early extent mapping support
[platform/upstream/btrfs-progs.git] / ctree.c
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "kerncompat.h"
4 #include "radix-tree.h"
5 #include "ctree.h"
6 #include "disk-io.h"
7
8 static int refill_alloc_extent(struct ctree_root *root);
9
10 static inline void init_path(struct ctree_path *p)
11 {
12         memset(p, 0, sizeof(*p));
13 }
14
15 static void release_path(struct ctree_root *root, struct ctree_path *p)
16 {
17         int i;
18         for (i = 0; i < MAX_LEVEL; i++) {
19                 if (!p->nodes[i])
20                         break;
21                 tree_block_release(root, p->nodes[i]);
22         }
23 }
24
25 /*
26  * The leaf data grows from end-to-front in the node.
27  * this returns the address of the start of the last item,
28  * which is the stop of the leaf data stack
29  */
30 static inline unsigned int leaf_data_end(struct leaf *leaf)
31 {
32         unsigned int nr = leaf->header.nritems;
33         if (nr == 0)
34                 return sizeof(leaf->data);
35         return leaf->items[nr-1].offset;
36 }
37
38 /*
39  * The space between the end of the leaf items and
40  * the start of the leaf data.  IOW, how much room
41  * the leaf has left for both items and data
42  */
43 static inline int leaf_free_space(struct leaf *leaf)
44 {
45         int data_end = leaf_data_end(leaf);
46         int nritems = leaf->header.nritems;
47         char *items_end = (char *)(leaf->items + nritems + 1);
48         return (char *)(leaf->data + data_end) - (char *)items_end;
49 }
50
51 /*
52  * compare two keys in a memcmp fashion
53  */
54 int comp_keys(struct key *k1, struct key *k2)
55 {
56         if (k1->objectid > k2->objectid)
57                 return 1;
58         if (k1->objectid < k2->objectid)
59                 return -1;
60         if (k1->flags > k2->flags)
61                 return 1;
62         if (k1->flags < k2->flags)
63                 return -1;
64         if (k1->offset > k2->offset)
65                 return 1;
66         if (k1->offset < k2->offset)
67                 return -1;
68         return 0;
69 }
70
71 /*
72  * search for key in the array p.  items p are item_size apart
73  * and there are 'max' items in p
74  * the slot in the array is returned via slot, and it points to
75  * the place where you would insert key if it is not found in
76  * the array.
77  *
78  * slot may point to max if the key is bigger than all of the keys
79  */
80 int generic_bin_search(char *p, int item_size, struct key *key,
81                        int max, int *slot)
82 {
83         int low = 0;
84         int high = max;
85         int mid;
86         int ret;
87         struct key *tmp;
88
89         while(low < high) {
90                 mid = (low + high) / 2;
91                 tmp = (struct key *)(p + mid * item_size);
92                 ret = comp_keys(tmp, key);
93
94                 if (ret < 0)
95                         low = mid + 1;
96                 else if (ret > 0)
97                         high = mid;
98                 else {
99                         *slot = mid;
100                         return 0;
101                 }
102         }
103         *slot = low;
104         return 1;
105 }
106
107 int bin_search(struct node *c, struct key *key, int *slot)
108 {
109         if (is_leaf(c->header.flags)) {
110                 struct leaf *l = (struct leaf *)c;
111                 return generic_bin_search((void *)l->items, sizeof(struct item),
112                                           key, c->header.nritems, slot);
113         } else {
114                 return generic_bin_search((void *)c->keys, sizeof(struct key),
115                                           key, c->header.nritems, slot);
116         }
117         return -1;
118 }
119
120 /*
121  * look for key in the tree.  path is filled in with nodes along the way
122  * if key is found, we return zero and you can find the item in the leaf
123  * level of the path (level 0)
124  *
125  * If the key isn't found, the path points to the slot where it should
126  * be inserted.
127  */
128 int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
129 {
130         struct tree_buffer *b = root->node;
131         struct node *c;
132
133         int slot;
134         int ret;
135         int level;
136         b->count++;
137         while (b) {
138                 c = &b->node;
139                 level = node_level(c->header.flags);
140                 p->nodes[level] = b;
141                 ret = bin_search(c, key, &slot);
142                 if (!is_leaf(c->header.flags)) {
143                         if (ret && slot > 0)
144                                 slot -= 1;
145                         p->slots[level] = slot;
146                         b = read_tree_block(root, c->blockptrs[slot]);
147                         continue;
148                 } else {
149                         p->slots[level] = slot;
150                         return ret;
151                 }
152         }
153         return -1;
154 }
155
156 /*
157  * adjust the pointers going up the tree, starting at level
158  * making sure the right key of each node is points to 'key'.
