29         for (i = 0; i < MAX_LEVEL; i++) {
30                 if (!p->nodes[i])
31                         break;
32                 tree_block_release(root, p->nodes[i]);
33         }
34         memset(p, 0, sizeof(*p));
35 }
36
37 int btrfs_cow_block(struct ctree_root *root,
38                     struct tree_buffer *buf,
39                     struct tree_buffer *parent,
40                     int parent_slot,
41                     struct tree_buffer **cow_ret)
42 {
43         struct tree_buffer *cow;
44
45         if (!list_empty(&buf->dirty)) {
46                 *cow_ret = buf;
47                 return 0;
48         }
49         cow = alloc_free_block(root);
50         memcpy(&cow->node, &buf->node, sizeof(buf->node));
51         btrfs_set_header_blocknr(&cow->node.header, cow->blocknr);
52         *cow_ret = cow;
53         btrfs_inc_ref(root, buf);
54         if (buf == root->node) {
55                 root->node = cow;
56                 cow->count++;
57                 if (buf != root->commit_root)
58                         free_extent(root, buf->blocknr, 1);
59                 tree_block_release(root, buf);
60         } else {
61                 parent->node.blockptrs[parent_slot] = cow->blocknr;
62                 BUG_ON(list_empty(&parent->dirty));
63                 free_extent(root, buf->blocknr, 1);
64         }
65         tree_block_release(root, buf);
66         return 0;
67 }
68
69 /*
70  * The leaf data grows from end-to-front in the node.
71  * this returns the address of the start of the last item,
72  * which is the stop of the leaf data stack
73  */
74 static inline unsigned int leaf_data_end(struct leaf *leaf)
75 {
76         u32 nr = btrfs_header_nritems(&leaf->header);
77         if (nr == 0)
78                 return sizeof(leaf->data);
79         return leaf->items[nr-1].offset;
80 }
81
82 /*
83  * The space between the end of the leaf items and
84  * the start of the leaf data.  IOW, how much room
85  * the leaf has left for both items and data
86  */
87 int leaf_free_space(struct leaf *leaf)
88 {
89         int data_end = leaf_data_end(leaf);
90         int nritems = btrfs_header_nritems(&leaf->header);
91         char *items_end = (char *)(leaf->items + nritems + 1);
92         return (char *)(leaf->data + data_end) - (char *)items_end;
93 }
94
95 /*
96  * compare two keys in a memcmp fashion
97  */
98 int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
99 {
100         struct btrfs_key k1;
101
102         btrfs_disk_key_to_cpu(&k1, disk);
103
104         if (k1.objectid > k2->objectid)
105                 return 1;
106         if (k1.objectid < k2->objectid)
107                 return -1;
108         if (k1.flags > k2->flags)
109                 return 1;
110         if (k1.flags < k2->flags)
111                 return -1;
112         if (k1.offset > k2->offset)
113                 return 1;
114         if (k1.offset < k2->offset)
115                 return -1;
116         return 0;
117 }
118
119 int check_node(struct ctree_path *path, int level)
120 {
121         int i;
122         struct node *parent = NULL;
123         struct node *node = &path->nodes[level]->node;
124         int parent_slot;
125         u32 nritems = btrfs_header_nritems(&node->header);
126
127         if (path->nodes[level + 1])
128                 parent = &path->nodes[level + 1]->node;
129         parent_slot = path->slots[level + 1];
130         BUG_ON(nritems == 0);
131         if (parent) {
132                 struct btrfs_disk_key *parent_key;
133                 parent_key = &parent->keys[parent_slot];
134                 BUG_ON(memcmp(parent_key, node->keys,
135                               sizeof(struct btrfs_disk_key)));
136                 BUG_ON(parent->blockptrs[parent_slot] !=
137                        btrfs_header_blocknr(&node->header));
138         }
139         BUG_ON(nritems > NODEPTRS_PER_BLOCK);
140         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
141                 struct btrfs_key cpukey;
142                 btrfs_disk_key_to_cpu(&cpukey, &node->keys[i + 1]);
143                 BUG_ON(comp_keys(&node->keys[i], &cpukey) >= 0);
144         }
145         return 0;
146 }
147
148 int check_leaf(struct ctree_path *path, int level)
149 {
150         int i;
151         struct leaf *leaf = &path->nodes[level]->leaf;
152         struct node *parent = NULL;
153         int parent_slot;
154         u32 nritems = btrfs_header_nritems(&leaf->header);
155
156         if (path->nodes[level + 1])
157                 parent = &path->nodes[level + 1]->node;
158         parent_slot = path->slots[level + 1];
159         BUG_ON(leaf_free_space(leaf) < 0);
160
161         if (nritems == 0)
162                 return 0;
163
164         if (parent) {
165                 struct btrfs_disk_key *parent_key;
166                 parent_key = &parent->keys[parent_slot];
167                 BUG_ON(memcmp(parent_key, &leaf->items[0].key,
168                        sizeof(struct btrfs_disk_key)));
169                 BUG_ON(parent->blockptrs[parent_slot] !=
170                        btrfs_header_blocknr(&leaf->header));
171         }
172         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
173                 struct btrfs_key cpukey;
174                 btrfs_disk_key_to_cpu(&cpukey, &leaf->items[i + 1].key);
175                 BUG_ON(comp_keys(&leaf->items[i].key,
176                                  &cpukey) >= 0);
177                 BUG_ON(leaf->items[i].offset != leaf->items[i + 1].offset +
178                     leaf->items[i + 1].size);
179                 if (i == 0) {
180                         BUG_ON(leaf->items[i].offset + leaf->items[i].size !=
181                                 LEAF_DATA_SIZE);
182                 }
183         }
184         return 0;
185 }
186
187 int check_block(struct ctree_path *path, int level)
188 {
189         if (level == 0)
190                 return check_leaf(path, level);
191         return check_node(path, level);
192 }
193
194 /*
195  * search for key in the array p.  items p are item_size apart
196  * and there are 'max' items in p
197  * the slot in the array is returned via slot, and it points to
198  * the place where you would insert key if it is not found in
199  * the array.
