btrfs-progs: docs: mkfs, implications of DUP on devices
[platform/upstream/btrfs-progs.git] / ctree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include "ctree.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "repair.h"
23
24 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
25                       *root, struct btrfs_path *path, int level);
26 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_key *ins_key,
28                       struct btrfs_path *path, int data_size, int extend);
29 static int push_node_left(struct btrfs_trans_handle *trans,
30                           struct btrfs_root *root, struct extent_buffer *dst,
31                           struct extent_buffer *src, int empty);
32 static int balance_node_right(struct btrfs_trans_handle *trans,
33                               struct btrfs_root *root,
34                               struct extent_buffer *dst_buf,
35                               struct extent_buffer *src_buf);
36
37 inline void btrfs_init_path(struct btrfs_path *p)
38 {
39         memset(p, 0, sizeof(*p));
40 }
41
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44         struct btrfs_path *path;
45         path = kzalloc(sizeof(struct btrfs_path), GFP_NOFS);
46         return path;
47 }
48
49 void btrfs_free_path(struct btrfs_path *p)
50 {
51         if (!p)
52                 return;
53         btrfs_release_path(p);
54         kfree(p);
55 }
56
57 void btrfs_release_path(struct btrfs_path *p)
58 {
59         int i;
60         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61                 if (!p->nodes[i])
62                         continue;
63                 free_extent_buffer(p->nodes[i]);
64         }
65         memset(p, 0, sizeof(*p));
66 }
67
68 void add_root_to_dirty_list(struct btrfs_root *root)
69 {
70         if (root->track_dirty && list_empty(&root->dirty_list)) {
71                 list_add(&root->dirty_list,
72                          &root->fs_info->dirty_cowonly_roots);
73         }
74 }
75
76 int btrfs_copy_root(struct btrfs_trans_handle *trans,
77                       struct btrfs_root *root,
78                       struct extent_buffer *buf,
79                       struct extent_buffer **cow_ret, u64 new_root_objectid)
80 {
81         struct extent_buffer *cow;
82         int ret = 0;
83         int level;
84         struct btrfs_root *new_root;
85         struct btrfs_disk_key disk_key;
86
87         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
88         if (!new_root)
89                 return -ENOMEM;
90
91         memcpy(new_root, root, sizeof(*new_root));
92         new_root->root_key.objectid = new_root_objectid;
93
94         WARN_ON(root->ref_cows && trans->transid !=
95                 root->fs_info->running_transaction->transid);
96         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
97
98         level = btrfs_header_level(buf);
99         if (level == 0)
100                 btrfs_item_key(buf, &disk_key, 0);
101         else
102                 btrfs_node_key(buf, &disk_key, 0);
103         cow = btrfs_alloc_free_block(trans, new_root, buf->len,
104                                      new_root_objectid, &disk_key,
105                                      level, buf->start, 0);
106         if (IS_ERR(cow)) {
107                 kfree(new_root);
108                 return PTR_ERR(cow);
109         }
110
111         copy_extent_buffer(cow, buf, 0, 0, cow->len);
112         btrfs_set_header_bytenr(cow, cow->start);
113         btrfs_set_header_generation(cow, trans->transid);
114         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
115         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
116                                      BTRFS_HEADER_FLAG_RELOC);
117         if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
118                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
119         else
120                 btrfs_set_header_owner(cow, new_root_objectid);
121
122         write_extent_buffer(cow, root->fs_info->fsid,
123                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
124
125         WARN_ON(btrfs_header_generation(buf) > trans->transid);
126         ret = btrfs_inc_ref(trans, new_root, cow, 0);
127         kfree(new_root);
128
129         if (ret)
130                 return ret;
131
132         btrfs_mark_buffer_dirty(cow);
133         *cow_ret = cow;
134         return 0;
135 }
136
137 /*
138  * check if the tree block can be shared by multiple trees
139  */
140 static int btrfs_block_can_be_shared(struct btrfs_root *root,
141                                      struct extent_buffer *buf)
142 {
143         /*
144          * Tree blocks not in refernece counted trees and tree roots
145          * are never shared. If a block was allocated after the last
146          * snapshot and the block was not allocated by tree relocation,
147          * we know the block is not shared.
148          */
149         if (root->ref_cows &&
150             buf != root->node && buf != root->commit_root &&
151             (btrfs_header_generation(buf) <=
152              btrfs_root_last_snapshot(&root->root_item) ||
153              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
154                 return 1;
155 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
156         if (root->ref_cows &&
157             btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
158                 return 1;
159 #endif
160         return 0;
161 }
162
163 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
164                                        struct btrfs_root *root,
165                                        struct extent_buffer *buf,
166                                        struct extent_buffer *cow)
167 {
168         u64 refs;
169         u64 owner;
170         u64 flags;
171         u64 new_flags = 0;
172         int ret;
173
174         /*
175          * Backrefs update rules:
176          *
177          * Always use full backrefs for extent pointers in tree block
178          * allocated by tree relocation.
179          *
180          * If a shared tree block is no longer referenced by its owner
181          * tree (btrfs_header_owner(buf) == root->root_key.objectid),
182          * use full backrefs for extent pointers in tree block.
183          *
184          * If a tree block is been relocating
185          * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
186          * use full backrefs for extent pointers in tree block.
187          * The reason for this is some operations (such as drop tree)
188          * are only allowed for blocks use full backrefs.
189          */
190
191         if (btrfs_block_can_be_shared(root, buf)) {
192                 ret = btrfs_lookup_extent_info(trans, root, buf->start,
193                                                btrfs_header_level(buf), 1,
194                                                &refs, &flags);
195                 BUG_ON(ret);
196                 BUG_ON(refs == 0);
197         } else {
198                 refs = 1;
199                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
200                     btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
201                         flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
202                 else
203                         flags = 0;
204         }
205
206         owner = btrfs_header_owner(buf);
207         BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
208                owner == BTRFS_TREE_RELOC_OBJECTID);
209
210         if (refs > 1) {
211                 if ((owner == root->root_key.objectid ||
212                      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
213                     !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
214                         ret = btrfs_inc_ref(trans, root, buf, 1);
215                         BUG_ON(ret);
216
217                         if (root->root_key.objectid ==
218                             BTRFS_TREE_RELOC_OBJECTID) {
219                                 ret = btrfs_dec_ref(trans, root, buf, 0);
220                                 BUG_ON(ret);
221                                 ret = btrfs_inc_ref(trans, root, cow, 1);
222                                 BUG_ON(ret);
223                         }
224                         new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
225                 } else {
226
227                         if (root->root_key.objectid ==
228                             BTRFS_TREE_RELOC_OBJECTID)
229                                 ret = btrfs_inc_ref(trans, root, cow, 1);
230                         else
231                                 ret = btrfs_inc_ref(trans, root, cow, 0);
232                         BUG_ON(ret);
233                 }
234                 if (new_flags != 0) {
235                         ret = btrfs_set_block_flags(trans, root, buf->start,
236                                                     btrfs_header_level(buf),
237                                                     new_flags);
238                         BUG_ON(ret);
239                 }
240         } else {
241                 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
242                         if (root->root_key.objectid ==
243                             BTRFS_TREE_RELOC_OBJECTID)
244                                 ret = btrfs_inc_ref(trans, root, cow, 1);
245                         else
246                                 ret = btrfs_inc_ref(trans, root, cow, 0);
247                         BUG_ON(ret);
248                         ret = btrfs_dec_ref(trans, root, buf, 1);
249                         BUG_ON(ret);
250                 }
251                 clean_tree_block(trans, root, buf);
252         }
253         return 0;
254 }
255
256 int __btrfs_cow_block(struct btrfs_trans_handle *trans,
257                              struct btrfs_root *root,
258                              struct extent_buffer *buf,
259                              struct extent_buffer *parent, int parent_slot,
260                              struct extent_buffer **cow_ret,
261                              u64 search_start, u64 empty_size)
262 {
263         struct extent_buffer *cow;
264         struct btrfs_disk_key disk_key;
265         int level;
266
267         WARN_ON(root->ref_cows && trans->transid !=
268                 root->fs_info->running_transaction->transid);
269         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
270
271         level = btrfs_header_level(buf);
272
273         if (level == 0)
274                 btrfs_item_key(buf, &disk_key, 0);
275         else
276                 btrfs_node_key(buf, &disk_key, 0);
277
278         cow = btrfs_alloc_free_block(trans, root, buf->len,
279                                      root->root_key.objectid, &disk_key,
280                                      level, search_start, empty_size);
281         if (IS_ERR(cow))
282                 return PTR_ERR(cow);
283
284         copy_extent_buffer(cow, buf, 0, 0, cow->len);
285         btrfs_set_header_bytenr(cow, cow->start);
286         btrfs_set_header_generation(cow, trans->transid);
287         btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
288         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
289                                      BTRFS_HEADER_FLAG_RELOC);
290         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
291                 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
292         else
293                 btrfs_set_header_owner(cow, root->root_key.objectid);
294
295         write_extent_buffer(cow, root->fs_info->fsid,
296                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
297
298         WARN_ON(!(buf->flags & EXTENT_BAD_TRANSID) &&
299                 btrfs_header_generation(buf) > trans->transid);
300
301         update_ref_for_cow(trans, root, buf, cow);
302
303         if (buf == root->node) {
304                 root->node = cow;
305                 extent_buffer_get(cow);
306
307                 btrfs_free_extent(trans, root, buf->start, buf->len,
308                                   0, root->root_key.objectid, level, 0);
309                 free_extent_buffer(buf);
310                 add_root_to_dirty_list(root);
311         } else {
312                 btrfs_set_node_blockptr(parent, parent_slot,
313                                         cow->start);
314                 WARN_ON(trans->transid == 0);
315                 btrfs_set_node_ptr_generation(parent, parent_slot,
316                                               trans->transid);
317                 btrfs_mark_buffer_dirty(parent);
318                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
319
320                 btrfs_free_extent(trans, root, buf->start, buf->len,
321                                   0, root->root_key.objectid, level, 1);
322         }
323         if (!list_empty(&buf->recow)) {
324                 list_del_init(&buf->recow);
325                 free_extent_buffer(buf);
326         }
327         free_extent_buffer(buf);
328         btrfs_mark_buffer_dirty(cow);
329         *cow_ret = cow;
330         return 0;
331 }
332
333 static inline int should_cow_block(struct btrfs_trans_handle *trans,
334                                    struct btrfs_root *root,
335                                    struct extent_buffer *buf)
336 {
337         if (btrfs_header_generation(buf) == trans->transid &&
338             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
339             !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
340               btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
341                 return 0;
342         return 1;
343 }
344
345 int btrfs_cow_block(struct btrfs_trans_handle *trans,
346                     struct btrfs_root *root, struct extent_buffer *buf,
347                     struct extent_buffer *parent, int parent_slot,
348                     struct extent_buffer **cow_ret)
349 {
350         u64 search_start;
351         int ret;
352         /*
353         if (trans->transaction != root->fs_info->running_transaction) {
354                 printk(KERN_CRIT "trans %Lu running %Lu\n", trans->transid,
355                        root->fs_info->running_transaction->transid);
356                 WARN_ON(1);
357         }
358         */
359         if (trans->transid != root->fs_info->generation) {
360                 printk(KERN_CRIT "trans %llu running %llu\n",
361                         (unsigned long long)trans->transid,
362                         (unsigned long long)root->fs_info->generation);
363                 WARN_ON(1);
364         }
365         if (!should_cow_block(trans, root, buf)) {
366                 *cow_ret = buf;
367                 return 0;
368         }
369
370         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
371         ret = __btrfs_cow_block(trans, root, buf, parent,
372                                  parent_slot, cow_ret, search_start, 0);
373         return ret;
374 }
375
376 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
377 {
378         if (k1->objectid > k2->objectid)
379                 return 1;
380         if (k1->objectid < k2->objectid)
381                 return -1;
382         if (k1->type > k2->type)
383                 return 1;
384         if (k1->type < k2->type)
385                 return -1;
386         if (k1->offset > k2->offset)
387                 return 1;
388         if (k1->offset < k2->offset)
389                 return -1;
390         return 0;
391 }
392
393 /*
394  * compare two keys in a memcmp fashion
395  */
396 static int btrfs_comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
397 {
398         struct btrfs_key k1;
399
400         btrfs_disk_key_to_cpu(&k1, disk);
401         return btrfs_comp_cpu_keys(&k1, k2);
402 }
403
404 /*
405  * The leaf data grows from end-to-front in the node.