159  * This is used after shifting pointers to the left, so it stops
160  * fixing up pointers when a given leaf/node is not in slot 0 of the
161  * higher levels
162  */
163 static void fixup_low_keys(struct ctree_root *root,
164                            struct ctree_path *path, struct key *key,
165                            int level)
166 {
167         int i;
168         for (i = level; i < MAX_LEVEL; i++) {
169                 struct node *t;
170                 int tslot = path->slots[i];
171                 if (!path->nodes[i])
172                         break;
173                 t = &path->nodes[i]->node;
174                 memcpy(t->keys + tslot, key, sizeof(*key));
175                 write_tree_block(root, path->nodes[i]);
176                 if (tslot != 0)
177                         break;
178         }
179 }
180
181 /*
182  * try to push data from one node into the next node left in the
183  * tree.  The src node is found at specified level in the path.
184  * If some bytes were pushed, return 0, otherwise return 1.
185  *
186  * Lower nodes/leaves in the path are not touched, higher nodes may
187  * be modified to reflect the push.
188  *
189  * The path is altered to reflect the push.
190  */
191 int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
192 {
193         int slot;
194         struct node *left;
195         struct node *right;
196         int push_items = 0;
197         int left_nritems;
198         int right_nritems;
199         struct tree_buffer *t;
200         struct tree_buffer *right_buf;
201
202         if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
203                 return 1;
204         slot = path->slots[level + 1];
205         if (slot == 0)
206                 return 1;
207
208         t = read_tree_block(root,
209                             path->nodes[level + 1]->node.blockptrs[slot - 1]);
210         left = &t->node;
211         right_buf = path->nodes[level];
212         right = &right_buf->node;
213         left_nritems = left->header.nritems;
214         right_nritems = right->header.nritems;
215         push_items = NODEPTRS_PER_BLOCK - (left_nritems + 1);
216         if (push_items <= 0) {
217                 tree_block_release(root, t);
218                 return 1;
219         }
220
221         if (right_nritems < push_items)
222                 push_items = right_nritems;
223         memcpy(left->keys + left_nritems, right->keys,
224                 push_items * sizeof(struct key));
225         memcpy(left->blockptrs + left_nritems, right->blockptrs,
226                 push_items * sizeof(u64));
227         memmove(right->keys, right->keys + push_items,
228                 (right_nritems - push_items) * sizeof(struct key));
229         memmove(right->blockptrs, right->blockptrs + push_items,
230                 (right_nritems - push_items) * sizeof(u64));
231         right->header.nritems -= push_items;
232         left->header.nritems += push_items;
233
234         /* adjust the pointers going up the tree */
235         fixup_low_keys(root, path, right->keys, level + 1);
236
237         write_tree_block(root, t);
238         write_tree_block(root, right_buf);
239
240         /* then fixup the leaf pointer in the path */
241         if (path->slots[level] < push_items) {
242                 path->slots[level] += left_nritems;
243                 tree_block_release(root, path->nodes[level]);
244                 path->nodes[level] = t;
245                 path->slots[level + 1] -= 1;
246         } else {
247                 path->slots[level] -= push_items;
248                 tree_block_release(root, t);
249         }
250         return 0;
251 }
252
253 /*
254  * try to push data from one node into the next node right in the
255  * tree.  The src node is found at specified level in the path.
256  * If some bytes were pushed, return 0, otherwise return 1.
257  *
258  * Lower nodes/leaves in the path are not touched, higher nodes may
259  * be modified to reflect the push.
260  *
261  * The path is altered to reflect the push.
262  */
263 int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
264 {
265         int slot;
266         struct tree_buffer *t;
267         struct tree_buffer *src_buffer;
268         struct node *dst;
269         struct node *src;
270         int push_items = 0;
271         int dst_nritems;
272         int src_nritems;
273
274         /* can't push from the root */
275         if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
276                 return 1;
277
278         /* only try to push inside the node higher up */
279         slot = path->slots[level + 1];
280         if (slot == NODEPTRS_PER_BLOCK - 1)
281                 return 1;
282
283         if (slot >= path->nodes[level + 1]->node.header.nritems -1)
284                 return 1;
285
286         t = read_tree_block(root,
287                             path->nodes[level + 1]->node.blockptrs[slot + 1]);
288         dst = &t->node;
289         src_buffer = path->nodes[level];
290         src = &src_buffer->node;
291         dst_nritems = dst->header.nritems;
292         src_nritems = src->header.nritems;
293         push_items = NODEPTRS_PER_BLOCK - (dst_nritems + 1);
294         if (push_items <= 0) {
295                 tree_block_release(root, t);
296                 return 1;
297         }
298
299         if (src_nritems < push_items)
300                 push_items = src_nritems;
301         memmove(dst->keys + push_items, dst->keys,
302                 dst_nritems * sizeof(struct key));
303         memcpy(dst->keys, src->keys + src_nritems - push_items,
304                 push_items * sizeof(struct key));
305
306         memmove(dst->blockptrs + push_items, dst->blockptrs,
307                 dst_nritems * sizeof(u64));
308         memcpy(dst->blockptrs, src->blockptrs + src_nritems - push_items,
309                 push_items * sizeof(u64));
310
311         src->header.nritems -= push_items;
312         dst->header.nritems += push_items;
313
314         /* adjust the pointers going up the tree */
315         memcpy(path->nodes[level + 1]->node.keys + path->slots[level + 1] + 1,
316                 dst->keys, sizeof(struct key));
317
318         write_tree_block(root, path->nodes[level + 1]);
319         write_tree_block(root, t);
320         write_tree_block(root, src_buffer);
321
322         /* then fixup the pointers in the path */
323         if (path->slots[level] >= src->header.nritems) {
324                 path->slots[level] -= src->header.nritems;
325                 tree_block_release(root, path->nodes[level]);
326                 path->nodes[level] = t;
327                 path->slots[level + 1] += 1;
328         } else {
329                 tree_block_release(root, t);
330         }
331         return 0;
332 }
333
334 /*
335  * worker function to insert a single pointer in a node.