200  *
201  * slot may point to max if the key is bigger than all of the keys
202  */
203 int generic_bin_search(char *p, int item_size, struct btrfs_key *key,
204                        int max, int *slot)
205 {
206         int low = 0;
207         int high = max;
208         int mid;
209         int ret;
210         struct btrfs_disk_key *tmp;
211
212         while(low < high) {
213                 mid = (low + high) / 2;
214                 tmp = (struct btrfs_disk_key *)(p + mid * item_size);
215                 ret = comp_keys(tmp, key);
216
217                 if (ret < 0)
218                         low = mid + 1;
219                 else if (ret > 0)
220                         high = mid;
221                 else {
222                         *slot = mid;
223                         return 0;
224                 }
225         }
226         *slot = low;
227         return 1;
228 }
229
230 /*
231  * simple bin_search frontend that does the right thing for
232  * leaves vs nodes
233  */
234 int bin_search(struct node *c, struct btrfs_key *key, int *slot)
235 {
236         if (btrfs_is_leaf(c)) {
237                 struct leaf *l = (struct leaf *)c;
238                 return generic_bin_search((void *)l->items, sizeof(struct item),
239                                           key, btrfs_header_nritems(&c->header),
240                                           slot);
241         } else {
242                 return generic_bin_search((void *)c->keys,
243                                           sizeof(struct btrfs_disk_key),
244                                           key, btrfs_header_nritems(&c->header),
245                                           slot);
246         }
247         return -1;
248 }
249
250 struct tree_buffer *read_node_slot(struct ctree_root *root,
251                                    struct tree_buffer *parent_buf,
252                                    int slot)
253 {
254         struct node *node = &parent_buf->node;
255         if (slot < 0)
256                 return NULL;
257         if (slot >= btrfs_header_nritems(&node->header))
258                 return NULL;
259         return read_tree_block(root, node->blockptrs[slot]);
260 }
261
262 static int balance_level(struct ctree_root *root, struct ctree_path *path,
263                         int level)
264 {
265         struct tree_buffer *right_buf;
266         struct tree_buffer *mid_buf;
267         struct tree_buffer *left_buf;
268         struct tree_buffer *parent_buf = NULL;
269         struct node *right = NULL;
270         struct node *mid;
271         struct node *left = NULL;
272         struct node *parent = NULL;
273         int ret = 0;
274         int wret;
275         int pslot;
276         int orig_slot = path->slots[level];
277         u64 orig_ptr;
278
279         if (level == 0)
280                 return 0;
281
282         mid_buf = path->nodes[level];
283         mid = &mid_buf->node;
284         orig_ptr = mid->blockptrs[orig_slot];
285
286         if (level < MAX_LEVEL - 1)
287                 parent_buf = path->nodes[level + 1];
288         pslot = path->slots[level + 1];
289
290         if (!parent_buf) {
291                 struct tree_buffer *child;
292                 u64 blocknr = mid_buf->blocknr;
293
294                 if (btrfs_header_nritems(&mid->header) != 1)
295                         return 0;
296
297                 /* promote the child to a root */
298                 child = read_node_slot(root, mid_buf, 0);
299                 BUG_ON(!child);
300                 root->node = child;
301                 path->nodes[level] = NULL;
302                 /* once for the path */
303                 tree_block_release(root, mid_buf);
304                 /* once for the root ptr */
305                 tree_block_release(root, mid_buf);
306                 clean_tree_block(root, mid_buf);
307                 return free_extent(root, blocknr, 1);
308         }
309         parent = &parent_buf->node;
310
311         if (btrfs_header_nritems(&mid->header) > NODEPTRS_PER_BLOCK / 4)
312                 return 0;
313
314         left_buf = read_node_slot(root, parent_buf, pslot - 1);
315         right_buf = read_node_slot(root, parent_buf, pslot + 1);
316
317         /* first, try to make some room in the middle buffer */
318         if (left_buf) {
319                 btrfs_cow_block(root, left_buf, parent_buf,
320                                 pslot - 1, &left_buf);
321                 left = &left_buf->node;
322                 orig_slot += btrfs_header_nritems(&left->header);
323                 wret = push_node_left(root, left_buf, mid_buf);
324                 if (wret < 0)
325                         ret = wret;
326         }
327
328         /*
329          * then try to empty the right most buffer into the middle
330          */
331         if (right_buf) {
332                 btrfs_cow_block(root, right_buf, parent_buf,
333                                 pslot + 1, &right_buf);
334                 right = &right_buf->node;
335                 wret = push_node_left(root, mid_buf, right_buf);
336                 if (wret < 0)
337                         ret = wret;
338                 if (btrfs_header_nritems(&right->header) == 0) {
339                         u64 blocknr = right_buf->blocknr;
340                         tree_block_release(root, right_buf);
341                         clean_tree_block(root, right_buf);
342                         right_buf = NULL;
343                         right = NULL;
344                         wret = del_ptr(root, path, level + 1, pslot + 1);
345                         if (wret)
346                                 ret = wret;
347                         wret = free_extent(root, blocknr, 1);
348                         if (wret)
349                                 ret = wret;
350                 } else {
351                         memcpy(parent->keys + pslot + 1, right->keys,
352                                 sizeof(struct btrfs_disk_key));
353                         BUG_ON(list_empty(&parent_buf->dirty));
354                 }
355         }
356         if (btrfs_header_nritems(&mid->header) == 1) {
357                 /*
358                  * we're not allowed to leave a node with one item in the
359                  * tree during a delete.  A deletion from lower in the tree
360                  * could try to delete the only pointer in this node.
361                  * So, pull some keys from the left.