406  * this returns the address of the start of the last item,
407  * which is the stop of the leaf data stack
408  */
409 static inline unsigned int leaf_data_end(struct btrfs_root *root,
410                                          struct extent_buffer *leaf)
411 {
412         u32 nr = btrfs_header_nritems(leaf);
413         if (nr == 0)
414                 return BTRFS_LEAF_DATA_SIZE(root);
415         return btrfs_item_offset_nr(leaf, nr - 1);
416 }
417
418 enum btrfs_tree_block_status
419 btrfs_check_node(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
420                  struct extent_buffer *buf)
421 {
422         int i;
423         struct btrfs_key cpukey;
424         struct btrfs_disk_key key;
425         u32 nritems = btrfs_header_nritems(buf);
426         enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
427
428         if (nritems == 0 || nritems > BTRFS_NODEPTRS_PER_BLOCK(root))
429                 goto fail;
430
431         ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
432         if (parent_key && parent_key->type) {
433                 btrfs_node_key(buf, &key, 0);
434                 if (memcmp(parent_key, &key, sizeof(key)))
435                         goto fail;
436         }
437         ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
438         for (i = 0; nritems > 1 && i < nritems - 2; i++) {
439                 btrfs_node_key(buf, &key, i);
440                 btrfs_node_key_to_cpu(buf, &cpukey, i + 1);
441                 if (btrfs_comp_keys(&key, &cpukey) >= 0)
442                         goto fail;
443         }
444         return BTRFS_TREE_BLOCK_CLEAN;
445 fail:
446         if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
447                 if (parent_key)
448                         btrfs_disk_key_to_cpu(&cpukey, parent_key);
449                 else
450                         btrfs_node_key_to_cpu(buf, &cpukey, 0);
451                 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
452                                                 buf->start, buf->len,
453                                                 btrfs_header_level(buf));
454         }
455         return ret;
456 }
457
458 enum btrfs_tree_block_status
459 btrfs_check_leaf(struct btrfs_root *root, struct btrfs_disk_key *parent_key,
460                  struct extent_buffer *buf)
461 {
462         int i;
463         struct btrfs_key cpukey;
464         struct btrfs_disk_key key;
465         u32 nritems = btrfs_header_nritems(buf);
466         enum btrfs_tree_block_status ret = BTRFS_TREE_BLOCK_INVALID_NRITEMS;
467
468         if (nritems * sizeof(struct btrfs_item) > buf->len)  {
469                 fprintf(stderr, "invalid number of items %llu\n",
470                         (unsigned long long)buf->start);
471                 goto fail;
472         }
473
474         if (btrfs_header_level(buf) != 0) {
475                 ret = BTRFS_TREE_BLOCK_INVALID_LEVEL;
476                 fprintf(stderr, "leaf is not a leaf %llu\n",
477                        (unsigned long long)btrfs_header_bytenr(buf));
478                 goto fail;
479         }
480         if (btrfs_leaf_free_space(root, buf) < 0) {
481                 ret = BTRFS_TREE_BLOCK_INVALID_FREE_SPACE;
482                 fprintf(stderr, "leaf free space incorrect %llu %d\n",
483                         (unsigned long long)btrfs_header_bytenr(buf),
484                         btrfs_leaf_free_space(root, buf));
485                 goto fail;
486         }
487
488         if (nritems == 0)
489                 return BTRFS_TREE_BLOCK_CLEAN;
490
491         btrfs_item_key(buf, &key, 0);
492         if (parent_key && parent_key->type &&
493             memcmp(parent_key, &key, sizeof(key))) {
494                 ret = BTRFS_TREE_BLOCK_INVALID_PARENT_KEY;
495                 fprintf(stderr, "leaf parent key incorrect %llu\n",
496                        (unsigned long long)btrfs_header_bytenr(buf));
497                 goto fail;
498         }
499         for (i = 0; nritems > 1 && i < nritems - 1; i++) {
500                 btrfs_item_key(buf, &key, i);
501                 btrfs_item_key_to_cpu(buf, &cpukey, i + 1);
502                 if (btrfs_comp_keys(&key, &cpukey) >= 0) {
503                         ret = BTRFS_TREE_BLOCK_BAD_KEY_ORDER;
504                         fprintf(stderr, "bad key ordering %d %d\n", i, i+1);
505                         goto fail;
506                 }
507                 if (btrfs_item_offset_nr(buf, i) !=
508                         btrfs_item_end_nr(buf, i + 1)) {
509                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
510                         fprintf(stderr, "incorrect offsets %u %u\n",
511                                 btrfs_item_offset_nr(buf, i),
512                                 btrfs_item_end_nr(buf, i + 1));
513                         goto fail;
514                 }
515                 if (i == 0 && btrfs_item_end_nr(buf, i) !=
516                     BTRFS_LEAF_DATA_SIZE(root)) {
517                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
518                         fprintf(stderr, "bad item end %u wanted %u\n",
519                                 btrfs_item_end_nr(buf, i),
520                                 (unsigned)BTRFS_LEAF_DATA_SIZE(root));
521                         goto fail;
522                 }
523         }
524
525         for (i = 0; i < nritems; i++) {
526                 if (btrfs_item_end_nr(buf, i) > BTRFS_LEAF_DATA_SIZE(root)) {
527                         btrfs_item_key(buf, &key, 0);
528                         btrfs_print_key(&key);
529                         fflush(stdout);
530                         ret = BTRFS_TREE_BLOCK_INVALID_OFFSETS;
531                         fprintf(stderr, "slot end outside of leaf %llu > %llu\n",
532                                 (unsigned long long)btrfs_item_end_nr(buf, i),
533                                 (unsigned long long)BTRFS_LEAF_DATA_SIZE(root));
534                         goto fail;
535                 }
536         }
537
538         return BTRFS_TREE_BLOCK_CLEAN;
539 fail:
540         if (btrfs_header_owner(buf) == BTRFS_EXTENT_TREE_OBJECTID) {
541                 if (parent_key)
542                         btrfs_disk_key_to_cpu(&cpukey, parent_key);
543                 else
544                         btrfs_item_key_to_cpu(buf, &cpukey, 0);
545
546                 btrfs_add_corrupt_extent_record(root->fs_info, &cpukey,
547                                                 buf->start, buf->len, 0);
548         }
549         return ret;
550 }
551
552 static int noinline check_block(struct btrfs_root *root,
553                                 struct btrfs_path *path, int level)
554 {
555         struct btrfs_disk_key key;
556         struct btrfs_disk_key *key_ptr = NULL;
557         struct extent_buffer *parent;
558         enum btrfs_tree_block_status ret;
559
560         if (path->skip_check_block)
561                 return 0;
562         if (path->nodes[level + 1]) {
563                 parent = path->nodes[level + 1];
564                 btrfs_node_key(parent, &key, path->slots[level + 1]);
565                 key_ptr = &key;
566         }
567         if (level == 0)
568                 ret =  btrfs_check_leaf(root, key_ptr, path->nodes[0]);
569         else
570                 ret = btrfs_check_node(root, key_ptr, path->nodes[level]);
571         if (ret == BTRFS_TREE_BLOCK_CLEAN)
572                 return 0;
573         return -EIO;
574 }
575
576 /*
577  * search for key in the extent_buffer.  The items start at offset p,
578  * and they are item_size apart.  There are 'max' items in p.
579  *
580  * the slot in the array is returned via slot, and it points to
581  * the place where you would insert key if it is not found in
582  * the array.
583  *
584  * slot may point to max if the key is bigger than all of the keys
585  */
586 static int generic_bin_search(struct extent_buffer *eb, unsigned long p,
587                               int item_size, struct btrfs_key *key,
588                               int max, int *slot)
589 {
590         int low = 0;
591         int high = max;
592         int mid;
593         int ret;
594         unsigned long offset;
595         struct btrfs_disk_key *tmp;
596
597         while(low < high) {
598                 mid = (low + high) / 2;
599                 offset = p + mid * item_size;
600
601                 tmp = (struct btrfs_disk_key *)(eb->data + offset);
602                 ret = btrfs_comp_keys(tmp, key);
603
604                 if (ret < 0)
605                         low = mid + 1;
606                 else if (ret > 0)
607                         high = mid;
608                 else {
609                         *slot = mid;
610                         return 0;
611                 }
612         }
613         *slot = low;
614         return 1;
615 }
616
617 /*
618  * simple bin_search frontend that does the right thing for
619  * leaves vs nodes
620  */
621 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
622                       int level, int *slot)
623 {
624         if (level == 0)
625                 return generic_bin_search(eb,
626                                           offsetof(struct btrfs_leaf, items),
627                                           sizeof(struct btrfs_item),
628                                           key, btrfs_header_nritems(eb),
629                                           slot);
630         else
631                 return generic_bin_search(eb,
632                                           offsetof(struct btrfs_node, ptrs),
633                                           sizeof(struct btrfs_key_ptr),
634                                           key, btrfs_header_nritems(eb),
635                                           slot);
636 }
637
638 struct extent_buffer *read_node_slot(struct btrfs_root *root,
639                                    struct extent_buffer *parent, int slot)
640 {
641         int level = btrfs_header_level(parent);
642         if (slot < 0)
643                 return NULL;
644         if (slot >= btrfs_header_nritems(parent))
645                 return NULL;
646
647         if (level == 0)
648                 return NULL;
649
650         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
651                        btrfs_level_size(root, level - 1),
652                        btrfs_node_ptr_generation(parent, slot));
653 }
654
655 static int balance_level(struct btrfs_trans_handle *trans,
656                          struct btrfs_root *root,
657                          struct btrfs_path *path, int level)
658 {
659         struct extent_buffer *right = NULL;
660         struct extent_buffer *mid;
661         struct extent_buffer *left = NULL;
662         struct extent_buffer *parent = NULL;
663         int ret = 0;
664         int wret;
665         int pslot;
666         int orig_slot = path->slots[level];
667         u64 orig_ptr;
668
669         if (level == 0)
670                 return 0;
671
672         mid = path->nodes[level];
673         WARN_ON(btrfs_header_generation(mid) != trans->transid);
674
675         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
676
677         if (level < BTRFS_MAX_LEVEL - 1) {
678                 parent = path->nodes[level + 1];
679                 pslot = path->slots[level + 1];
680         }
681
682         /*
683          * deal with the case where there is only one pointer in the root
684          * by promoting the node below to a root
685          */
686         if (!parent) {
687                 struct extent_buffer *child;
688
689                 if (btrfs_header_nritems(mid) != 1)
690                         return 0;
691
692                 /* promote the child to a root */
693                 child = read_node_slot(root, mid, 0);
694                 BUG_ON(!extent_buffer_uptodate(child));
695                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
696                 BUG_ON(ret);
697
698                 root->node = child;
699                 add_root_to_dirty_list(root);
700                 path->nodes[level] = NULL;
701                 clean_tree_block(trans, root, mid);
702                 wait_on_tree_block_writeback(root, mid);
703                 /* once for the path */
704                 free_extent_buffer(mid);
705
706                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
707                                         0, root->root_key.objectid,
708                                         level, 1);
709                 /* once for the root ptr */
710                 free_extent_buffer(mid);
711                 return ret;
712         }
713         if (btrfs_header_nritems(mid) >
714             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
715                 return 0;
716
717         left = read_node_slot(root, parent, pslot - 1);
718         if (extent_buffer_uptodate(left)) {
719                 wret = btrfs_cow_block(trans, root, left,
720                                        parent, pslot - 1, &left);
721                 if (wret) {
722                         ret = wret;
723                         goto enospc;
724                 }
725         }
726         right = read_node_slot(root, parent, pslot + 1);
727         if (extent_buffer_uptodate(right)) {
728                 wret = btrfs_cow_block(trans, root, right,
729                                        parent, pslot + 1, &right);
730                 if (wret) {
731                         ret = wret;
732                         goto enospc;
733                 }
734         }
735
736         /* first, try to make some room in the middle buffer */
737         if (left) {
738                 orig_slot += btrfs_header_nritems(left);
739                 wret = push_node_left(trans, root, left, mid, 1);
740                 if (wret < 0)
741                         ret = wret;
742         }
743
744         /*
745          * then try to empty the right most buffer into the middle
746          */
747         if (right) {
748                 wret = push_node_left(trans, root, mid, right, 1);
749                 if (wret < 0 && wret != -ENOSPC)
750                         ret = wret;
751                 if (btrfs_header_nritems(right) == 0) {
752                         u64 bytenr = right->start;
753                         u32 blocksize = right->len;
754
755                         clean_tree_block(trans, root, right);
756                         wait_on_tree_block_writeback(root, right);
757                         free_extent_buffer(right);
758                         right = NULL;
759                         wret = btrfs_del_ptr(trans, root, path,
760                                              level + 1, pslot + 1);
761                         if (wret)
762                                 ret = wret;
763                         wret = btrfs_free_extent(trans, root, bytenr,
764                                                  blocksize, 0,
765                                                  root->root_key.objectid,
766                                                  level, 0);
767                         if (wret)
768                                 ret = wret;
769                 } else {
770                         struct btrfs_disk_key right_key;
771                         btrfs_node_key(right, &right_key, 0);
772                         btrfs_set_node_key(parent, &right_key, pslot + 1);
773                         btrfs_mark_buffer_dirty(parent);
774                 }
775         }
776         if (btrfs_header_nritems(mid) == 1) {
777                 /*
778                  * we're not allowed to leave a node with one item in the
779                  * tree during a delete.  A deletion from lower in the tree
780                  * could try to delete the only pointer in this node.