336  * the node should have enough room for the pointer already
337  * slot and level indicate where you want the key to go, and
338  * blocknr is the block the key points to.
339  */
340 int __insert_ptr(struct ctree_root *root,
341                 struct ctree_path *path, struct key *key,
342                 u64 blocknr, int slot, int level)
343 {
344         struct node *c;
345         struct node *lower;
346         struct key *lower_key;
347         int nritems;
348         /* need a new root */
349         if (!path->nodes[level]) {
350                 struct tree_buffer *t;
351                 t = alloc_free_block(root);
352                 c = &t->node;
353                 memset(c, 0, sizeof(c));
354                 c->header.nritems = 2;
355                 c->header.flags = node_level(level);
356                 c->header.blocknr = t->blocknr;
357                 lower = &path->nodes[level-1]->node;
358                 if (is_leaf(lower->header.flags))
359                         lower_key = &((struct leaf *)lower)->items[0].key;
360                 else
361                         lower_key = lower->keys;
362                 memcpy(c->keys, lower_key, sizeof(struct key));
363                 memcpy(c->keys + 1, key, sizeof(struct key));
364                 c->blockptrs[0] = path->nodes[level-1]->blocknr;
365                 c->blockptrs[1] = blocknr;
366                 /* the path has an extra ref to root->node */
367                 tree_block_release(root, root->node);
368                 root->node = t;
369                 t->count++;
370                 write_tree_block(root, t);
371                 path->nodes[level] = t;
372                 path->slots[level] = 0;
373                 if (c->keys[1].objectid == 0)
374                         BUG();
375                 return 0;
376         }
377         lower = &path->nodes[level]->node;
378         nritems = lower->header.nritems;
379         if (slot > nritems)
380                 BUG();
381         if (nritems == NODEPTRS_PER_BLOCK)
382                 BUG();
383         if (slot != nritems) {
384                 memmove(lower->keys + slot + 1, lower->keys + slot,
385                         (nritems - slot) * sizeof(struct key));
386                 memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
387                         (nritems - slot) * sizeof(u64));
388         }
389         memcpy(lower->keys + slot, key, sizeof(struct key));
390         lower->blockptrs[slot] = blocknr;
391         lower->header.nritems++;
392         if (lower->keys[1].objectid == 0)
393                         BUG();
394         write_tree_block(root, path->nodes[level]);
395         return 0;
396 }
397
398
399 /*
400  * insert a key,blocknr pair into the tree at a given level
401  * If the node at that level in the path doesn't have room,
402  * it is split or shifted as appropriate.
403  */
404 int insert_ptr(struct ctree_root *root,
405                 struct ctree_path *path, struct key *key,
406                 u64 blocknr, int level)
407 {
408         struct tree_buffer *t = path->nodes[level];
409         struct node *c = &path->nodes[level]->node;
410         struct node *b;
411         struct tree_buffer *b_buffer;
412         struct tree_buffer *bal[MAX_LEVEL];
413         int bal_level = level;
414         int mid;
415         int bal_start = -1;
416
417         /*
418          * check to see if we need to make room in the node for this
419          * pointer.  If we do, keep walking the tree, making sure there
420          * is enough room in each level for the required insertions.
421          *
422          * The bal array is filled in with any nodes to be inserted
423          * due to splitting.  Once we've done all the splitting required
424          * do the inserts based on the data in the bal array.