362                  * There has to be a left pointer at this point because
363                  * otherwise we would have pulled some pointers from the
364                  * right
365                  */
366                 BUG_ON(!left_buf);
367                 wret = balance_node_right(root, mid_buf, left_buf);
368                 if (wret < 0)
369                         ret = wret;
370                 BUG_ON(wret == 1);
371         }
372         if (btrfs_header_nritems(&mid->header) == 0) {
373                 /* we've managed to empty the middle node, drop it */
374                 u64 blocknr = mid_buf->blocknr;
375                 tree_block_release(root, mid_buf);
376                 clean_tree_block(root, mid_buf);
377                 mid_buf = NULL;
378                 mid = NULL;
379                 wret = del_ptr(root, path, level + 1, pslot);
380                 if (wret)
381                         ret = wret;
382                 wret = free_extent(root, blocknr, 1);
383                 if (wret)
384                         ret = wret;
385         } else {
386                 /* update the parent key to reflect our changes */
387                 memcpy(parent->keys + pslot, mid->keys,
388                        sizeof(struct btrfs_disk_key));
389                 BUG_ON(list_empty(&parent_buf->dirty));
390         }
391
392         /* update the path */
393         if (left_buf) {
394                 if (btrfs_header_nritems(&left->header) > orig_slot) {
395                         left_buf->count++; // released below
396                         path->nodes[level] = left_buf;
397                         path->slots[level + 1] -= 1;
398                         path->slots[level] = orig_slot;
399                         if (mid_buf)
400                                 tree_block_release(root, mid_buf);
401                 } else {
402                         orig_slot -= btrfs_header_nritems(&left->header);
403                         path->slots[level] = orig_slot;
404                 }
405         }
406         /* double check we haven't messed things up */
407         check_block(path, level);
408         if (orig_ptr != path->nodes[level]->node.blockptrs[path->slots[level]])
409                 BUG();
410
411         if (right_buf)
412                 tree_block_release(root, right_buf);
413         if (left_buf)
414                 tree_block_release(root, left_buf);
415         return ret;
416 }
417
418 /*
419  * look for key in the tree.  path is filled in with nodes along the way
420  * if key is found, we return zero and you can find the item in the leaf
421  * level of the path (level 0)
422  *
423  * If the key isn't found, the path points to the slot where it should
424  * be inserted, and 1 is returned.  If there are other errors during the
425  * search a negative error number is returned.
426  *
427  * if ins_len > 0, nodes and leaves will be split as we walk down the
428  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
429  * possible)
430  */
431 int search_slot(struct ctree_root *root, struct btrfs_key *key,
432                 struct ctree_path *p, int ins_len, int cow)
433 {
434         struct tree_buffer *b;
435         struct tree_buffer *cow_buf;
436         struct node *c;
437         int slot;
438         int ret;
439         int level;
440
441 again:
442         b = root->node;
443         b->count++;
444         while (b) {
445                 level = btrfs_header_level(&b->node.header);
446                 if (cow) {
447                         int wret;
448                         wret = btrfs_cow_block(root, b, p->nodes[level + 1],
449                                                p->slots[level + 1], &cow_buf);
450                         b = cow_buf;
451                 }
452                 BUG_ON(!cow && ins_len);
453                 c = &b->node;
454                 p->nodes[level] = b;
455                 ret = check_block(p, level);
456                 if (ret)
457                         return -1;
458                 ret = bin_search(c, key, &slot);
459                 if (!btrfs_is_leaf(c)) {
460                         if (ret && slot > 0)
461                                 slot -= 1;
462                         p->slots[level] = slot;
463                         if (ins_len > 0 && btrfs_header_nritems(&c->header) ==
464                             NODEPTRS_PER_BLOCK) {
465                                 int sret = split_node(root, p, level);
466                                 BUG_ON(sret > 0);
467                                 if (sret)
468                                         return sret;
469                                 b = p->nodes[level];
470                                 c = &b->node;
471                                 slot = p->slots[level];
472                         } else if (ins_len < 0) {
473                                 int sret = balance_level(root, p, level);
474                                 if (sret)
475                                         return sret;
476                                 b = p->nodes[level];
477                                 if (!b)
478                                         goto again;
479                                 c = &b->node;
480                                 slot = p->slots[level];
481                                 BUG_ON(btrfs_header_nritems(&c->header) == 1);
482                         }
483                         b = read_tree_block(root, c->blockptrs[slot]);
484                 } else {
485                         struct leaf *l = (struct leaf *)c;
486                         p->slots[level] = slot;
487                         if (ins_len > 0 && leaf_free_space(l) <
488                             sizeof(struct item) + ins_len) {
489                                 int sret = split_leaf(root, p, ins_len);
490                                 BUG_ON(sret > 0);
491                                 if (sret)
492                                         return sret;
493                         }
494                         BUG_ON(root->node->count == 1);
495                         return ret;
496                 }
497         }
498         BUG_ON(root->node->count == 1);
499         return 1;
500 }
501
502 /*
503  * adjust the pointers going up the tree, starting at level
504  * making sure the right key of each node is points to 'key'.
505  * This is used after shifting pointers to the left, so it stops
506  * fixing up pointers when a given leaf/node is not in slot 0 of the
507  * higher levels
508  *
509  * If this fails to write a tree block, it returns -1, but continues
510  * fixing up the blocks in ram so the tree is consistent.
511  */
512 static int fixup_low_keys(struct ctree_root *root,
513                            struct ctree_path *path, struct btrfs_disk_key *key,
514                            int level)
515 {
516         int i;
517         int ret = 0;
518         for (i = level; i < MAX_LEVEL; i++) {
519                 struct node *t;
520                 int tslot = path->slots[i];
521                 if (!path->nodes[i])
522                         break;
523                 t = &path->nodes[i]->node;
524                 memcpy(t->keys + tslot, key, sizeof(*key));
525                 BUG_ON(list_empty(&path->nodes[i]->dirty));
526                 if (tslot != 0)
527                         break;
528         }
529         return ret;
530 }
531
532 /*
533  * try to push data from one node into the next node left in the
534  * tree.
535  *
536  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
537  * error, and > 0 if there was no room in the left hand block.