781                  * So, pull some keys from the left.
782                  * There has to be a left pointer at this point because
783                  * otherwise we would have pulled some pointers from the
784                  * right
785                  */
786                 BUG_ON(!left);
787                 wret = balance_node_right(trans, root, mid, left);
788                 if (wret < 0) {
789                         ret = wret;
790                         goto enospc;
791                 }
792                 if (wret == 1) {
793                         wret = push_node_left(trans, root, left, mid, 1);
794                         if (wret < 0)
795                                 ret = wret;
796                 }
797                 BUG_ON(wret == 1);
798         }
799         if (btrfs_header_nritems(mid) == 0) {
800                 /* we've managed to empty the middle node, drop it */
801                 u64 bytenr = mid->start;
802                 u32 blocksize = mid->len;
803                 clean_tree_block(trans, root, mid);
804                 wait_on_tree_block_writeback(root, mid);
805                 free_extent_buffer(mid);
806                 mid = NULL;
807                 wret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
808                 if (wret)
809                         ret = wret;
810                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
811                                          0, root->root_key.objectid,
812                                          level, 0);
813                 if (wret)
814                         ret = wret;
815         } else {
816                 /* update the parent key to reflect our changes */
817                 struct btrfs_disk_key mid_key;
818                 btrfs_node_key(mid, &mid_key, 0);
819                 btrfs_set_node_key(parent, &mid_key, pslot);
820                 btrfs_mark_buffer_dirty(parent);
821         }
822
823         /* update the path */
824         if (left) {
825                 if (btrfs_header_nritems(left) > orig_slot) {
826                         extent_buffer_get(left);
827                         path->nodes[level] = left;
828                         path->slots[level + 1] -= 1;
829                         path->slots[level] = orig_slot;
830                         if (mid)
831                                 free_extent_buffer(mid);
832                 } else {
833                         orig_slot -= btrfs_header_nritems(left);
834                         path->slots[level] = orig_slot;
835                 }
836         }
837         /* double check we haven't messed things up */
838         check_block(root, path, level);
839         if (orig_ptr !=
840             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
841                 BUG();
842 enospc:
843         if (right)
844                 free_extent_buffer(right);
845         if (left)
846                 free_extent_buffer(left);
847         return ret;
848 }
849
850 /* returns zero if the push worked, non-zero otherwise */
851 static int noinline push_nodes_for_insert(struct btrfs_trans_handle *trans,
852                                           struct btrfs_root *root,
853                                           struct btrfs_path *path, int level)
854 {
855         struct extent_buffer *right = NULL;
856         struct extent_buffer *mid;
857         struct extent_buffer *left = NULL;
858         struct extent_buffer *parent = NULL;
859         int ret = 0;
860         int wret;
861         int pslot;
862         int orig_slot = path->slots[level];
863
864         if (level == 0)
865                 return 1;
866
867         mid = path->nodes[level];
868         WARN_ON(btrfs_header_generation(mid) != trans->transid);
869
870         if (level < BTRFS_MAX_LEVEL - 1) {
871                 parent = path->nodes[level + 1];
872                 pslot = path->slots[level + 1];
873         }
874
875         if (!parent)
876                 return 1;
877
878         left = read_node_slot(root, parent, pslot - 1);
879
880         /* first, try to make some room in the middle buffer */
881         if (extent_buffer_uptodate(left)) {
882                 u32 left_nr;
883                 left_nr = btrfs_header_nritems(left);
884                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
885                         wret = 1;
886                 } else {
887                         ret = btrfs_cow_block(trans, root, left, parent,
888                                               pslot - 1, &left);
889                         if (ret)
890                                 wret = 1;
891                         else {
892                                 wret = push_node_left(trans, root,
893                                                       left, mid, 0);
894                         }
895                 }
896                 if (wret < 0)
897                         ret = wret;
898                 if (wret == 0) {
899                         struct btrfs_disk_key disk_key;
900                         orig_slot += left_nr;
901                         btrfs_node_key(mid, &disk_key, 0);
902                         btrfs_set_node_key(parent, &disk_key, pslot);
903                         btrfs_mark_buffer_dirty(parent);
904                         if (btrfs_header_nritems(left) > orig_slot) {
905                                 path->nodes[level] = left;
906                                 path->slots[level + 1] -= 1;
907                                 path->slots[level] = orig_slot;
908                                 free_extent_buffer(mid);
909                         } else {
910                                 orig_slot -=
911                                         btrfs_header_nritems(left);
912                                 path->slots[level] = orig_slot;
913                                 free_extent_buffer(left);
914                         }
915                         return 0;
916                 }
917                 free_extent_buffer(left);
918         }
919         right= read_node_slot(root, parent, pslot + 1);
920
921         /*
922          * then try to empty the right most buffer into the middle
923          */
924         if (extent_buffer_uptodate(right)) {
925                 u32 right_nr;
926                 right_nr = btrfs_header_nritems(right);
927                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
928                         wret = 1;
929                 } else {
930                         ret = btrfs_cow_block(trans, root, right,
931                                               parent, pslot + 1,
932                                               &right);
933                         if (ret)
934                                 wret = 1;
935                         else {
936                                 wret = balance_node_right(trans, root,
937                                                           right, mid);
938                         }
939                 }
940                 if (wret < 0)
941                         ret = wret;
942                 if (wret == 0) {
943                         struct btrfs_disk_key disk_key;
944
945                         btrfs_node_key(right, &disk_key, 0);
946                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
947                         btrfs_mark_buffer_dirty(parent);
948
949                         if (btrfs_header_nritems(mid) <= orig_slot) {
950                                 path->nodes[level] = right;
951                                 path->slots[level + 1] += 1;
952                                 path->slots[level] = orig_slot -
953                                         btrfs_header_nritems(mid);
954                                 free_extent_buffer(mid);
955                         } else {
956                                 free_extent_buffer(right);
957                         }
958                         return 0;
959                 }
960                 free_extent_buffer(right);
961         }
962         return 1;
963 }
964
965 /*
966  * readahead one full node of leaves
967  */
968 void reada_for_search(struct btrfs_root *root, struct btrfs_path *path,
969                              int level, int slot, u64 objectid)
970 {
971         struct extent_buffer *node;
972         struct btrfs_disk_key disk_key;
973         u32 nritems;
974         u64 search;
975         u64 lowest_read;
976         u64 highest_read;
977         u64 nread = 0;
978         int direction = path->reada;
979         struct extent_buffer *eb;
980         u32 nr;
981         u32 blocksize;
982         u32 nscan = 0;
983
984         if (level != 1)
985                 return;
986
987         if (!path->nodes[level])
988                 return;
989
990         node = path->nodes[level];
991         search = btrfs_node_blockptr(node, slot);
992         blocksize = btrfs_level_size(root, level - 1);
993         eb = btrfs_find_tree_block(root, search, blocksize);
994         if (eb) {
995                 free_extent_buffer(eb);
996                 return;
997         }
998
999         highest_read = search;
1000         lowest_read = search;
1001
1002         nritems = btrfs_header_nritems(node);
1003         nr = slot;
1004         while(1) {
1005                 if (direction < 0) {
1006                         if (nr == 0)
1007                                 break;
1008                         nr--;
1009                 } else if (direction > 0) {
1010                         nr++;
1011                         if (nr >= nritems)
1012                                 break;
1013                 }
1014                 if (path->reada < 0 && objectid) {
1015                         btrfs_node_key(node, &disk_key, nr);
1016                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1017                                 break;
1018                 }
1019                 search = btrfs_node_blockptr(node, nr);
1020                 if ((search >= lowest_read && search <= highest_read) ||
1021                     (search < lowest_read && lowest_read - search <= 32768) ||
1022                     (search > highest_read && search - highest_read <= 32768)) {
1023                         readahead_tree_block(root, search, blocksize,
1024                                      btrfs_node_ptr_generation(node, nr));
1025                         nread += blocksize;
1026                 }
1027                 nscan++;
1028                 if (path->reada < 2 && (nread > (256 * 1024) || nscan > 32))
1029                         break;
1030                 if(nread > (1024 * 1024) || nscan > 128)
1031                         break;
1032
1033                 if (search < lowest_read)
1034                         lowest_read = search;
1035                 if (search > highest_read)
1036                         highest_read = search;
1037         }
1038 }
1039
1040 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path,
1041                 u64 iobjectid, u64 ioff, u8 key_type,
1042                 struct btrfs_key *found_key)
1043 {
1044         int ret;
1045         struct btrfs_key key;
1046         struct extent_buffer *eb;
1047         struct btrfs_path *path;
1048
1049         key.type = key_type;
1050         key.objectid = iobjectid;
1051         key.offset = ioff;
1052
1053         if (found_path == NULL) {
1054                 path = btrfs_alloc_path();
1055                 if (!path)
1056                         return -ENOMEM;
1057         } else
1058                 path = found_path;
1059
1060         ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1061         if ((ret < 0) || (found_key == NULL))
1062                 goto out;
1063
1064         eb = path->nodes[0];
1065         if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1066                 ret = btrfs_next_leaf(fs_root, path);
1067                 if (ret)
1068                         goto out;
1069                 eb = path->nodes[0];
1070         }
1071
1072         btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1073         if (found_key->type != key.type ||
1074                         found_key->objectid != key.objectid) {
1075                 ret = 1;
1076                 goto out;
1077         }
1078
1079 out:
1080         if (path != found_path)
1081                 btrfs_free_path(path);
1082         return ret;
1083 }
1084
1085 /*
1086  * look for key in the tree.  path is filled in with nodes along the way
1087  * if key is found, we return zero and you can find the item in the leaf
1088  * level of the path (level 0)
1089  *
1090  * If the key isn't found, the path points to the slot where it should
1091  * be inserted, and 1 is returned.  If there are other errors during the
1092  * search a negative error number is returned.