425          */
426         memset(bal, 0, sizeof(bal));
427         while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) {
428                 c = &t->node;
429                 if (push_node_left(root, path,
430                    node_level(c->header.flags)) == 0)
431                         break;
432                 if (push_node_right(root, path,
433                    node_level(c->header.flags)) == 0)
434                         break;
435                 bal_start = bal_level;
436                 if (bal_level == MAX_LEVEL - 1)
437                         BUG();
438                 b_buffer = alloc_free_block(root);
439                 b = &b_buffer->node;
440                 b->header.flags = c->header.flags;
441                 b->header.blocknr = b_buffer->blocknr;
442                 mid = (c->header.nritems + 1) / 2;
443                 memcpy(b->keys, c->keys + mid,
444                         (c->header.nritems - mid) * sizeof(struct key));
445                 memcpy(b->blockptrs, c->blockptrs + mid,
446                         (c->header.nritems - mid) * sizeof(u64));
447                 b->header.nritems = c->header.nritems - mid;
448                 c->header.nritems = mid;
449
450                 write_tree_block(root, t);
451                 write_tree_block(root, b_buffer);
452
453                 bal[bal_level] = b_buffer;
454                 if (bal_level == MAX_LEVEL - 1)
455                         break;
456                 bal_level += 1;
457                 t = path->nodes[bal_level];
458         }
459         /*
460          * bal_start tells us the first level in the tree that needed to
461          * be split.  Go through the bal array inserting the new nodes
462          * as needed.  The path is fixed as we go.
463          */
464         while(bal_start > 0) {
465                 b_buffer = bal[bal_start];
466                 c = &path->nodes[bal_start]->node;
467                 __insert_ptr(root, path, b_buffer->node.keys, b_buffer->blocknr,
468                                 path->slots[bal_start + 1] + 1, bal_start + 1);
469                 if (path->slots[bal_start] >= c->header.nritems) {
470                         path->slots[bal_start] -= c->header.nritems;
471                         tree_block_release(root, path->nodes[bal_start]);
472                         path->nodes[bal_start] = b_buffer;
473                         path->slots[bal_start + 1] += 1;
474                 } else {
475                         tree_block_release(root, b_buffer);
476                 }
477                 bal_start--;
478                 if (!bal[bal_start])
479                         break;
480         }
481         /* Now that the tree has room, insert the requested pointer */
482         return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1,
483                             level);
484 }
485
486 /*
487  * how many bytes are required to store the items in a leaf.  start
488  * and nr indicate which items in the leaf to check.  This totals up the
489  * space used both by the item structs and the item data
490  */
491 int leaf_space_used(struct leaf *l, int start, int nr)
492 {
493         int data_len;
494         int end = start + nr - 1;
495
496         if (!nr)
497                 return 0;
498         data_len = l->items[start].offset + l->items[start].size;
499         data_len = data_len - l->items[end].offset;
500         data_len += sizeof(struct item) * nr;
501         return data_len;
502 }
503
504 /*
505  * push some data in the path leaf to the left, trying to free up at
506  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
507  */
508 int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
509                    int data_size)
510 {
511         struct tree_buffer *right_buf = path->nodes[0];
512         struct leaf *right = &right_buf->leaf;
513         struct tree_buffer *t;
514         struct leaf *left;
515         int slot;
516         int i;
517         int free_space;
518         int push_space = 0;
519         int push_items = 0;
520         struct item *item;
521         int old_left_nritems;
522
523         slot = path->slots[1];
524         if (slot == 0) {
525                 return 1;
526         }
527         if (!path->nodes[1]) {
528                 return 1;
529         }
530         t = read_tree_block(root, path->nodes[1]->node.blockptrs[slot - 1]);
531         left = &t->leaf;
532         free_space = leaf_free_space(left);
533         if (free_space < data_size + sizeof(struct item)) {
534                 tree_block_release(root, t);
535                 return 1;
536         }
537         for (i = 0; i < right->header.nritems; i++) {
538                 item = right->items + i;
539                 if (path->slots[0] == i)
540                         push_space += data_size + sizeof(*item);
541                 if (item->size + sizeof(*item) + push_space > free_space)
542                         break;
543                 push_items++;
544                 push_space += item->size + sizeof(*item);
545         }
546         if (push_items == 0) {
547                 tree_block_release(root, t);
548                 return 1;
549         }
550         /* push data from right to left */
551         memcpy(left->items + left->header.nritems,
552                 right->items, push_items * sizeof(struct item));
553         push_space = LEAF_DATA_SIZE - right->items[push_items -1].offset;
554         memcpy(left->data + leaf_data_end(left) - push_space,
555                 right->data + right->items[push_items - 1].offset,
556                 push_space);
557         old_left_nritems = left->header.nritems;
558         BUG_ON(old_left_nritems < 0);
559
560         for(i = old_left_nritems; i < old_left_nritems + push_items; i++) {
561                 left->items[i].offset -= LEAF_DATA_SIZE -
562                         left->items[old_left_nritems -1].offset;
563         }
564         left->header.nritems += push_items;
565
566         /* fixup right node */
567         push_space = right->items[push_items-1].offset - leaf_data_end(right);
568         memmove(right->data + LEAF_DATA_SIZE - push_space, right->data +
569                 leaf_data_end(right), push_space);
570         memmove(right->items, right->items + push_items,
571                 (right->header.nritems - push_items) * sizeof(struct item));
572         right->header.nritems -= push_items;
573         push_space = LEAF_DATA_SIZE;
574
575         for (i = 0; i < right->header.nritems; i++) {
576                 right->items[i].offset = push_space - right->items[i].size;
577                 push_space = right->items[i].offset;
578         }
579
580         write_tree_block(root, t);
581         write_tree_block(root, right_buf);
582
583         fixup_low_keys(root, path, &right->items[0].key, 1);
584
585         /* then fixup the leaf pointer in the path */
586         if (path->slots[0] < push_items) {
587                 path->slots[0] += old_left_nritems;
588                 tree_block_release(root, path->nodes[0]);
589                 path->nodes[0] = t;
590                 path->slots[1] -= 1;
591         } else {
592                 tree_block_release(root, t);
593                 path->slots[0] -= push_items;
594         }
595         BUG_ON(path->slots[0] < 0);
596         return 0;
597 }
598
599 /*
600  * split the path's leaf in two, making sure there is at least data_size
601  * available for the resulting leaf level of the path.