538  */
539 static int push_node_left(struct ctree_root *root, struct tree_buffer *dst_buf,
540                           struct tree_buffer *src_buf)
541 {
542         struct node *src = &src_buf->node;
543         struct node *dst = &dst_buf->node;
544         int push_items = 0;
545         int src_nritems;
546         int dst_nritems;
547         int ret = 0;
548
549         src_nritems = btrfs_header_nritems(&src->header);
550         dst_nritems = btrfs_header_nritems(&dst->header);
551         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
552         if (push_items <= 0) {
553                 return 1;
554         }
555
556         if (src_nritems < push_items)
557                 push_items = src_nritems;
558
559         memcpy(dst->keys + dst_nritems, src->keys,
560                 push_items * sizeof(struct btrfs_disk_key));
561         memcpy(dst->blockptrs + dst_nritems, src->blockptrs,
562                 push_items * sizeof(u64));
563         if (push_items < src_nritems) {
564                 memmove(src->keys, src->keys + push_items,
565                         (src_nritems - push_items) *
566                         sizeof(struct btrfs_disk_key));
567                 memmove(src->blockptrs, src->blockptrs + push_items,
568                         (src_nritems - push_items) * sizeof(u64));
569         }
570         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
571         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
572         BUG_ON(list_empty(&src_buf->dirty));
573         BUG_ON(list_empty(&dst_buf->dirty));
574         return ret;
575 }
576
577 /*
578  * try to push data from one node into the next node right in the
579  * tree.
580  *
581  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
582  * error, and > 0 if there was no room in the right hand block.
583  *
584  * this will  only push up to 1/2 the contents of the left node over
585  */
586 static int balance_node_right(struct ctree_root *root,
587                               struct tree_buffer *dst_buf,
588                               struct tree_buffer *src_buf)
589 {
590         struct node *src = &src_buf->node;
591         struct node *dst = &dst_buf->node;
592         int push_items = 0;
593         int max_push;
594         int src_nritems;
595         int dst_nritems;
596         int ret = 0;
597
598         src_nritems = btrfs_header_nritems(&src->header);
599         dst_nritems = btrfs_header_nritems(&dst->header);
600         push_items = NODEPTRS_PER_BLOCK - dst_nritems;
601         if (push_items <= 0) {
602                 return 1;
603         }
604
605         max_push = src_nritems / 2 + 1;
606         /* don't try to empty the node */
607         if (max_push > src_nritems)
608                 return 1;
609         if (max_push < push_items)
610                 push_items = max_push;
611
612         memmove(dst->keys + push_items, dst->keys,
613                 dst_nritems * sizeof(struct btrfs_disk_key));
614         memmove(dst->blockptrs + push_items, dst->blockptrs,
615                 dst_nritems * sizeof(u64));
616         memcpy(dst->keys, src->keys + src_nritems - push_items,
617                 push_items * sizeof(struct btrfs_disk_key));
618         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
619                 push_items * sizeof(u64));
620
621         btrfs_set_header_nritems(&src->header, src_nritems - push_items);
622         btrfs_set_header_nritems(&dst->header, dst_nritems + push_items);
623
624         BUG_ON(list_empty(&src_buf->dirty));
625         BUG_ON(list_empty(&dst_buf->dirty));
626         return ret;
627 }
628
629 /*
630  * helper function to insert a new root level in the tree.
631  * A new node is allocated, and a single item is inserted to
632  * point to the existing root
633  *
634  * returns zero on success or < 0 on failure.
635  */
636 static int insert_new_root(struct ctree_root *root,
637                            struct ctree_path *path, int level)
638 {
639         struct tree_buffer *t;
640         struct node *lower;
641         struct node *c;
642         struct btrfs_disk_key *lower_key;
643
644         BUG_ON(path->nodes[level]);
645         BUG_ON(path->nodes[level-1] != root->node);
646
647         t = alloc_free_block(root);
648         c = &t->node;
649         memset(c, 0, sizeof(c));
650         btrfs_set_header_nritems(&c->header, 1);
651         btrfs_set_header_level(&c->header, level);
652         btrfs_set_header_blocknr(&c->header, t->blocknr);
653         btrfs_set_header_parentid(&c->header,
654                                btrfs_header_parentid(&root->node->node.header));
655         lower = &path->nodes[level-1]->node;
656         if (btrfs_is_leaf(lower))
657                 lower_key = &((struct leaf *)lower)->items[0].key;
658         else
659                 lower_key = lower->keys;
660         memcpy(c->keys, lower_key, sizeof(struct btrfs_disk_key));
661         c->blockptrs[0] = path->nodes[level-1]->blocknr;
662         /* the super has an extra ref to root->node */
663         tree_block_release(root, root->node);
664         root->node = t;
665         t->count++;
666         path->nodes[level] = t;
667         path->slots[level] = 0;
668         return 0;
669 }
670
671 /*
672  * worker function to insert a single pointer in a node.
673  * the node should have enough room for the pointer already
674  *
675  * slot and level indicate where you want the key to go, and
676  * blocknr is the block the key points to.
677  *
678  * returns zero on success and < 0 on any error
679  */
680 static int insert_ptr(struct ctree_root *root,
681                 struct ctree_path *path, struct btrfs_disk_key *key,
682                 u64 blocknr, int slot, int level)
683 {
684         struct node *lower;
685         int nritems;
686
687         BUG_ON(!path->nodes[level]);
688         lower = &path->nodes[level]->node;
689         nritems = btrfs_header_nritems(&lower->header);
690         if (slot > nritems)
691                 BUG();
692         if (nritems == NODEPTRS_PER_BLOCK)
693                 BUG();
694         if (slot != nritems) {
695                 memmove(lower->keys + slot + 1, lower->keys + slot,
696                         (nritems - slot) * sizeof(struct btrfs_disk_key));
697                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
698                         (nritems - slot) * sizeof(u64));
699         }
700         memcpy(lower->keys + slot, key, sizeof(struct btrfs_disk_key));
701         lower->blockptrs[slot] = blocknr;
702         btrfs_set_header_nritems(&lower->header, nritems + 1);
703         if (lower->keys[1].objectid == 0)
704                         BUG();
705         BUG_ON(list_empty(&path->nodes[level]->dirty));
706         return 0;
707 }
708
709 /*
710  * split the node at the specified level in path in two.