1093  *
1094  * if ins_len > 0, nodes and leaves will be split as we walk down the
1095  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1096  * possible)
1097  */
1098 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1099                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1100                       ins_len, int cow)
1101 {
1102         struct extent_buffer *b;
1103         int slot;
1104         int ret;
1105         int level;
1106         int should_reada = p->reada;
1107         u8 lowest_level = 0;
1108
1109         lowest_level = p->lowest_level;
1110         WARN_ON(lowest_level && ins_len > 0);
1111         WARN_ON(p->nodes[0] != NULL);
1112         /*
1113         WARN_ON(!mutex_is_locked(&root->fs_info->fs_mutex));
1114         */
1115 again:
1116         b = root->node;
1117         extent_buffer_get(b);
1118         while (b) {
1119                 level = btrfs_header_level(b);
1120                 if (cow) {
1121                         int wret;
1122                         wret = btrfs_cow_block(trans, root, b,
1123                                                p->nodes[level + 1],
1124                                                p->slots[level + 1],
1125                                                &b);
1126                         if (wret) {
1127                                 free_extent_buffer(b);
1128                                 return wret;
1129                         }
1130                 }
1131                 BUG_ON(!cow && ins_len);
1132                 if (level != btrfs_header_level(b))
1133                         WARN_ON(1);
1134                 level = btrfs_header_level(b);
1135                 p->nodes[level] = b;
1136                 ret = check_block(root, p, level);
1137                 if (ret)
1138                         return -1;
1139                 ret = bin_search(b, key, level, &slot);
1140                 if (level != 0) {
1141                         if (ret && slot > 0)
1142                                 slot -= 1;
1143                         p->slots[level] = slot;
1144                         if ((p->search_for_split || ins_len > 0) &&
1145                             btrfs_header_nritems(b) >=
1146                             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1147                                 int sret = split_node(trans, root, p, level);
1148                                 BUG_ON(sret > 0);
1149                                 if (sret)
1150                                         return sret;
1151                                 b = p->nodes[level];
1152                                 slot = p->slots[level];
1153                         } else if (ins_len < 0) {
1154                                 int sret = balance_level(trans, root, p,
1155                                                          level);
1156                                 if (sret)
1157                                         return sret;
1158                                 b = p->nodes[level];
1159                                 if (!b) {
1160                                         btrfs_release_path(p);
1161                                         goto again;
1162                                 }
1163                                 slot = p->slots[level];
1164                                 BUG_ON(btrfs_header_nritems(b) == 1);
1165                         }
1166                         /* this is only true while dropping a snapshot */
1167                         if (level == lowest_level)
1168                                 break;
1169
1170                         if (should_reada)
1171                                 reada_for_search(root, p, level, slot,
1172                                                  key->objectid);
1173
1174                         b = read_node_slot(root, b, slot);
1175                         if (!extent_buffer_uptodate(b))
1176                                 return -EIO;
1177                 } else {
1178                         p->slots[level] = slot;
1179                         if (ins_len > 0 &&
1180                             ins_len > btrfs_leaf_free_space(root, b)) {
1181                                 int sret = split_leaf(trans, root, key,
1182                                                       p, ins_len, ret == 0);
1183                                 BUG_ON(sret > 0);
1184                                 if (sret)
1185                                         return sret;
1186                         }
1187                         return ret;
1188                 }
1189         }
1190         return 1;
1191 }
1192
1193 /*
1194  * adjust the pointers going up the tree, starting at level
1195  * making sure the right key of each node is points to 'key'.
1196  * This is used after shifting pointers to the left, so it stops
1197  * fixing up pointers when a given leaf/node is not in slot 0 of the
1198  * higher levels
1199  */
1200 void btrfs_fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path,
1201                           struct btrfs_disk_key *key, int level)
1202 {
1203         int i;
1204         struct extent_buffer *t;
1205
1206         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1207                 int tslot = path->slots[i];
1208                 if (!path->nodes[i])
1209                         break;
1210                 t = path->nodes[i];
1211                 btrfs_set_node_key(t, key, tslot);
1212                 btrfs_mark_buffer_dirty(path->nodes[i]);
1213                 if (tslot != 0)
1214                         break;
1215         }
1216 }
1217
1218 /*
1219  * update item key.
1220  *
1221  * This function isn't completely safe. It's the caller's responsibility
1222  * that the new key won't break the order
1223  */
1224 int btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path,
1225                             struct btrfs_key *new_key)
1226 {
1227         struct btrfs_disk_key disk_key;
1228         struct extent_buffer *eb;
1229         int slot;
1230
1231         eb = path->nodes[0];
1232         slot = path->slots[0];
1233         if (slot > 0) {
1234                 btrfs_item_key(eb, &disk_key, slot - 1);
1235                 if (btrfs_comp_keys(&disk_key, new_key) >= 0)
1236                         return -1;
1237         }
1238         if (slot < btrfs_header_nritems(eb) - 1) {
1239                 btrfs_item_key(eb, &disk_key, slot + 1);
1240                 if (btrfs_comp_keys(&disk_key, new_key) <= 0)
1241                         return -1;
1242         }
1243
1244         btrfs_cpu_key_to_disk(&disk_key, new_key);
1245         btrfs_set_item_key(eb, &disk_key, slot);
1246         btrfs_mark_buffer_dirty(eb);
1247         if (slot == 0)
1248                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1249         return 0;
1250 }
1251
1252 /*
1253  * update an item key without the safety checks.  This is meant to be called by
1254  * fsck only.
1255  */
1256 void btrfs_set_item_key_unsafe(struct btrfs_root *root,
1257                                struct btrfs_path *path,
1258                                struct btrfs_key *new_key)
1259 {
1260         struct btrfs_disk_key disk_key;
1261         struct extent_buffer *eb;
1262         int slot;
1263
1264         eb = path->nodes[0];
1265         slot = path->slots[0];
1266
1267         btrfs_cpu_key_to_disk(&disk_key, new_key);
1268         btrfs_set_item_key(eb, &disk_key, slot);
1269         btrfs_mark_buffer_dirty(eb);
1270         if (slot == 0)
1271                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
1272 }
1273
1274 /*
1275  * try to push data from one node into the next node left in the
1276  * tree.
1277  *
1278  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1279  * error, and > 0 if there was no room in the left hand block.
1280  */
1281 static int push_node_left(struct btrfs_trans_handle *trans,
1282                           struct btrfs_root *root, struct extent_buffer *dst,
1283                           struct extent_buffer *src, int empty)
1284 {
1285         int push_items = 0;
1286         int src_nritems;
1287         int dst_nritems;
1288         int ret = 0;
1289
1290         src_nritems = btrfs_header_nritems(src);
1291         dst_nritems = btrfs_header_nritems(dst);
1292         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1293         WARN_ON(btrfs_header_generation(src) != trans->transid);
1294         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1295
1296         if (!empty && src_nritems <= 8)
1297                 return 1;
1298
1299         if (push_items <= 0) {
1300                 return 1;
1301         }
1302
1303         if (empty) {
1304                 push_items = min(src_nritems, push_items);
1305                 if (push_items < src_nritems) {
1306                         /* leave at least 8 pointers in the node if
1307                          * we aren't going to empty it
1308                          */
1309                         if (src_nritems - push_items < 8) {
1310                                 if (push_items <= 8)
1311                                         return 1;
1312                                 push_items -= 8;
1313                         }
1314                 }
1315         } else
1316                 push_items = min(src_nritems - 8, push_items);
1317
1318         copy_extent_buffer(dst, src,
1319                            btrfs_node_key_ptr_offset(dst_nritems),
1320                            btrfs_node_key_ptr_offset(0),
1321                            push_items * sizeof(struct btrfs_key_ptr));
1322
1323         if (push_items < src_nritems) {
1324                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1325                                       btrfs_node_key_ptr_offset(push_items),
1326                                       (src_nritems - push_items) *
1327                                       sizeof(struct btrfs_key_ptr));
1328         }
1329         btrfs_set_header_nritems(src, src_nritems - push_items);
1330         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1331         btrfs_mark_buffer_dirty(src);
1332         btrfs_mark_buffer_dirty(dst);
1333
1334         return ret;
1335 }
1336
1337 /*
1338  * try to push data from one node into the next node right in the
1339  * tree.
1340  *
1341  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1342  * error, and > 0 if there was no room in the right hand block.
1343  *
1344  * this will  only push up to 1/2 the contents of the left node over
1345  */
1346 static int balance_node_right(struct btrfs_trans_handle *trans,
1347                               struct btrfs_root *root,
1348                               struct extent_buffer *dst,
1349                               struct extent_buffer *src)
1350 {
1351         int push_items = 0;
1352         int max_push;
1353         int src_nritems;
1354         int dst_nritems;
1355         int ret = 0;
1356
1357         WARN_ON(btrfs_header_generation(src) != trans->transid);
1358         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1359
1360         src_nritems = btrfs_header_nritems(src);
1361         dst_nritems = btrfs_header_nritems(dst);
1362         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1363         if (push_items <= 0) {
1364                 return 1;
1365         }
1366
1367         if (src_nritems < 4) {
1368                 return 1;
1369         }
1370
1371         max_push = src_nritems / 2 + 1;
1372         /* don't try to empty the node */
1373         if (max_push >= src_nritems) {
1374                 return 1;
1375         }
1376
1377         if (max_push < push_items)
1378                 push_items = max_push;
1379
1380         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1381                                       btrfs_node_key_ptr_offset(0),
1382                                       (dst_nritems) *
1383                                       sizeof(struct btrfs_key_ptr));
1384
1385         copy_extent_buffer(dst, src,
1386                            btrfs_node_key_ptr_offset(0),
1387                            btrfs_node_key_ptr_offset(src_nritems - push_items),
1388                            push_items * sizeof(struct btrfs_key_ptr));
1389
1390         btrfs_set_header_nritems(src, src_nritems - push_items);
1391         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1392
1393         btrfs_mark_buffer_dirty(src);
1394         btrfs_mark_buffer_dirty(dst);
1395
1396         return ret;
1397 }
1398
1399 /*
1400  * helper function to insert a new root level in the tree.
1401  * A new node is allocated, and a single item is inserted to
1402  * point to the existing root
1403  *
1404  * returns zero on success or < 0 on failure.
1405  */
1406 static int noinline insert_new_root(struct btrfs_trans_handle *trans,
1407                            struct btrfs_root *root,
1408                            struct btrfs_path *path, int level)
1409 {
1410         u64 lower_gen;
1411         struct extent_buffer *lower;
1412         struct extent_buffer *c;
1413         struct extent_buffer *old;
1414         struct btrfs_disk_key lower_key;
1415
1416         BUG_ON(path->nodes[level]);
1417         BUG_ON(path->nodes[level-1] != root->node);
1418
1419         lower = path->nodes[level-1];
1420         if (level == 1)
1421                 btrfs_item_key(lower, &lower_key, 0);
1422         else
1423                 btrfs_node_key(lower, &lower_key, 0);
1424
1425         c = btrfs_alloc_free_block(trans, root, root->nodesize,
1426                                    root->root_key.objectid, &lower_key, 
1427                                    level, root->node->start, 0);
1428
1429         if (IS_ERR(c))
1430                 return PTR_ERR(c);
1431
1432         memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1433         btrfs_set_header_nritems(c, 1);
1434         btrfs_set_header_level(c, level);
1435         btrfs_set_header_bytenr(c, c->start);
1436         btrfs_set_header_generation(c, trans->transid);
1437         btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1438         btrfs_set_header_owner(c, root->root_key.objectid);
1439
1440         write_extent_buffer(c, root->fs_info->fsid,
1441                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1442
1443         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1444                             btrfs_header_chunk_tree_uuid(c),
1445                             BTRFS_UUID_SIZE);
1446
1447         btrfs_set_node_key(c, &lower_key, 0);
1448         btrfs_set_node_blockptr(c, 0, lower->start);
1449         lower_gen = btrfs_header_generation(lower);
1450         WARN_ON(lower_gen != trans->transid);
1451
1452         btrfs_set_node_ptr_generation(c, 0, lower_gen);
1453
1454         btrfs_mark_buffer_dirty(c);
1455
1456         old = root->node;
1457         root->node = c;
1458
1459         /* the super has an extra ref to root->node */
1460         free_extent_buffer(old);
1461
1462         add_root_to_dirty_list(root);
1463         extent_buffer_get(c);
1464         path->nodes[level] = c;
1465         path->slots[level] = 0;
1466         return 0;
1467 }
1468
1469 /*
1470  * worker function to insert a single pointer in a node.
1471  * the node should have enough room for the pointer already
1472  *
1473  * slot and level indicate where you want the key to go, and
1474  * blocknr is the block the key points to.