602  */
603 int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
604 {
605         struct tree_buffer *l_buf = path->nodes[0];
606         struct leaf *l = &l_buf->leaf;
607         int nritems;
608         int mid;
609         int slot;
610         struct leaf *right;
611         struct tree_buffer *right_buffer;
612         int space_needed = data_size + sizeof(struct item);
613         int data_copy_size;
614         int rt_data_off;
615         int i;
616         int ret;
617
618         if (push_leaf_left(root, path, data_size) == 0) {
619                 l_buf = path->nodes[0];
620                 l = &l_buf->leaf;
621                 if (leaf_free_space(l) >= sizeof(struct item) + data_size)
622                         return 0;
623         }
624         slot = path->slots[0];
625         nritems = l->header.nritems;
626         mid = (nritems + 1)/ 2;
627
628         right_buffer = alloc_free_block(root);
629         BUG_ON(!right_buffer);
630         BUG_ON(mid == nritems);
631         right = &right_buffer->leaf;
632         memset(right, 0, sizeof(*right));
633         if (mid <= slot) {
634                 if (leaf_space_used(l, mid, nritems - mid) + space_needed >
635                         LEAF_DATA_SIZE)
636                         BUG();
637         } else {
638                 if (leaf_space_used(l, 0, mid + 1) + space_needed >
639                         LEAF_DATA_SIZE)
640                         BUG();
641         }
642         right->header.nritems = nritems - mid;
643         right->header.blocknr = right_buffer->blocknr;
644         right->header.flags = node_level(0);
645         data_copy_size = l->items[mid].offset + l->items[mid].size -
646                          leaf_data_end(l);
647         memcpy(right->items, l->items + mid,
648                (nritems - mid) * sizeof(struct item));
649         memcpy(right->data + LEAF_DATA_SIZE - data_copy_size,
650                l->data + leaf_data_end(l), data_copy_size);
651         rt_data_off = LEAF_DATA_SIZE -
652                      (l->items[mid].offset + l->items[mid].size);
653
654         for (i = 0; i < right->header.nritems; i++)
655                 right->items[i].offset += rt_data_off;
656
657         l->header.nritems = mid;
658         ret = insert_ptr(root, path, &right->items[0].key,
659                           right_buffer->blocknr, 1);
660
661         write_tree_block(root, right_buffer);
662         write_tree_block(root, l_buf);
663
664         BUG_ON(path->slots[0] != slot);
665         if (mid <= slot) {
666                 tree_block_release(root, path->nodes[0]);
667                 path->nodes[0] = right_buffer;
668                 path->slots[0] -= mid;
669                 path->slots[1] += 1;
670         } else
671                 tree_block_release(root, right_buffer);
672         BUG_ON(path->slots[0] < 0);
673         return ret;
674 }
675
676 /*
677  * Given a key and some data, insert an item into the tree.
678  * This does all the path init required, making room in the tree if needed.