711  * The path is corrected to point to the appropriate node after the split
712  *
713  * Before splitting this tries to make some room in the node by pushing
714  * left and right, if either one works, it returns right away.
715  *
716  * returns 0 on success and < 0 on failure
717  */
718 static int split_node(struct ctree_root *root, struct ctree_path *path,
719                       int level)
720 {
721         struct tree_buffer *t;
722         struct node *c;
723         struct tree_buffer *split_buffer;
724         struct node *split;
725         int mid;
726         int ret;
727         int wret;
728         u32 c_nritems;
729
730         t = path->nodes[level];
731         c = &t->node;
732         if (t == root->node) {
733                 /* trying to split the root, lets make a new one */
734                 ret = insert_new_root(root, path, level + 1);
735                 if (ret)
736                         return ret;
737         }
738         c_nritems = btrfs_header_nritems(&c->header);
739         split_buffer = alloc_free_block(root);
740         split = &split_buffer->node;
741         btrfs_set_header_flags(&split->header, btrfs_header_flags(&c->header));
742         btrfs_set_header_blocknr(&split->header, split_buffer->blocknr);
743         btrfs_set_header_parentid(&split->header,
744                                btrfs_header_parentid(&root->node->node.header));
745         mid = (c_nritems + 1) / 2;
746         memcpy(split->keys, c->keys + mid,
747                 (c_nritems - mid) * sizeof(struct btrfs_disk_key));
748         memcpy(split->blockptrs, c->blockptrs + mid,
749                 (c_nritems - mid) * sizeof(u64));
750         btrfs_set_header_nritems(&split->header, c_nritems - mid);
751         btrfs_set_header_nritems(&c->header, mid);
752         ret = 0;
753
754         BUG_ON(list_empty(&t->dirty));
755         wret = insert_ptr(root, path, split->keys, split_buffer->blocknr,
756                           path->slots[level + 1] + 1, level + 1);
757         if (wret)
758                 ret = wret;
759
760         if (path->slots[level] >= mid) {
761                 path->slots[level] -= mid;
762                 tree_block_release(root, t);
763                 path->nodes[level] = split_buffer;
764                 path->slots[level + 1] += 1;
765         } else {
766                 tree_block_release(root, split_buffer);
767         }
768         return ret;
769 }
770
771 /*
772  * how many bytes are required to store the items in a leaf.  start
773  * and nr indicate which items in the leaf to check.  This totals up the
774  * space used both by the item structs and the item data
775  */
776 static int leaf_space_used(struct leaf *l, int start, int nr)
777 {
778         int data_len;
779         int end = start + nr - 1;
780
781         if (!nr)
782                 return 0;
783         data_len = l->items[start].offset + l->items[start].size;
784         data_len = data_len - l->items[end].offset;
785         data_len += sizeof(struct item) * nr;
786         return data_len;
787 }
788
789 /*
790  * push some data in the path leaf to the right, trying to free up at
791  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
792  *
793  * returns 1 if the push failed because the other node didn't have enough
794  * room, 0 if everything worked out and < 0 if there were major errors.
795  */
796 static int push_leaf_right(struct ctree_root *root, struct ctree_path *path,
797                            int data_size)
798 {
799         struct tree_buffer *left_buf = path->nodes[0];
800         struct leaf *left = &left_buf->leaf;
801         struct leaf *right;
802         struct tree_buffer *right_buf;
803         struct tree_buffer *upper;
804         int slot;
805         int i;
806         int free_space;
807         int push_space = 0;
808         int push_items = 0;
809         struct item *item;
810         u32 left_nritems;
811         u32 right_nritems;
812
813         slot = path->slots[1];
814         if (!path->nodes[1]) {
815                 return 1;
816         }
817         upper = path->nodes[1];
818         if (slot >= btrfs_header_nritems(&upper->node.header) - 1) {
819                 return 1;
820         }
821         right_buf = read_tree_block(root, upper->node.blockptrs[slot + 1]);
822         right = &right_buf->leaf;
823         free_space = leaf_free_space(right);
824         if (free_space < data_size + sizeof(struct item)) {
825                 tree_block_release(root, right_buf);
826                 return 1;
827         }
828         /* cow and double check */
829         btrfs_cow_block(root, right_buf, upper, slot + 1, &right_buf);
830         right = &right_buf->leaf;
831         free_space = leaf_free_space(right);
832         if (free_space < data_size + sizeof(struct item)) {
833                 tree_block_release(root, right_buf);
834                 return 1;
835         }
836
837         left_nritems = btrfs_header_nritems(&left->header);
838         for (i = left_nritems - 1; i >= 0; i--) {
839                 item = left->items + i;
840                 if (path->slots[0] == i)
841                         push_space += data_size + sizeof(*item);
842                 if (item->size + sizeof(*item) + push_space > free_space)
843                         break;
844                 push_items++;
845                 push_space += item->size + sizeof(*item);
846         }
847         if (push_items == 0) {
848                 tree_block_release(root, right_buf);
849                 return 1;
850         }
851         right_nritems = btrfs_header_nritems(&right->header);
852         /* push left to right */
853         push_space = left->items[left_nritems - push_items].offset +
854                      left->items[left_nritems - push_items].size;
855         push_space -= leaf_data_end(left);
856         /* make room in the right data area */
857         memmove(right->data + leaf_data_end(right) - push_space,
858                 right->data + leaf_data_end(right),
859                 LEAF_DATA_SIZE - leaf_data_end(right));
860         /* copy from the left data area */
861         memcpy(right->data + LEAF_DATA_SIZE - push_space,
862                 left->data + leaf_data_end(left),
863                 push_space);