1475  *
1476  * returns zero on success and < 0 on any error
1477  */
1478 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
1479                       *root, struct btrfs_path *path, struct btrfs_disk_key
1480                       *key, u64 bytenr, int slot, int level)
1481 {
1482         struct extent_buffer *lower;
1483         int nritems;
1484
1485         BUG_ON(!path->nodes[level]);
1486         lower = path->nodes[level];
1487         nritems = btrfs_header_nritems(lower);
1488         if (slot > nritems)
1489                 BUG();
1490         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
1491                 BUG();
1492         if (slot != nritems) {
1493                 memmove_extent_buffer(lower,
1494                               btrfs_node_key_ptr_offset(slot + 1),
1495                               btrfs_node_key_ptr_offset(slot),
1496                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
1497         }
1498         btrfs_set_node_key(lower, key, slot);
1499         btrfs_set_node_blockptr(lower, slot, bytenr);
1500         WARN_ON(trans->transid == 0);
1501         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
1502         btrfs_set_header_nritems(lower, nritems + 1);
1503         btrfs_mark_buffer_dirty(lower);
1504         return 0;
1505 }
1506
1507 /*
1508  * split the node at the specified level in path in two.
1509  * The path is corrected to point to the appropriate node after the split
1510  *
1511  * Before splitting this tries to make some room in the node by pushing
1512  * left and right, if either one works, it returns right away.
1513  *
1514  * returns 0 on success and < 0 on failure
1515  */
1516 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
1517                       *root, struct btrfs_path *path, int level)
1518 {
1519         struct extent_buffer *c;
1520         struct extent_buffer *split;
1521         struct btrfs_disk_key disk_key;
1522         int mid;
1523         int ret;
1524         int wret;
1525         u32 c_nritems;
1526
1527         c = path->nodes[level];
1528         WARN_ON(btrfs_header_generation(c) != trans->transid);
1529         if (c == root->node) {
1530                 /* trying to split the root, lets make a new one */
1531                 ret = insert_new_root(trans, root, path, level + 1);
1532                 if (ret)
1533                         return ret;
1534         } else {
1535                 ret = push_nodes_for_insert(trans, root, path, level);
1536                 c = path->nodes[level];
1537                 if (!ret && btrfs_header_nritems(c) <
1538                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
1539                         return 0;
1540                 if (ret < 0)
1541                         return ret;
1542         }
1543
1544         c_nritems = btrfs_header_nritems(c);
1545         mid = (c_nritems + 1) / 2;
1546         btrfs_node_key(c, &disk_key, mid);
1547
1548         split = btrfs_alloc_free_block(trans, root, root->nodesize,
1549                                         root->root_key.objectid,
1550                                         &disk_key, level, c->start, 0);
1551         if (IS_ERR(split))
1552                 return PTR_ERR(split);
1553
1554         memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
1555         btrfs_set_header_level(split, btrfs_header_level(c));
1556         btrfs_set_header_bytenr(split, split->start);
1557         btrfs_set_header_generation(split, trans->transid);
1558         btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
1559         btrfs_set_header_owner(split, root->root_key.objectid);
1560         write_extent_buffer(split, root->fs_info->fsid,
1561                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1562         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
1563                             btrfs_header_chunk_tree_uuid(split),
1564                             BTRFS_UUID_SIZE);
1565
1566
1567         copy_extent_buffer(split, c,
1568                            btrfs_node_key_ptr_offset(0),
1569                            btrfs_node_key_ptr_offset(mid),
1570                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
1571         btrfs_set_header_nritems(split, c_nritems - mid);
1572         btrfs_set_header_nritems(c, mid);
1573         ret = 0;
1574
1575         btrfs_mark_buffer_dirty(c);
1576         btrfs_mark_buffer_dirty(split);
1577
1578         wret = insert_ptr(trans, root, path, &disk_key, split->start,
1579                           path->slots[level + 1] + 1,
1580                           level + 1);
1581         if (wret)
1582                 ret = wret;
1583
1584         if (path->slots[level] >= mid) {
1585                 path->slots[level] -= mid;
1586                 free_extent_buffer(c);
1587                 path->nodes[level] = split;
1588                 path->slots[level + 1] += 1;
1589         } else {
1590                 free_extent_buffer(split);
1591         }
1592         return ret;
1593 }
1594
1595 /*
1596  * how many bytes are required to store the items in a leaf.  start
1597  * and nr indicate which items in the leaf to check.  This totals up the
1598  * space used both by the item structs and the item data
1599  */
1600 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
1601 {
1602         int data_len;
1603         int nritems = btrfs_header_nritems(l);
1604         int end = min(nritems, start + nr) - 1;
1605
1606         if (!nr)
1607                 return 0;
1608         data_len = btrfs_item_end_nr(l, start);
1609         data_len = data_len - btrfs_item_offset_nr(l, end);
1610         data_len += sizeof(struct btrfs_item) * nr;
1611         WARN_ON(data_len < 0);
1612         return data_len;
1613 }
1614
1615 /*
1616  * The space between the end of the leaf items and
1617  * the start of the leaf data.  IOW, how much room
1618  * the leaf has left for both items and data
1619  */
1620 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf)
1621 {
1622         u32 nodesize = (root ? BTRFS_LEAF_DATA_SIZE(root) : leaf->len);
1623         int nritems = btrfs_header_nritems(leaf);
1624         int ret;
1625         ret = nodesize - leaf_space_used(leaf, 0, nritems);
1626         if (ret < 0) {
1627                 printk("leaf free space ret %d, leaf data size %u, used %d nritems %d\n",
1628                        ret, nodesize, leaf_space_used(leaf, 0, nritems),
1629                        nritems);
1630         }
1631         return ret;
1632 }
1633
1634 /*
1635  * push some data in the path leaf to the right, trying to free up at
1636  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1637  *
1638  * returns 1 if the push failed because the other node didn't have enough
1639  * room, 0 if everything worked out and < 0 if there were major errors.
1640  */
1641 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
1642                            *root, struct btrfs_path *path, int data_size,
1643                            int empty)
1644 {
1645         struct extent_buffer *left = path->nodes[0];
1646         struct extent_buffer *right;
1647         struct extent_buffer *upper;
1648         struct btrfs_disk_key disk_key;
1649         int slot;
1650         u32 i;
1651         int free_space;
1652         int push_space = 0;
1653         int push_items = 0;
1654         struct btrfs_item *item;
1655         u32 left_nritems;
1656         u32 nr;
1657         u32 right_nritems;
1658         u32 data_end;
1659         u32 this_item_size;
1660         int ret;
1661
1662         slot = path->slots[1];
1663         if (!path->nodes[1]) {
1664                 return 1;
1665         }
1666         upper = path->nodes[1];
1667         if (slot >= btrfs_header_nritems(upper) - 1)
1668                 return 1;
1669
1670         right = read_node_slot(root, upper, slot + 1);
1671         if (!extent_buffer_uptodate(right)) {
1672                 if (IS_ERR(right))
1673                         return PTR_ERR(right);
1674                 return -EIO;
1675         }
1676         free_space = btrfs_leaf_free_space(root, right);
1677         if (free_space < data_size) {
1678                 free_extent_buffer(right);
1679                 return 1;
1680         }
1681
1682         /* cow and double check */
1683         ret = btrfs_cow_block(trans, root, right, upper,
1684                               slot + 1, &right);
1685         if (ret) {
1686                 free_extent_buffer(right);
1687                 return 1;
1688         }
1689         free_space = btrfs_leaf_free_space(root, right);
1690         if (free_space < data_size) {
1691                 free_extent_buffer(right);
1692                 return 1;
1693         }
1694
1695         left_nritems = btrfs_header_nritems(left);
1696         if (left_nritems == 0) {
1697                 free_extent_buffer(right);
1698                 return 1;
1699         }
1700
1701         if (empty)
1702                 nr = 0;
1703         else
1704                 nr = 1;
1705
1706         i = left_nritems - 1;
1707         while (i >= nr) {
1708                 item = btrfs_item_nr(i);
1709
1710                 if (path->slots[0] == i)
1711                         push_space += data_size + sizeof(*item);
1712
1713                 this_item_size = btrfs_item_size(left, item);
1714                 if (this_item_size + sizeof(*item) + push_space > free_space)
1715                         break;
1716                 push_items++;
1717                 push_space += this_item_size + sizeof(*item);
1718                 if (i == 0)
1719                         break;
1720                 i--;
1721         }
1722
1723         if (push_items == 0) {
1724                 free_extent_buffer(right);
1725                 return 1;
1726         }
1727
1728         if (!empty && push_items == left_nritems)
1729                 WARN_ON(1);
1730
1731         /* push left to right */
1732         right_nritems = btrfs_header_nritems(right);
1733
1734         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
1735         push_space -= leaf_data_end(root, left);
1736
1737         /* make room in the right data area */
1738         data_end = leaf_data_end(root, right);
1739         memmove_extent_buffer(right,
1740                               btrfs_leaf_data(right) + data_end - push_space,
1741                               btrfs_leaf_data(right) + data_end,
1742                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
1743
1744         /* copy from the left data area */
1745         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
1746                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
1747                      btrfs_leaf_data(left) + leaf_data_end(root, left),
1748                      push_space);
1749
1750         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
1751                               btrfs_item_nr_offset(0),
1752                               right_nritems * sizeof(struct btrfs_item));
1753
1754         /* copy the items from left to right */
1755         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
1756                    btrfs_item_nr_offset(left_nritems - push_items),
1757                    push_items * sizeof(struct btrfs_item));
1758
1759         /* update the item pointers */
1760         right_nritems += push_items;
1761         btrfs_set_header_nritems(right, right_nritems);
1762         push_space = BTRFS_LEAF_DATA_SIZE(root);
1763         for (i = 0; i < right_nritems; i++) {
1764                 item = btrfs_item_nr(i);
1765                 push_space -= btrfs_item_size(right, item);
1766                 btrfs_set_item_offset(right, item, push_space);
1767         }
1768
1769         left_nritems -= push_items;
1770         btrfs_set_header_nritems(left, left_nritems);
1771
1772         if (left_nritems)
1773                 btrfs_mark_buffer_dirty(left);
1774         btrfs_mark_buffer_dirty(right);
1775
1776         btrfs_item_key(right, &disk_key, 0);
1777         btrfs_set_node_key(upper, &disk_key, slot + 1);
1778         btrfs_mark_buffer_dirty(upper);
1779
1780         /* then fixup the leaf pointer in the path */
1781         if (path->slots[0] >= left_nritems) {
1782                 path->slots[0] -= left_nritems;
1783                 free_extent_buffer(path->nodes[0]);
1784                 path->nodes[0] = right;
1785                 path->slots[1] += 1;
1786         } else {
1787                 free_extent_buffer(right);
1788         }
1789         return 0;
1790 }
1791 /*
1792  * push some data in the path leaf to the left, trying to free up at
1793  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
1794  */
1795 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
1796                           *root, struct btrfs_path *path, int data_size,
1797                           int empty)
1798 {
1799         struct btrfs_disk_key disk_key;
1800         struct extent_buffer *right = path->nodes[0];
1801         struct extent_buffer *left;
1802         int slot;
1803         int i;
1804         int free_space;
1805         int push_space = 0;
1806         int push_items = 0;
1807         struct btrfs_item *item;
1808         u32 old_left_nritems;
1809         u32 right_nritems;
1810         u32 nr;
1811         int ret = 0;
1812         u32 this_item_size;
1813         u32 old_left_item_size;
1814
1815         slot = path->slots[1];
1816         if (slot == 0)
1817                 return 1;
1818         if (!path->nodes[1])
1819                 return 1;
1820
1821         right_nritems = btrfs_header_nritems(right);
1822         if (right_nritems == 0) {
1823                 return 1;
1824         }
1825
1826         left = read_node_slot(root, path->nodes[1], slot - 1);
1827         free_space = btrfs_leaf_free_space(root, left);
1828         if (free_space < data_size) {
1829                 free_extent_buffer(left);
1830                 return 1;
1831         }
1832
1833         /* cow and double check */
1834         ret = btrfs_cow_block(trans, root, left,
1835                               path->nodes[1], slot - 1, &left);
1836         if (ret) {
1837                 /* we hit -ENOSPC, but it isn't fatal here */
1838                 free_extent_buffer(left);
1839                 return 1;
1840         }
1841
1842         free_space = btrfs_leaf_free_space(root, left);
1843         if (free_space < data_size) {
1844                 free_extent_buffer(left);
1845                 return 1;
1846         }
1847
1848         if (empty)
1849                 nr = right_nritems;