679  */
680 int insert_item(struct ctree_root *root, struct key *key,
681                           void *data, int data_size)
682 {
683         int ret;
684         int slot;
685         int slot_orig;
686         struct leaf *leaf;
687         struct tree_buffer *leaf_buf;
688         unsigned int nritems;
689         unsigned int data_end;
690         struct ctree_path path;
691
692         /* create a root if there isn't one */
693         if (!root->node) {
694                 struct tree_buffer *t;
695                 t = alloc_free_block(root);
696                 BUG_ON(!t);
697                 t->node.header.nritems = 0;
698                 t->node.header.flags = node_level(0);
699                 t->node.header.blocknr = t->blocknr;
700                 root->node = t;
701                 write_tree_block(root, t);
702         }
703         init_path(&path);
704         ret = search_slot(root, key, &path);
705         if (ret == 0) {
706                 release_path(root, &path);
707                 return -EEXIST;
708         }
709
710         slot_orig = path.slots[0];
711         leaf_buf = path.nodes[0];
712         leaf = &leaf_buf->leaf;
713
714         /* make room if needed */
715         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size) {
716                 split_leaf(root, &path, data_size);
717                 leaf_buf = path.nodes[0];
718                 leaf = &path.nodes[0]->leaf;
719         }
720         nritems = leaf->header.nritems;
721         data_end = leaf_data_end(leaf);
722
723         if (leaf_free_space(leaf) <  sizeof(struct item) + data_size)
724                 BUG();
725
726         slot = path.slots[0];
727         BUG_ON(slot < 0);
728         if (slot == 0)
729                 fixup_low_keys(root, &path, key, 1);
730         if (slot != nritems) {
731                 int i;
732                 unsigned int old_data = leaf->items[slot].offset +
733                                         leaf->items[slot].size;
734
735                 /*
736                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
737                  */
738                 /* first correct the data pointers */
739                 for (i = slot; i < nritems; i++)
740                         leaf->items[i].offset -= data_size;
741
742                 /* shift the items */
743                 memmove(leaf->items + slot + 1, leaf->items + slot,
744                         (nritems - slot) * sizeof(struct item));
745
746                 /* shift the data */
747                 memmove(leaf->data + data_end - data_size, leaf->data +
748                         data_end, old_data - data_end);
749                 data_end = old_data;
750         }
751         /* copy the new data in */
752         memcpy(&leaf->items[slot].key, key, sizeof(struct key));
753         leaf->items[slot].offset = data_end - data_size;
754         leaf->items[slot].size = data_size;
755         memcpy(leaf->data + data_end - data_size, data, data_size);
756         leaf->header.nritems += 1;
757         write_tree_block(root, leaf_buf);
758         if (leaf_free_space(leaf) < 0)
759                 BUG();
760         release_path(root, &path);
761         refill_alloc_extent(root);
762         return 0;
763 }
764
765 /*
766  * delete the pointer from a given level in the path.  The path is not
767  * fixed up, so after calling this it is not valid at that level.
768  *
769  * If the delete empties a node, the node is removed from the tree,
770  * continuing all the way the root if required.  The root is converted into
771  * a leaf if all the nodes are emptied.
772  */
773 int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
774 {
775         int slot;
776         struct tree_buffer *t;
777         struct node *node;
778         int nritems;
779
780         while(1) {
781                 t = path->nodes[level];
782                 if (!t)
783                         break;
784                 node = &t->node;
785                 slot = path->slots[level];
786                 nritems = node->header.nritems;
787
788                 if (slot != nritems -1) {
789                         memmove(node->keys + slot, node->keys + slot + 1,
790                                 sizeof(struct key) * (nritems - slot - 1));
791                         memmove(node->blockptrs + slot,
792                                 node->blockptrs + slot + 1,
793                                 sizeof(u64) * (nritems - slot - 1));
794                 }
795                 node->header.nritems--;
796                 write_tree_block(root, t);
797                 if (node->header.nritems != 0) {
798                         int tslot;
799                         if (slot == 0)
800                                 fixup_low_keys(root, path, node->keys,
801                                                level + 1);
802                         tslot = path->slots[level+1];
803                         t->count++;
804                         push_node_left(root, path, level);
805                         if (node->header.nritems) {
806                                 push_node_right(root, path, level);
807                         }
808                         if (node->header.nritems) {
809                                 tree_block_release(root, t);
810                                 break;
811                         }
812                         tree_block_release(root, t);
813                         path->slots[level+1] = tslot;
814                 }
815                 if (t == root->node) {
816                         /* just turn the root into a leaf and break */
817                         root->node->node.header.flags = node_level(0);
818                         write_tree_block(root, t);
819                         break;
820                 }
821                 level++;
822                 if (!path->nodes[level])
823                         BUG();
824         }
825         return 0;
826 }
827
828 /*
829  * delete the item at the leaf level in path.  If that empties
830  * the leaf, remove it from the tree
831  */
832 int del_item(struct ctree_root *root, struct ctree_path *path)
833 {
834         int slot;
835         struct leaf *leaf;
836         struct tree_buffer *leaf_buf;
837         int doff;
838         int dsize;
839
840         leaf_buf = path->nodes[0];
841         leaf = &leaf_buf->leaf;
842         slot = path->slots[0];
843         doff = leaf->items[slot].offset;
844         dsize = leaf->items[slot].size;
845
846         if (slot != leaf->header.nritems - 1) {
847                 int i;
848                 int data_end = leaf_data_end(leaf);
849                 memmove(leaf->data + data_end + dsize,
850                         leaf->data + data_end,
851                         doff - data_end);
852                 for (i = slot + 1; i < leaf->header.nritems; i++)
853                         leaf->items[i].offset += dsize;
854                 memmove(leaf->items + slot, leaf->items + slot + 1,
855                         sizeof(struct item) *
856                         (leaf->header.nritems - slot - 1));
857         }
858         leaf->header.nritems -= 1;
859         /* delete the leaf if we've emptied it */
860         if (leaf->header.nritems == 0) {
861                 if (leaf_buf == root->node) {
862                         leaf->header.flags = node_level(0);
863                         write_tree_block(root, leaf_buf);
864                 } else
865                         del_ptr(root, path, 1);
866         } else {
867                 if (slot == 0)
868                         fixup_low_keys(root, path, &leaf->items[0].key, 1);
869                 write_tree_block(root, leaf_buf);
870                 /* delete the leaf if it is mostly empty */
871                 if (leaf_space_used(leaf, 0, leaf->header.nritems) <
872                     LEAF_DATA_SIZE / 4) {
873                         /* push_leaf_left fixes the path.