864         memmove(right->items + push_items, right->items,
865                 right_nritems * sizeof(struct item));
866         /* copy the items from left to right */
867         memcpy(right->items, left->items + left_nritems - push_items,
868                 push_items * sizeof(struct item));
869
870         /* update the item pointers */
871         right_nritems += push_items;
872         btrfs_set_header_nritems(&right->header, right_nritems);
873         push_space = LEAF_DATA_SIZE;
874         for (i = 0; i < right_nritems; i++) {
875                 right->items[i].offset = push_space - right->items[i].size;
876                 push_space = right->items[i].offset;
877         }
878         left_nritems -= push_items;
879         btrfs_set_header_nritems(&left->header, left_nritems);
880
881         BUG_ON(list_empty(&left_buf->dirty));
882         BUG_ON(list_empty(&right_buf->dirty));
883         memcpy(upper->node.keys + slot + 1,
884                 &right->items[0].key, sizeof(struct btrfs_disk_key));
885         BUG_ON(list_empty(&upper->dirty));
886
887         /* then fixup the leaf pointer in the path */
888         if (path->slots[0] >= left_nritems) {
889                 path->slots[0] -= left_nritems;
890                 tree_block_release(root, path->nodes[0]);
891                 path->nodes[0] = right_buf;
892                 path->slots[1] += 1;
893         } else {
894                 tree_block_release(root, right_buf);
895         }
896         return 0;
897 }
898 /*
899  * push some data in the path leaf to the left, trying to free up at
900  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
901  */
902 static int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
903                           int data_size)
904 {
905         struct tree_buffer *right_buf = path->nodes[0];
906         struct leaf *right = &right_buf->leaf;
907         struct tree_buffer *t;
908         struct leaf *left;
909         int slot;
910         int i;
911         int free_space;
912         int push_space = 0;
913         int push_items = 0;
914         struct item *item;
915         u32 old_left_nritems;
916         int ret = 0;
917         int wret;
918
919         slot = path->slots[1];
920         if (slot == 0) {
921                 return 1;
922         }
923         if (!path->nodes[1]) {
924                 return 1;
925         }
926         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
927         left = &t->leaf;
928         free_space = leaf_free_space(left);
929         if (free_space < data_size + sizeof(struct item)) {
930                 tree_block_release(root, t);
931                 return 1;
932         }
933
934         /* cow and double check */
935         btrfs_cow_block(root, t, path->nodes[1], slot - 1, &t);
936         left = &t->leaf;
937         free_space = leaf_free_space(left);
938         if (free_space < data_size + sizeof(struct item)) {
939                 tree_block_release(root, t);
940                 return 1;
941         }
942
943         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
944                 item = right->items + i;
945                 if (path->slots[0] == i)
946                         push_space += data_size + sizeof(*item);
947                 if (item->size + sizeof(*item) + push_space > free_space)
948                         break;
949                 push_items++;
950                 push_space += item->size + sizeof(*item);
951         }
952         if (push_items == 0) {
953                 tree_block_release(root, t);
954                 return 1;
955         }
956         /* push data from right to left */
957         memcpy(left->items + btrfs_header_nritems(&left->header),
958                 right->items, push_items * sizeof(struct item));
959         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
960         memcpy(left->data + leaf_data_end(left) - push_space,
961                 right->data + right->items[push_items - 1].offset,
962                 push_space);
963         old_left_nritems = btrfs_header_nritems(&left->header);
964         BUG_ON(old_left_nritems < 0);
965
966         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
967                 left->items[i].offset -= LEAF_DATA_SIZE -
968                         left->items[old_left_nritems -1].offset;
969         }
970         btrfs_set_header_nritems(&left->header, old_left_nritems + push_items);
971
972         /* fixup right node */
973         push_space = right->items[push_items-1].offset - leaf_data_end(right);
974         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
975                 leaf_data_end(right), push_space);
976         memmove(right->items, right->items + push_items,
977                 (btrfs_header_nritems(&right->header) - push_items) *
978                 sizeof(struct item));
979         btrfs_set_header_nritems(&right->header,
980                                  btrfs_header_nritems(&right->header) -
981                                  push_items);
982         push_space = LEAF_DATA_SIZE;
983
984         for (i = 0; i < btrfs_header_nritems(&right->header); i++) {
985                 right->items[i].offset = push_space - right->items[i].size;
986                 push_space = right->items[i].offset;
987         }
988
989         BUG_ON(list_empty(&t->dirty));
990         BUG_ON(list_empty(&right_buf->dirty));
991
992         wret = fixup_low_keys(root, path, &right->items[0].key, 1);
993         if (wret)
994                 ret = wret;
995
996         /* then fixup the leaf pointer in the path */
997         if (path->slots[0] < push_items) {
998                 path->slots[0] += old_left_nritems;
999                 tree_block_release(root, path->nodes[0]);
1000                 path->nodes[0] = t;
1001                 path->slots[1] -= 1;
1002         } else {
1003                 tree_block_release(root, t);
1004                 path->slots[0] -= push_items;
1005         }
1006         BUG_ON(path->slots[0] < 0);
1007         return ret;
1008 }
1009
1010 /*
1011  * split the path's leaf in two, making sure there is at least data_size
1012  * available for the resulting leaf level of the path.
1013  *
1014  * returns 0 if all went well and < 0 on failure.