1850         else
1851                 nr = right_nritems - 1;
1852
1853         for (i = 0; i < nr; i++) {
1854                 item = btrfs_item_nr(i);
1855
1856                 if (path->slots[0] == i)
1857                         push_space += data_size + sizeof(*item);
1858
1859                 this_item_size = btrfs_item_size(right, item);
1860                 if (this_item_size + sizeof(*item) + push_space > free_space)
1861                         break;
1862
1863                 push_items++;
1864                 push_space += this_item_size + sizeof(*item);
1865         }
1866
1867         if (push_items == 0) {
1868                 free_extent_buffer(left);
1869                 return 1;
1870         }
1871         if (!empty && push_items == btrfs_header_nritems(right))
1872                 WARN_ON(1);
1873
1874         /* push data from right to left */
1875         copy_extent_buffer(left, right,
1876                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
1877                            btrfs_item_nr_offset(0),
1878                            push_items * sizeof(struct btrfs_item));
1879
1880         push_space = BTRFS_LEAF_DATA_SIZE(root) -
1881                      btrfs_item_offset_nr(right, push_items -1);
1882
1883         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
1884                      leaf_data_end(root, left) - push_space,
1885                      btrfs_leaf_data(right) +
1886                      btrfs_item_offset_nr(right, push_items - 1),
1887                      push_space);
1888         old_left_nritems = btrfs_header_nritems(left);
1889         BUG_ON(old_left_nritems == 0);
1890
1891         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
1892         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
1893                 u32 ioff;
1894
1895                 item = btrfs_item_nr(i);
1896                 ioff = btrfs_item_offset(left, item);
1897                 btrfs_set_item_offset(left, item,
1898                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
1899         }
1900         btrfs_set_header_nritems(left, old_left_nritems + push_items);
1901
1902         /* fixup right node */
1903         if (push_items > right_nritems) {
1904                 printk("push items %d nr %u\n", push_items, right_nritems);
1905                 WARN_ON(1);
1906         }
1907
1908         if (push_items < right_nritems) {
1909                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
1910                                                   leaf_data_end(root, right);
1911                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
1912                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
1913                                       btrfs_leaf_data(right) +
1914                                       leaf_data_end(root, right), push_space);
1915
1916                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
1917                               btrfs_item_nr_offset(push_items),
1918                              (btrfs_header_nritems(right) - push_items) *
1919                              sizeof(struct btrfs_item));
1920         }
1921         right_nritems -= push_items;
1922         btrfs_set_header_nritems(right, right_nritems);
1923         push_space = BTRFS_LEAF_DATA_SIZE(root);
1924         for (i = 0; i < right_nritems; i++) {
1925                 item = btrfs_item_nr(i);
1926                 push_space = push_space - btrfs_item_size(right, item);
1927                 btrfs_set_item_offset(right, item, push_space);
1928         }
1929
1930         btrfs_mark_buffer_dirty(left);
1931         if (right_nritems)
1932                 btrfs_mark_buffer_dirty(right);
1933
1934         btrfs_item_key(right, &disk_key, 0);
1935         btrfs_fixup_low_keys(root, path, &disk_key, 1);
1936
1937         /* then fixup the leaf pointer in the path */
1938         if (path->slots[0] < push_items) {
1939                 path->slots[0] += old_left_nritems;
1940                 free_extent_buffer(path->nodes[0]);
1941                 path->nodes[0] = left;
1942                 path->slots[1] -= 1;
1943         } else {
1944                 free_extent_buffer(left);
1945                 path->slots[0] -= push_items;
1946         }
1947         BUG_ON(path->slots[0] < 0);
1948         return ret;
1949 }
1950
1951 /*
1952  * split the path's leaf in two, making sure there is at least data_size
1953  * available for the resulting leaf level of the path.
1954  *
1955  * returns 0 if all went well and < 0 on failure.
1956  */
1957 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
1958                                struct btrfs_root *root,
1959                                struct btrfs_path *path,
1960                                struct extent_buffer *l,
1961                                struct extent_buffer *right,
1962                                int slot, int mid, int nritems)
1963 {
1964         int data_copy_size;
1965         int rt_data_off;
1966         int i;
1967         int ret = 0;
1968         int wret;
1969         struct btrfs_disk_key disk_key;
1970
1971         nritems = nritems - mid;
1972         btrfs_set_header_nritems(right, nritems);
1973         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
1974
1975         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
1976                            btrfs_item_nr_offset(mid),
1977                            nritems * sizeof(struct btrfs_item));
1978
1979         copy_extent_buffer(right, l,
1980                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
1981                      data_copy_size, btrfs_leaf_data(l) +
1982                      leaf_data_end(root, l), data_copy_size);
1983
1984         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
1985                       btrfs_item_end_nr(l, mid);
1986
1987         for (i = 0; i < nritems; i++) {
1988                 struct btrfs_item *item = btrfs_item_nr(i);
1989                 u32 ioff = btrfs_item_offset(right, item);
1990                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
1991         }
1992
1993         btrfs_set_header_nritems(l, mid);
1994         ret = 0;
1995         btrfs_item_key(right, &disk_key, 0);
1996         wret = insert_ptr(trans, root, path, &disk_key, right->start,
1997                           path->slots[1] + 1, 1);
1998         if (wret)
1999                 ret = wret;
2000
2001         btrfs_mark_buffer_dirty(right);
2002         btrfs_mark_buffer_dirty(l);
2003         BUG_ON(path->slots[0] != slot);
2004
2005         if (mid <= slot) {
2006                 free_extent_buffer(path->nodes[0]);
2007                 path->nodes[0] = right;
2008                 path->slots[0] -= mid;
2009                 path->slots[1] += 1;
2010         } else {
2011                 free_extent_buffer(right);
2012         }
2013
2014         BUG_ON(path->slots[0] < 0);
2015
2016         return ret;
2017 }
2018
2019 /*
2020  * split the path's leaf in two, making sure there is at least data_size
2021  * available for the resulting leaf level of the path.
2022  *
2023  * returns 0 if all went well and < 0 on failure.
2024  */
2025 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2026                                struct btrfs_root *root,
2027                                struct btrfs_key *ins_key,
2028                                struct btrfs_path *path, int data_size,
2029                                int extend)
2030 {
2031         struct btrfs_disk_key disk_key;
2032         struct extent_buffer *l;
2033         u32 nritems;
2034         int mid;
2035         int slot;
2036         struct extent_buffer *right;
2037         int ret = 0;
2038         int wret;
2039         int split;
2040         int num_doubles = 0;
2041
2042         l = path->nodes[0];
2043         slot = path->slots[0];
2044         if (extend && data_size + btrfs_item_size_nr(l, slot) +
2045             sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2046                 return -EOVERFLOW;
2047
2048         /* first try to make some room by pushing left and right */
2049         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2050                 wret = push_leaf_right(trans, root, path, data_size, 0);
2051                 if (wret < 0)
2052                         return wret;
2053                 if (wret) {
2054                         wret = push_leaf_left(trans, root, path, data_size, 0);
2055                         if (wret < 0)
2056                                 return wret;
2057                 }
2058                 l = path->nodes[0];
2059
2060                 /* did the pushes work? */
2061                 if (btrfs_leaf_free_space(root, l) >= data_size)
2062                         return 0;
2063         }
2064
2065         if (!path->nodes[1]) {
2066                 ret = insert_new_root(trans, root, path, 1);
2067                 if (ret)
2068                         return ret;
2069         }
2070 again:
2071         split = 1;
2072         l = path->nodes[0];
2073         slot = path->slots[0];
2074         nritems = btrfs_header_nritems(l);
2075         mid = (nritems + 1) / 2;
2076
2077         if (mid <= slot) {
2078                 if (nritems == 1 ||
2079                     leaf_space_used(l, mid, nritems - mid) + data_size >
2080                         BTRFS_LEAF_DATA_SIZE(root)) {
2081                         if (slot >= nritems) {
2082                                 split = 0;
2083                         } else {
2084                                 mid = slot;
2085                                 if (mid != nritems &&
2086                                     leaf_space_used(l, mid, nritems - mid) +
2087                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2088                                         split = 2;
2089                                 }
2090                         }
2091                 }
2092         } else {
2093                 if (leaf_space_used(l, 0, mid) + data_size >
2094                         BTRFS_LEAF_DATA_SIZE(root)) {
2095                         if (!extend && data_size && slot == 0) {
2096                                 split = 0;
2097                         } else if ((extend || !data_size) && slot == 0) {
2098                                 mid = 1;
2099                         } else {
2100                                 mid = slot;
2101                                 if (mid != nritems &&
2102                                     leaf_space_used(l, mid, nritems - mid) +
2103                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2104                                         split = 2 ;
2105                                 }
2106                         }
2107                 }
2108         }
2109         
2110         if (split == 0)
2111                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2112         else
2113                 btrfs_item_key(l, &disk_key, mid);
2114
2115         right = btrfs_alloc_free_block(trans, root, root->leafsize,
2116                                         root->root_key.objectid,
2117                                         &disk_key, 0, l->start, 0);
2118         if (IS_ERR(right)) {
2119                 BUG_ON(1);
2120                 return PTR_ERR(right);
2121         }
2122
2123         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2124         btrfs_set_header_bytenr(right, right->start);
2125         btrfs_set_header_generation(right, trans->transid);
2126         btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2127         btrfs_set_header_owner(right, root->root_key.objectid);
2128         btrfs_set_header_level(right, 0);
2129         write_extent_buffer(right, root->fs_info->fsid,
2130                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
2131
2132         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2133                             btrfs_header_chunk_tree_uuid(right),
2134                             BTRFS_UUID_SIZE);
2135
2136         if (split == 0) {
2137                 if (mid <= slot) {
2138                         btrfs_set_header_nritems(right, 0);
2139                         wret = insert_ptr(trans, root, path,
2140                                           &disk_key, right->start,
2141                                           path->slots[1] + 1, 1);
2142                         if (wret)
2143                                 ret = wret;
2144
2145                         free_extent_buffer(path->nodes[0]);
2146                         path->nodes[0] = right;
2147                         path->slots[0] = 0;
2148                         path->slots[1] += 1;
2149                 } else {
2150                         btrfs_set_header_nritems(right, 0);
2151                         wret = insert_ptr(trans, root, path,
2152                                           &disk_key,
2153                                           right->start,
2154                                           path->slots[1], 1);
2155                         if (wret)
2156                                 ret = wret;
2157                         free_extent_buffer(path->nodes[0]);
2158                         path->nodes[0] = right;
2159                         path->slots[0] = 0;
2160                         if (path->slots[1] == 0) {
2161                                 btrfs_fixup_low_keys(root, path,
2162                                                      &disk_key, 1);
2163                         }
2164                 }
2165                 btrfs_mark_buffer_dirty(right);
2166                 return ret;
2167         }
2168
2169         ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2170         BUG_ON(ret);
2171
2172         if (split == 2) {
2173                 BUG_ON(num_doubles != 0);
2174                 num_doubles++;
2175                 goto again;
2176         }
2177
2178         return ret;
2179 }
2180
2181 /*
2182  * This function splits a single item into two items,
2183  * giving 'new_key' to the new item and splitting the
2184  * old one at split_offset (from the start of the item).
2185  *
2186  * The path may be released by this operation.  After
2187  * the split, the path is pointing to the old item.  The
2188  * new item is going to be in the same node as the old one.
2189  *
2190  * Note, the item being split must be smaller enough to live alone on
2191  * a tree block with room for one extra struct btrfs_item
2192  *
2193  * This allows us to split the item in place, keeping a lock on the
2194  * leaf the entire time.