874                          * make sure the path still points to our leaf
875                          * for possible call to del_ptr below
876                          */
877                         slot = path->slots[1];
878                         leaf_buf->count++;
879                         push_leaf_left(root, path, 1);
880                         if (leaf->header.nritems == 0) {
881                                 path->slots[1] = slot;
882                                 del_ptr(root, path, 1);
883                         }
884                         tree_block_release(root, leaf_buf);
885                 }
886         }
887         return 0;
888 }
889
890 int next_leaf(struct ctree_root *root, struct ctree_path *path)
891 {
892         int slot;
893         int level = 1;
894         u64 blocknr;
895         struct tree_buffer *c;
896         struct tree_buffer *next;
897
898         while(level < MAX_LEVEL) {
899                 if (!path->nodes[level])
900                         return -1;
901                 slot = path->slots[level] + 1;
902                 c = path->nodes[level];
903                 if (slot >= c->node.header.nritems) {
904                         level++;
905                         continue;
906                 }
907                 blocknr = c->node.blockptrs[slot];
908                 next = read_tree_block(root, blocknr);
909                 break;
910         }
911         path->slots[level] = slot;
912         while(1) {
913                 level--;
914                 c = path->nodes[level];
915                 tree_block_release(root, c);
916                 path->nodes[level] = next;
917                 path->slots[level] = 0;
918                 if (!level)
919                         break;
920                 next = read_tree_block(root, next->node.blockptrs[0]);
921         }
922         return 0;
923 }
924
925 int alloc_extent(struct ctree_root *root, u64 num_blocks, u64 search_start,
926                  u64 search_end, u64 owner, struct key *ins)
927 {
928         struct ctree_path path;
929         struct key *key;
930         int ret;
931         u64 hole_size = 0;
932         int slot = 0;
933         u64 last_block;
934         int start_found = 0;
935         struct leaf *l;
936         struct extent_item extent_item;
937
938         init_path(&path);
939         ins->objectid = search_start;
940         ins->offset = 0;
941         ins->flags = 0;
942
943         ret = search_slot(root, ins, &path);
944         while (1) {
945                 l = &path.nodes[0]->leaf;
946                 slot = path.slots[0];
947                 if (!l) {
948                         // FIXME allocate root
949                 }
950                 if (slot >= l->header.nritems) {
951                         ret = next_leaf(root, &path);
952                         if (ret == 0)
953                                 continue;
954                         if (!start_found) {
955                                 ins->objectid = search_start;
956                                 ins->offset = num_blocks;
957                                 hole_size = search_end - search_start;
958                                 goto insert;
959                         }
960                         ins->objectid = last_block;
961                         ins->offset = num_blocks;
962                         hole_size = search_end - last_block;
963                         goto insert;
964                 }
965                 key = &l->items[slot].key;
966                 if (start_found) {
967                         hole_size = key->objectid - last_block;
968                         if (hole_size > num_blocks) {
969                                 ins->objectid = last_block;
970                                 ins->offset = num_blocks;
971                                 goto insert;
972                         }
973                 } else
974                         start_found = 1;
975                 last_block = key->objectid + key->offset;
976                 path.slots[0]++;
977                 printf("last block is not %lu\n", last_block);
978         }
979         // FIXME -ENOSPC
980 insert:
981         extent_item.refs = 1;
982         extent_item.owner = owner;
983         ret = insert_item(root, ins, &extent_item, sizeof(extent_item));
984         return ret;
985 }
986
987 static int refill_alloc_extent(struct ctree_root *root)
988 {
989         struct alloc_extent *ae = root->alloc_extent;
990         struct key key;
991         int ret;
992         int min_blocks = MAX_LEVEL * 2;
993
994         printf("refill alloc root %p, numused %lu total %lu\n", root, ae->num_used, ae->num_blocks);
995         if (ae->num_blocks > ae->num_used && ae->num_blocks - ae->num_used >
996             min_blocks)
997                 return 0;
998         ae = root->reserve_extent;
999         if (ae->num_blocks > ae->num_used) {
1000                 if (root->alloc_extent->num_blocks == 0) {
1001                         /* we should swap reserve/alloc_extent when alloc
1002                          * fills up
1003                          */
1004                         BUG();
1005                 }
1006                 if (ae->num_blocks - ae->num_used < min_blocks)
1007                         BUG();
1008                 return 0;
1009         }
1010         // FIXME, this recurses