1015  */
1016 static int split_leaf(struct ctree_root *root, struct ctree_path *path,
1017                       int data_size)
1018 {
1019         struct tree_buffer *l_buf;
1020         struct leaf *l;
1021         u32 nritems;
1022         int mid;
1023         int slot;
1024         struct leaf *right;
1025         struct tree_buffer *right_buffer;
1026         int space_needed = data_size + sizeof(struct item);
1027         int data_copy_size;
1028         int rt_data_off;
1029         int i;
1030         int ret;
1031         int wret;
1032
1033         l_buf = path->nodes[0];
1034         l = &l_buf->leaf;
1035
1036         /* did the pushes work? */
1037         if (leaf_free_space(l) >= sizeof(struct item) + data_size)
1038                 return 0;
1039
1040         if (!path->nodes[1]) {
1041                 ret = insert_new_root(root, path, 1);
1042                 if (ret)
1043                         return ret;
1044         }
1045         slot = path->slots[0];
1046         nritems = btrfs_header_nritems(&l->header);
1047         mid = (nritems + 1)/ 2;
1048         right_buffer = alloc_free_block(root);
1049         BUG_ON(!right_buffer);
1050         BUG_ON(mid == nritems);
1051         right = &right_buffer->leaf;
1052         memset(right, 0, sizeof(*right));
1053         if (mid <= slot) {
1054                 /* FIXME, just alloc a new leaf here */
1055                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
1056                         LEAF_DATA_SIZE)
1057                         BUG();
1058         } else {
1059                 /* FIXME, just alloc a new leaf here */
1060                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
1061                         LEAF_DATA_SIZE)
1062                         BUG();
1063         }
1064         btrfs_set_header_nritems(&right->header, nritems - mid);
1065         btrfs_set_header_blocknr(&right->header, right_buffer->blocknr);
1066         btrfs_set_header_level(&right->header, 0);
1067         btrfs_set_header_parentid(&right->header,
1068                                btrfs_header_parentid(&root->node->node.header));
1069         data_copy_size = l->items[mid].offset + l->items[mid].size -
1070                          leaf_data_end(l);
1071         memcpy(right->items, l->items + mid,
1072                (nritems - mid) * sizeof(struct item));
1073         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
1074                l->data + leaf_data_end(l), data_copy_size);
1075         rt_data_off = LEAF_DATA_SIZE -
1076                      (l->items[mid].offset + l->items[mid].size);
1077
1078         for (i = 0; i < btrfs_header_nritems(&right->header); i++)
1079                 right->items[i].offset += rt_data_off;
1080
1081         btrfs_set_header_nritems(&l->header, mid);
1082         ret = 0;
1083         wret = insert_ptr(root, path, &right->items[0].key,
1084                           right_buffer->blocknr, path->slots[1] + 1, 1);
1085         if (wret)
1086                 ret = wret;
1087         BUG_ON(list_empty(&right_buffer->dirty));
1088         BUG_ON(list_empty(&l_buf->dirty));
1089         BUG_ON(path->slots[0] != slot);
1090         if (mid <= slot) {
1091                 tree_block_release(root, path->nodes[0]);
1092                 path->nodes[0] = right_buffer;
1093                 path->slots[0] -= mid;
1094                 path->slots[1] += 1;
1095         } else
1096                 tree_block_release(root, right_buffer);
1097         BUG_ON(path->slots[0] < 0);
1098         return ret;
1099 }
1100
1101 /*
1102  * Given a key and some data, insert an item into the tree.
1103  * This does all the path init required, making room in the tree if needed.
1104  */
1105 int insert_item(struct ctree_root *root, struct btrfs_key *cpu_key,
1106                           void *data, int data_size)
1107 {
1108         int ret = 0;
1109         int slot;
1110         int slot_orig;
1111         struct leaf *leaf;
1112         struct tree_buffer *leaf_buf;
1113         u32 nritems;
1114         unsigned int data_end;
1115         struct ctree_path path;
1116         struct btrfs_disk_key disk_key;
1117
1118         btrfs_cpu_key_to_disk(&disk_key, cpu_key);
1119
1120         /* create a root if there isn't one */
1121         if (!root->node)
1122                 BUG();
1123         init_path(&path);
1124         ret = search_slot(root, cpu_key, &path, data_size, 1);
1125         if (ret == 0) {
1126                 release_path(root, &path);
1127                 return -EEXIST;
1128         }
1129         if (ret < 0)
1130                 goto out;
1131
1132         slot_orig = path.slots[0];
1133         leaf_buf = path.nodes[0];
1134         leaf = &leaf_buf->leaf;
1135
1136         nritems = btrfs_header_nritems(&leaf->header);
1137         data_end = leaf_data_end(leaf);
1138
1139         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
1140                 BUG();
1141
1142         slot = path.slots[0];
1143         BUG_ON(slot < 0);
1144         if (slot != nritems) {
1145                 int i;
1146                 unsigned int old_data = leaf->items[slot].offset +
1147                                         leaf->items[slot].size;
1148
1149                 /*
1150                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
1151                  */
1152                 /* first correct the data pointers */
1153                 for (i = slot; i < nritems; i++)
1154                         leaf->items[i].offset -= data_size;
1155
1156                 /* shift the items */
1157                 memmove(leaf->items + slot + 1, leaf->items + slot,
1158                         (nritems - slot) * sizeof(struct item));
1159
1160                 /* shift the data */
1161                 memmove(leaf->data + data_end - data_size, leaf->data +
1162                         data_end, old_data - data_end);
1163                 data_end = old_data;
1164         }
1165         /* copy the new data in */
1166         memcpy(&leaf->items[slot].key, &disk_key,
1167                 sizeof(struct btrfs_disk_key));
1168         leaf->items[slot].offset = data_end - data_size;
1169         leaf->items[slot].size = data_size;
1170         memcpy(leaf->data + data_end - data_size, data, data_size);
1171         btrfs_set_header_nritems(&leaf->header, nritems + 1);
1172
1173         ret = 0;
1174         if (slot == 0)
1175                 ret = fixup_low_keys(root, &path, &disk_key, 1);
1176
1177         BUG_ON(list_empty(&leaf_buf->dirty));
1178         if (leaf_free_space(leaf) < 0)
1179                 BUG();
1180         check_leaf(&path, 0);
1181 out:
1182         release_path(root, &path);
1183         return ret;
1184 }
1185
1186 /*
1187  * delete the pointer from a given node.
1188  *
1189  * If the delete empties a node, the node is removed from the tree,
1190  * continuing all the way the root if required.  The root is converted into
1191  * a leaf if all the nodes are emptied.