2195  */
2196 int btrfs_split_item(struct btrfs_trans_handle *trans,
2197                      struct btrfs_root *root,
2198                      struct btrfs_path *path,
2199                      struct btrfs_key *new_key,
2200                      unsigned long split_offset)
2201 {
2202         u32 item_size;
2203         struct extent_buffer *leaf;
2204         struct btrfs_key orig_key;
2205         struct btrfs_item *item;
2206         struct btrfs_item *new_item;
2207         int ret = 0;
2208         int slot;
2209         u32 nritems;
2210         u32 orig_offset;
2211         struct btrfs_disk_key disk_key;
2212         char *buf;
2213
2214         leaf = path->nodes[0];
2215         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2216         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2217                 goto split;
2218
2219         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2220         btrfs_release_path(path);
2221
2222         path->search_for_split = 1;
2223
2224         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2225         path->search_for_split = 0;
2226
2227         /* if our item isn't there or got smaller, return now */
2228         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
2229                                                         path->slots[0])) {
2230                 return -EAGAIN;
2231         }
2232
2233         ret = split_leaf(trans, root, &orig_key, path, 0, 0);
2234         BUG_ON(ret);
2235
2236         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
2237         leaf = path->nodes[0];
2238
2239 split:
2240         item = btrfs_item_nr(path->slots[0]);
2241         orig_offset = btrfs_item_offset(leaf, item);
2242         item_size = btrfs_item_size(leaf, item);
2243
2244
2245         buf = kmalloc(item_size, GFP_NOFS);
2246         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
2247                             path->slots[0]), item_size);
2248         slot = path->slots[0] + 1;
2249         leaf = path->nodes[0];
2250
2251         nritems = btrfs_header_nritems(leaf);
2252
2253         if (slot != nritems) {
2254                 /* shift the items */
2255                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
2256                               btrfs_item_nr_offset(slot),
2257                               (nritems - slot) * sizeof(struct btrfs_item));
2258
2259         }
2260
2261         btrfs_cpu_key_to_disk(&disk_key, new_key);
2262         btrfs_set_item_key(leaf, &disk_key, slot);
2263
2264         new_item = btrfs_item_nr(slot);
2265
2266         btrfs_set_item_offset(leaf, new_item, orig_offset);
2267         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
2268
2269         btrfs_set_item_offset(leaf, item,
2270                               orig_offset + item_size - split_offset);
2271         btrfs_set_item_size(leaf, item, split_offset);
2272
2273         btrfs_set_header_nritems(leaf, nritems + 1);
2274
2275         /* write the data for the start of the original item */
2276         write_extent_buffer(leaf, buf,
2277                             btrfs_item_ptr_offset(leaf, path->slots[0]),
2278                             split_offset);
2279
2280         /* write the data for the new item */
2281         write_extent_buffer(leaf, buf + split_offset,
2282                             btrfs_item_ptr_offset(leaf, slot),
2283                             item_size - split_offset);
2284         btrfs_mark_buffer_dirty(leaf);
2285
2286         ret = 0;
2287         if (btrfs_leaf_free_space(root, leaf) < 0) {
2288                 btrfs_print_leaf(root, leaf);
2289                 BUG();
2290         }
2291         kfree(buf);
2292         return ret;
2293 }
2294
2295 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
2296                         struct btrfs_root *root,
2297                         struct btrfs_path *path,
2298                         u32 new_size, int from_end)
2299 {
2300         int ret = 0;
2301         int slot;
2302         struct extent_buffer *leaf;
2303         struct btrfs_item *item;
2304         u32 nritems;
2305         unsigned int data_end;
2306         unsigned int old_data_start;
2307         unsigned int old_size;
2308         unsigned int size_diff;
2309         int i;
2310
2311         leaf = path->nodes[0];
2312         slot = path->slots[0];
2313
2314         old_size = btrfs_item_size_nr(leaf, slot);
2315         if (old_size == new_size)
2316                 return 0;
2317
2318         nritems = btrfs_header_nritems(leaf);
2319         data_end = leaf_data_end(root, leaf);
2320
2321         old_data_start = btrfs_item_offset_nr(leaf, slot);
2322
2323         size_diff = old_size - new_size;
2324
2325         BUG_ON(slot < 0);
2326         BUG_ON(slot >= nritems);
2327
2328         /*
2329          * item0..itemN ... dataN.offset..dataN.size .. data0.size
2330          */
2331         /* first correct the data pointers */
2332         for (i = slot; i < nritems; i++) {
2333                 u32 ioff;
2334                 item = btrfs_item_nr(i);
2335                 ioff = btrfs_item_offset(leaf, item);
2336                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
2337         }
2338
2339         /* shift the data */
2340         if (from_end) {
2341                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2342                               data_end + size_diff, btrfs_leaf_data(leaf) +
2343                               data_end, old_data_start + new_size - data_end);
2344         } else {
2345                 struct btrfs_disk_key disk_key;
2346                 u64 offset;
2347
2348                 btrfs_item_key(leaf, &disk_key, slot);
2349
2350                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
2351                         unsigned long ptr;
2352                         struct btrfs_file_extent_item *fi;
2353
2354                         fi = btrfs_item_ptr(leaf, slot,
2355                                             struct btrfs_file_extent_item);
2356                         fi = (struct btrfs_file_extent_item *)(
2357                              (unsigned long)fi - size_diff);
2358
2359                         if (btrfs_file_extent_type(leaf, fi) ==
2360                             BTRFS_FILE_EXTENT_INLINE) {
2361                                 ptr = btrfs_item_ptr_offset(leaf, slot);
2362                                 memmove_extent_buffer(leaf, ptr,
2363                                         (unsigned long)fi,
2364                                         offsetof(struct btrfs_file_extent_item,
2365                                                  disk_bytenr));
2366                         }
2367                 }
2368
2369                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2370                               data_end + size_diff, btrfs_leaf_data(leaf) +
2371                               data_end, old_data_start - data_end);
2372
2373                 offset = btrfs_disk_key_offset(&disk_key);
2374                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
2375                 btrfs_set_item_key(leaf, &disk_key, slot);
2376                 if (slot == 0)
2377                         btrfs_fixup_low_keys(root, path, &disk_key, 1);
2378         }
2379
2380         item = btrfs_item_nr(slot);
2381         btrfs_set_item_size(leaf, item, new_size);
2382         btrfs_mark_buffer_dirty(leaf);
2383
2384         ret = 0;
2385         if (btrfs_leaf_free_space(root, leaf) < 0) {
2386                 btrfs_print_leaf(root, leaf);
2387                 BUG();
2388         }
2389         return ret;
2390 }
2391
2392 int btrfs_extend_item(struct btrfs_trans_handle *trans,
2393                       struct btrfs_root *root, struct btrfs_path *path,
2394                       u32 data_size)
2395 {
2396         int ret = 0;
2397         int slot;
2398         struct extent_buffer *leaf;
2399         struct btrfs_item *item;
2400         u32 nritems;
2401         unsigned int data_end;
2402         unsigned int old_data;
2403         unsigned int old_size;
2404         int i;
2405
2406         leaf = path->nodes[0];
2407
2408         nritems = btrfs_header_nritems(leaf);
2409         data_end = leaf_data_end(root, leaf);
2410
2411         if (btrfs_leaf_free_space(root, leaf) < data_size) {
2412                 btrfs_print_leaf(root, leaf);
2413                 BUG();
2414         }
2415         slot = path->slots[0];
2416         old_data = btrfs_item_end_nr(leaf, slot);
2417
2418         BUG_ON(slot < 0);
2419         if (slot >= nritems) {
2420                 btrfs_print_leaf(root, leaf);
2421                 printk("slot %d too large, nritems %d\n", slot, nritems);
2422                 BUG_ON(1);
2423         }
2424
2425         /*
2426          * item0..itemN ... dataN.offset..dataN.size .. data0.size
2427          */
2428         /* first correct the data pointers */
2429         for (i = slot; i < nritems; i++) {
2430                 u32 ioff;
2431                 item = btrfs_item_nr(i);
2432                 ioff = btrfs_item_offset(leaf, item);
2433                 btrfs_set_item_offset(leaf, item, ioff - data_size);
2434         }
2435
2436         /* shift the data */
2437         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2438                       data_end - data_size, btrfs_leaf_data(leaf) +
2439                       data_end, old_data - data_end);
2440
2441         data_end = old_data;
2442         old_size = btrfs_item_size_nr(leaf, slot);
2443         item = btrfs_item_nr(slot);
2444         btrfs_set_item_size(leaf, item, old_size + data_size);
2445         btrfs_mark_buffer_dirty(leaf);
2446
2447         ret = 0;
2448         if (btrfs_leaf_free_space(root, leaf) < 0) {
2449                 btrfs_print_leaf(root, leaf);
2450                 BUG();
2451         }
2452         return ret;
2453 }
2454
2455 /*
2456  * Given a key and some data, insert an item into the tree.
2457  * This does all the path init required, making room in the tree if needed.
2458  */
2459 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2460                             struct btrfs_root *root,
2461                             struct btrfs_path *path,
2462                             struct btrfs_key *cpu_key, u32 *data_size,
2463                             int nr)
2464 {
2465         struct extent_buffer *leaf;
2466         struct btrfs_item *item;
2467         int ret = 0;
2468         int slot;
2469         int i;
2470         u32 nritems;
2471         u32 total_size = 0;
2472         u32 total_data = 0;
2473         unsigned int data_end;
2474         struct btrfs_disk_key disk_key;
2475
2476         for (i = 0; i < nr; i++) {
2477                 total_data += data_size[i];
2478         }
2479
2480         /* create a root if there isn't one */
2481         if (!root->node)
2482                 BUG();
2483
2484         total_size = total_data + nr * sizeof(struct btrfs_item);
2485         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
2486         if (ret == 0) {
2487                 return -EEXIST;
2488         }
2489         if (ret < 0)
2490                 goto out;
2491
2492         leaf = path->nodes[0];
2493
2494         nritems = btrfs_header_nritems(leaf);
2495         data_end = leaf_data_end(root, leaf);
2496
2497         if (btrfs_leaf_free_space(root, leaf) < total_size) {
2498                 btrfs_print_leaf(root, leaf);
2499                 printk("not enough freespace need %u have %d\n",
2500                        total_size, btrfs_leaf_free_space(root, leaf));
2501                 BUG();
2502         }
2503
2504         slot = path->slots[0];
2505         BUG_ON(slot < 0);
2506
2507         if (slot != nritems) {
2508                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
2509
2510                 if (old_data < data_end) {
2511                         btrfs_print_leaf(root, leaf);
2512                         printk("slot %d old_data %d data_end %d\n",
2513                                slot, old_data, data_end);
2514                         BUG_ON(1);
2515                 }
2516                 /*
2517                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
2518                  */
2519                 /* first correct the data pointers */
2520                 for (i = slot; i < nritems; i++) {
2521                         u32 ioff;
2522
2523                         item = btrfs_item_nr(i);
2524                         ioff = btrfs_item_offset(leaf, item);
2525                         btrfs_set_item_offset(leaf, item, ioff - total_data);
2526                 }
2527
2528                 /* shift the items */
2529                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
2530                               btrfs_item_nr_offset(slot),
2531                               (nritems - slot) * sizeof(struct btrfs_item));
2532
2533                 /* shift the data */
2534                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2535                               data_end - total_data, btrfs_leaf_data(leaf) +
2536                               data_end, old_data - data_end);
2537                 data_end = old_data;
2538         }
2539
2540         /* setup the item for the new data */
2541         for (i = 0; i < nr; i++) {
2542                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
2543                 btrfs_set_item_key(leaf, &disk_key, slot + i);
2544                 item = btrfs_item_nr(slot + i);
2545                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
2546                 data_end -= data_size[i];
2547                 btrfs_set_item_size(leaf, item, data_size[i]);
2548         }
2549         btrfs_set_header_nritems(leaf, nritems + nr);
2550         btrfs_mark_buffer_dirty(leaf);
2551
2552         ret = 0;
2553         if (slot == 0) {
2554                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
2555                 btrfs_fixup_low_keys(root, path, &disk_key, 1);
2556         }
2557
2558         if (btrfs_leaf_free_space(root, leaf) < 0) {
2559                 btrfs_print_leaf(root, leaf);
2560                 BUG();
2561         }
2562
2563 out:
2564         return ret;
2565 }
2566
2567 /*
2568  * Given a key and some data, insert an item into the tree.
2569  * This does all the path init required, making room in the tree if needed.
2570  */
2571 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2572                       *root, struct btrfs_key *cpu_key, void *data, u32
2573                       data_size)
2574 {
2575         int ret = 0;
2576         struct btrfs_path *path;
2577         struct extent_buffer *leaf;
2578         unsigned long ptr;
2579
2580         path = btrfs_alloc_path();
2581         BUG_ON(!path);
2582         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
2583         if (!ret) {
2584                 leaf = path->nodes[0];
2585                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2586                 write_extent_buffer(leaf, data, ptr, data_size);
2587                 btrfs_mark_buffer_dirty(leaf);
2588         }
2589         btrfs_free_path(path);
2590         return ret;
2591 }
2592
2593 /*
2594  * delete the pointer from a given node.
2595  *
2596  * If the delete empties a node, the node is removed from the tree,
2597  * continuing all the way the root if required.  The root is converted into
2598  * a leaf if all the nodes are emptied.
2599  */
2600 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2601                    struct btrfs_path *path, int level, int slot)
2602 {
2603         struct extent_buffer *parent = path->nodes[level];
2604         u32 nritems;
2605         int ret = 0;
2606
2607         nritems = btrfs_header_nritems(parent);
2608         if (slot != nritems -1) {
2609                 memmove_extent_buffer(parent,
2610                               btrfs_node_key_ptr_offset(slot),
2611                               btrfs_node_key_ptr_offset(slot + 1),
2612                               sizeof(struct btrfs_key_ptr) *
2613                               (nritems - slot - 1));
2614         }
2615         nritems--;
2616         btrfs_set_header_nritems(parent, nritems);
2617         if (nritems == 0 && parent == root->node) {
2618                 BUG_ON(btrfs_header_level(root->node) != 1);
2619                 /* just turn the root into a leaf and break */
2620                 btrfs_set_header_level(root->node, 0);
2621         } else if (slot == 0) {
2622                 struct btrfs_disk_key disk_key;
2623
2624                 btrfs_node_key(parent, &disk_key, 0);
2625                 btrfs_fixup_low_keys(root, path, &disk_key, level + 1);
2626         }
2627         btrfs_mark_buffer_dirty(parent);
2628         return ret;
2629 }
2630
2631 /*
2632  * a helper function to delete the leaf pointed to by path->slots[1] and
2633  * path->nodes[1].
2634  *
2635  * This deletes the pointer in path->nodes[1] and frees the leaf
2636  * block extent.  zero is returned if it all worked out, < 0 otherwise.
2637  *
2638  * The path must have already been setup for deleting the leaf, including
2639  * all the proper balancing.  path->nodes[1] must be locked.
2640  */
2641 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
2642                                    struct btrfs_root *root,
2643                                    struct btrfs_path *path,
2644                                    struct extent_buffer *leaf)
2645 {
2646         int ret;
2647
2648         WARN_ON(btrfs_header_generation(leaf) != trans->transid);
2649         ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
2650         if (ret)
2651                 return ret;
2652
2653         ret = btrfs_free_extent(trans, root, leaf->start, leaf->len,
2654                                 0, root->root_key.objectid, 0, 0);
2655         return ret;
2656 }
2657
2658 /*
2659  * delete the item at the leaf level in path.  If that empties
2660  * the leaf, remove it from the tree
2661  */
2662 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2663                     struct btrfs_path *path, int slot, int nr)
2664 {
2665         struct extent_buffer *leaf;
2666         struct btrfs_item *item;
2667         int last_off;
2668         int dsize = 0;
2669         int ret = 0;
2670         int wret;
2671         int i;
2672         u32 nritems;
2673
2674         leaf = path->nodes[0];
2675         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
2676
2677         for (i = 0; i < nr; i++)
2678                 dsize += btrfs_item_size_nr(leaf, slot + i);
2679
2680         nritems = btrfs_header_nritems(leaf);
2681
2682         if (slot + nr != nritems) {
2683                 int data_end = leaf_data_end(root, leaf);
2684
2685                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
2686                               data_end + dsize,
2687                               btrfs_leaf_data(leaf) + data_end,
2688                               last_off - data_end);
2689
2690                 for (i = slot + nr; i < nritems; i++) {
2691                         u32 ioff;
2692
2693                         item = btrfs_item_nr(i);
2694                         ioff = btrfs_item_offset(leaf, item);
2695                         btrfs_set_item_offset(leaf, item, ioff + dsize);
2696                 }
2697
2698                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
2699                               btrfs_item_nr_offset(slot + nr),
2700                               sizeof(struct btrfs_item) *
2701                               (nritems - slot - nr));
2702         }
2703         btrfs_set_header_nritems(leaf, nritems - nr);
2704         nritems -= nr;
2705
2706         /* delete the leaf if we've emptied it */
2707         if (nritems == 0) {
2708                 if (leaf == root->node) {
2709                         btrfs_set_header_level(leaf, 0);
2710                 } else {
2711                         clean_tree_block(trans, root, leaf);
2712                         wait_on_tree_block_writeback(root, leaf);
2713
2714                         wret = btrfs_del_leaf(trans, root, path, leaf);
2715                         BUG_ON(ret);
2716                         if (wret)
2717                                 ret = wret;
2718                 }
2719         } else {
2720                 int used = leaf_space_used(leaf, 0, nritems);
2721                 if (slot == 0) {
2722                         struct btrfs_disk_key disk_key;
2723
2724                         btrfs_item_key(leaf, &disk_key, 0);
2725                         btrfs_fixup_low_keys(root, path, &disk_key, 1);
2726                 }
2727
2728                 /* delete the leaf if it is mostly empty */
2729                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
2730                         /* push_leaf_left fixes the path.
2731                          * make sure the path still points to our leaf
2732                          * for possible call to del_ptr below
2733                          */
2734                         slot = path->slots[1];
2735                         extent_buffer_get(leaf);
2736
2737                         wret = push_leaf_left(trans, root, path, 1, 1);
2738                         if (wret < 0 && wret != -ENOSPC)
2739                                 ret = wret;
2740
2741                         if (path->nodes[0] == leaf &&
2742                             btrfs_header_nritems(leaf)) {
2743                                 wret = push_leaf_right(trans, root, path, 1, 1);
2744                                 if (wret < 0 && wret != -ENOSPC)
2745                                         ret = wret;
2746                         }
2747
2748                         if (btrfs_header_nritems(leaf) == 0) {
2749                                 clean_tree_block(trans, root, leaf);
2750                                 wait_on_tree_block_writeback(root, leaf);
2751
2752                                 path->slots[1] = slot;
2753                                 ret = btrfs_del_leaf(trans, root, path, leaf);
2754                                 BUG_ON(ret);
2755                                 free_extent_buffer(leaf);
2756
2757                         } else {
2758                                 btrfs_mark_buffer_dirty(leaf);
2759                                 free_extent_buffer(leaf);
2760                         }
2761                 } else {
2762                         btrfs_mark_buffer_dirty(leaf);
2763                 }
2764         }
2765         return ret;
2766 }
2767
2768 /*
2769  * walk up the tree as far as required to find the previous leaf.
2770  * returns 0 if it found something or 1 if there are no lesser leaves.
2771  * returns < 0 on io errors.
2772  */
2773 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2774 {
2775         int slot;
2776         int level = 1;
2777         struct extent_buffer *c;
2778         struct extent_buffer *next = NULL;
2779
2780         while(level < BTRFS_MAX_LEVEL) {
2781                 if (!path->nodes[level])
2782                         return 1;
2783
2784                 slot = path->slots[level];
2785                 c = path->nodes[level];
2786                 if (slot == 0) {
2787                         level++;
2788                         if (level == BTRFS_MAX_LEVEL)
2789                                 return 1;
2790                         continue;
2791                 }
2792                 slot--;
2793
2794                 next = read_node_slot(root, c, slot);
2795                 if (!extent_buffer_uptodate(next)) {
2796                         if (IS_ERR(next))
2797                                 return PTR_ERR(next);
2798                         return -EIO;
2799                 }
2800                 break;
2801         }
2802         path->slots[level] = slot;
2803         while(1) {
2804                 level--;
2805                 c = path->nodes[level];
2806                 free_extent_buffer(c);
2807                 slot = btrfs_header_nritems(next);
2808                 if (slot != 0)
2809                         slot--;
2810                 path->nodes[level] = next;
2811                 path->slots[level] = slot;
2812                 if (!level)
2813                         break;
2814                 next = read_node_slot(root, next, slot);
2815                 if (!extent_buffer_uptodate(next)) {
2816                         if (IS_ERR(next))
2817                                 return PTR_ERR(next);
2818                         return -EIO;
2819                 }
2820         }
2821         return 0;
2822 }
2823
2824 /*
2825  * walk up the tree as far as required to find the next leaf.
2826  * returns 0 if it found something or 1 if there are no greater leaves.
2827  * returns < 0 on io errors.
2828  */
2829 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2830 {
2831         int slot;
2832         int level = 1;
2833         struct extent_buffer *c;
2834         struct extent_buffer *next = NULL;
2835
2836         while(level < BTRFS_MAX_LEVEL) {
2837                 if (!path->nodes[level])
2838                         return 1;
2839
2840                 slot = path->slots[level] + 1;
2841                 c = path->nodes[level];
2842                 if (slot >= btrfs_header_nritems(c)) {
2843                         level++;
2844                         if (level == BTRFS_MAX_LEVEL)
2845                                 return 1;
2846                         continue;
2847                 }
2848
2849                 if (path->reada)
2850                         reada_for_search(root, path, level, slot, 0);
2851
2852                 next = read_node_slot(root, c, slot);
2853                 if (!extent_buffer_uptodate(next))
2854                         return -EIO;
2855                 break;
2856         }
2857         path->slots[level] = slot;
2858         while(1) {
2859                 level--;
2860                 c = path->nodes[level];
2861                 free_extent_buffer(c);
2862                 path->nodes[level] = next;
2863                 path->slots[level] = 0;
2864                 if (!level)
2865                         break;
2866                 if (path->reada)
2867                         reada_for_search(root, path, level, 0, 0);
2868                 next = read_node_slot(root, next, 0);
2869                 if (!extent_buffer_uptodate(next))
2870                         return -EIO;
2871         }
2872         return 0;
2873 }
2874
2875 int btrfs_previous_item(struct btrfs_root *root,
2876                         struct btrfs_path *path, u64 min_objectid,
2877                         int type)
2878 {
2879         struct btrfs_key found_key;
2880         struct extent_buffer *leaf;
2881         int ret;
2882
2883         while(1) {
2884                 if (path->slots[0] == 0) {
2885                         ret = btrfs_prev_leaf(root, path);
2886                         if (ret != 0)
2887                                 return ret;
2888                 } else {
2889                         path->slots[0]--;
2890                 }
2891                 leaf = path->nodes[0];
2892                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2893                 if (found_key.type == type)
2894                         return 0;
2895         }
2896         return 1;
2897 }
2898
2899 /*
2900  * search in extent tree to find a previous Metadata/Data extent item with
2901  * min objecitd.
2902  *
2903  * returns 0 if something is found, 1 if nothing was found and < 0 on error
2904  */
2905 int btrfs_previous_extent_item(struct btrfs_root *root,
2906                         struct btrfs_path *path, u64 min_objectid)
2907 {
2908         struct btrfs_key found_key;
2909         struct extent_buffer *leaf;
2910         u32 nritems;
2911         int ret;
2912
2913         while (1) {
2914                 if (path->slots[0] == 0) {
2915                         ret = btrfs_prev_leaf(root, path);
2916                         if (ret != 0)
2917                                 return ret;
2918                 } else {
2919                         path->slots[0]--;
2920                 }
2921                 leaf = path->nodes[0];
2922                 nritems = btrfs_header_nritems(leaf);
2923                 if (nritems == 0)
2924                         return 1;
2925                 if (path->slots[0] == nritems)
2926                         path->slots[0]--;
2927
2928                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2929                 if (found_key.objectid < min_objectid)
2930                         break;
2931                 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
2932                     found_key.type == BTRFS_METADATA_ITEM_KEY)
2933                         return 0;
2934                 if (found_key.objectid == min_objectid &&
2935                     found_key.type < BTRFS_EXTENT_ITEM_KEY)
2936                         break;
2937         }
2938         return 1;
2939 }