1192  */
1193 static int del_ptr(struct ctree_root *root, struct ctree_path *path, int level,
1194                    int slot)
1195 {
1196         struct node *node;
1197         struct tree_buffer *parent = path->nodes[level];
1198         u32 nritems;
1199         int ret = 0;
1200         int wret;
1201
1202         node = &parent->node;
1203         nritems = btrfs_header_nritems(&node->header);
1204         if (slot != nritems -1) {
1205                 memmove(node->keys + slot, node->keys + slot + 1,
1206                         sizeof(struct btrfs_disk_key) * (nritems - slot - 1));
1207                 memmove(node->blockptrs + slot,
1208                         node->blockptrs + slot + 1,
1209                         sizeof(u64) * (nritems - slot - 1));
1210         }
1211         nritems--;
1212         btrfs_set_header_nritems(&node->header, nritems);
1213         if (nritems == 0 && parent == root->node) {
1214                 BUG_ON(btrfs_header_level(&root->node->node.header) != 1);
1215                 /* just turn the root into a leaf and break */
1216                 btrfs_set_header_level(&root->node->node.header, 0);
1217         } else if (slot == 0) {
1218                 wret = fixup_low_keys(root, path, node->keys, level + 1);
1219                 if (wret)
1220                         ret = wret;
1221         }
1222         BUG_ON(list_empty(&parent->dirty));
1223         return ret;
1224 }
1225
1226 /*
1227  * delete the item at the leaf level in path.  If that empties
1228  * the leaf, remove it from the tree
1229  */
1230 int del_item(struct ctree_root *root, struct ctree_path *path)
1231 {
1232         int slot;
1233         struct leaf *leaf;
1234         struct tree_buffer *leaf_buf;
1235         int doff;
1236         int dsize;
1237         int ret = 0;
1238         int wret;
1239         u32 nritems;
1240
1241         leaf_buf = path->nodes[0];
1242         leaf = &leaf_buf->leaf;
1243         slot = path->slots[0];
1244         doff = leaf->items[slot].offset;
1245         dsize = leaf->items[slot].size;
1246         nritems = btrfs_header_nritems(&leaf->header);
1247
1248         if (slot != nritems - 1) {
1249                 int i;
1250                 int data_end = leaf_data_end(leaf);
1251                 memmove(leaf->data + data_end + dsize,
1252                         leaf->data + data_end,
1253                         doff - data_end);
1254                 for (i = slot + 1; i < nritems; i++)
1255                         leaf->items[i].offset += dsize;
1256                 memmove(leaf->items + slot, leaf->items + slot + 1,
1257                         sizeof(struct item) *
1258                         (nritems - slot - 1));
1259         }
1260         btrfs_set_header_nritems(&leaf->header, nritems - 1);
1261         nritems--;
1262         /* delete the leaf if we've emptied it */
1263         if (nritems == 0) {
1264                 if (leaf_buf == root->node) {
1265                         btrfs_set_header_level(&leaf->header, 0);
1266                         BUG_ON(list_empty(&leaf_buf->dirty));
1267                 } else {
1268                         clean_tree_block(root, leaf_buf);
1269                         wret = del_ptr(root, path, 1, path->slots[1]);
1270                         if (wret)
1271                                 ret = wret;
1272                         wret = free_extent(root, leaf_buf->blocknr, 1);
1273                         if (wret)
1274                                 ret = wret;
1275                 }
1276         } else {
1277                 int used = leaf_space_used(leaf, 0, nritems);
1278                 if (slot == 0) {
1279                         wret = fixup_low_keys(root, path,
1280                                                    &leaf->items[0].key, 1);
1281                         if (wret)
1282                                 ret = wret;
1283                 }
1284                 BUG_ON(list_empty(&leaf_buf->dirty));
1285
1286                 /* delete the leaf if it is mostly empty */
1287                 if (used < LEAF_DATA_SIZE / 3) {
1288                         /* push_leaf_left fixes the path.
1289                          * make sure the path still points to our leaf
1290                          * for possible call to del_ptr below
1291                          */
1292                         slot = path->slots[1];
1293                         leaf_buf->count++;
1294                         wret = push_leaf_left(root, path, 1);
1295                         if (wret < 0)
1296                                 ret = wret;
1297                         if (path->nodes[0] == leaf_buf &&
1298                             btrfs_header_nritems(&leaf->header)) {
1299                                 wret = push_leaf_right(root, path, 1);
1300                                 if (wret < 0)
1301                                         ret = wret;
1302                         }
1303                         if (btrfs_header_nritems(&leaf->header) == 0) {
1304                                 u64 blocknr = leaf_buf->blocknr;
1305                                 clean_tree_block(root, leaf_buf);
1306                                 wret = del_ptr(root, path, 1, slot);
1307                                 if (wret)
1308                                         ret = wret;
1309                                 tree_block_release(root, leaf_buf);
1310                                 wret = free_extent(root, blocknr, 1);
1311                                 if (wret)
1312                                         ret = wret;
1313                         } else {
1314                                 tree_block_release(root, leaf_buf);
1315                         }
1316                 }
1317         }
1318         return ret;
1319 }
1320
1321 /*
1322  * walk up the tree as far as required to find the next leaf.
1323  * returns 0 if it found something or 1 if there are no greater leaves.
1324  * returns < 0 on io errors.
1325  */
1326 int next_leaf(struct ctree_root *root, struct ctree_path *path)
1327 {
1328         int slot;
1329         int level = 1;
1330         u64 blocknr;
1331         struct tree_buffer *c;
1332         struct tree_buffer *next = NULL;
1333
1334         while(level < MAX_LEVEL) {
1335                 if (!path->nodes[level])
1336                         return 1;
1337                 slot = path->slots[level] + 1;
1338                 c = path->nodes[level];
1339                 if (slot >= btrfs_header_nritems(&c->node.header)) {
1340                         level++;
1341                         continue;
1342                 }
1343                 blocknr = c->node.blockptrs[slot];
1344                 if (next)
1345                         tree_block_release(root, next);
1346                 next = read_tree_block(root, blocknr);
1347                 break;
1348         }
1349         path->slots[level] = slot;
1350         while(1) {
1351                 level--;
1352                 c = path->nodes[level];
1353                 tree_block_release(root, c);
1354                 path->nodes[level] = next;
1355                 path->slots[level] = 0;
1356                 if (!level)
1357                         break;
1358                 next = read_tree_block(root, next->node.blockptrs[0]);
1359         }
1360         return 0;
1361 }
1362
1363