1011         ret = alloc_extent(root->extent_root,
1012                            min_blocks * 2, 0, (unsigned long)-1, 0, &key);
1013         ae->blocknr = key.objectid;
1014         ae->num_blocks = key.offset;
1015         ae->num_used = 0;
1016         return ret;
1017 }
1018
1019 void print_leaf(struct leaf *l)
1020 {
1021         int i;
1022         int nr = l->header.nritems;
1023         struct item *item;
1024         printf("leaf %lu total ptrs %d free space %d\n", l->header.blocknr, nr,
1025                leaf_free_space(l));
1026         fflush(stdout);
1027         for (i = 0 ; i < nr ; i++) {
1028                 item = l->items + i;
1029                 printf("\titem %d key (%lu %u %lu) itemoff %d itemsize %d\n",
1030                         i,
1031                         item->key.objectid, item->key.flags, item->key.offset,
1032                         item->offset, item->size);
1033                 fflush(stdout);
1034                 printf("\t\titem data %.*s\n", item->size, l->data+item->offset);
1035                 fflush(stdout);
1036         }
1037 }
1038 void print_tree(struct ctree_root *root, struct tree_buffer *t)
1039 {
1040         int i;
1041         int nr;
1042         struct node *c;
1043
1044         if (!t)
1045                 return;
1046         c = &t->node;
1047         nr = c->header.nritems;
1048         if (c->header.blocknr != t->blocknr)
1049                 BUG();
1050         if (is_leaf(c->header.flags)) {
1051                 print_leaf((struct leaf *)c);
1052                 return;
1053         }
1054         printf("node %lu level %d total ptrs %d free spc %lu\n", t->blocknr,
1055                 node_level(c->header.flags), c->header.nritems,
1056                 NODEPTRS_PER_BLOCK - c->header.nritems);
1057         fflush(stdout);
1058         for (i = 0; i < nr; i++) {
1059                 printf("\tkey %d (%lu %u %lu) block %lu\n",
1060                        i,
1061                        c->keys[i].objectid, c->keys[i].flags, c->keys[i].offset,
1062                        c->blockptrs[i]);
1063                 fflush(stdout);
1064         }
1065         for (i = 0; i < nr; i++) {
1066                 struct tree_buffer *next_buf = read_tree_block(root,
1067                                                             c->blockptrs[i]);
1068                 struct node *next = &next_buf->node;
1069                 if (is_leaf(next->header.flags) &&
1070                     node_level(c->header.flags) != 1)
1071                         BUG();
1072                 if (node_level(next->header.flags) !=
1073                         node_level(c->header.flags) - 1)
1074                         BUG();
1075                 print_tree(root, next_buf);
1076                 tree_block_release(root, next_buf);
1077         }
1078
1079 }
1080
1081 /* for testing only */
1082 int next_key(int i, int max_key) {
1083         // return rand() % max_key;
1084         return i;
1085 }
1086
1087 int main() {
1088         struct ctree_root *root;
1089         struct key ins;
1090         struct key last = { (u64)-1, 0, 0};
1091         char *buf;
1092         int i;
1093         int num;
1094         int ret;
1095         int run_size = 256;
1096         int max_key = 100000000;
1097         int tree_size = 0;
1098         struct ctree_path path;
1099
1100         radix_tree_init();
1101
1102
1103         root = open_ctree("dbfile");
1104
1105         srand(55);
1106         for (i = 0; i < run_size; i++) {
1107                 buf = malloc(64);
1108                 num = next_key(i, max_key);
1109                 // num = i;
1110                 sprintf(buf, "string-%d", num);
1111                 // printf("insert %d\n", num);
1112                 ins.objectid = num;
1113                 ins.offset = 0;
1114                 ins.flags = 0;
1115                 printf("insert %d\n", i);
1116                 ret = insert_item(root, &ins, buf, strlen(buf));
1117                 if (!ret)
1118                         tree_size++;
1119                 printf("done insert %d\n", i);
1120         }
1121         printf("root used: %lu\n", root->alloc_extent->num_used);
1122         printf("root tree\n");
1123         print_tree(root, root->node);
1124         printf("map tree\n");
1125         printf("map used: %lu\n", root->extent_root->alloc_extent->num_used);
1126         print_tree(root->extent_root, root->extent_root->node);
1127         exit(1);
1128
1129         close_ctree(root);
1130         root = open_ctree("dbfile");
1131         printf("starting search\n");
1132         srand(55);
1133         for (i = 0; i < run_size; i++) {
1134                 num = next_key(i, max_key);
1135                 ins.objectid = num;
1136                 init_path(&path);
1137                 ret = search_slot(root, &ins, &path);
1138                 if (ret) {
1139                         print_tree(root, root->node);
1140                         printf("unable to find %d\n", num);
1141                         exit(1);
1142                 }
1143                 release_path(root, &path);
1144         }
1145         close_ctree(root);
1146         root = open_ctree("dbfile");
1147         printf("node %p level %d total ptrs %d free spc %lu\n", root->node,
1148                 node_level(root->node->node.header.flags),
1149                 root->node->node.header.nritems,
1150                 NODEPTRS_PER_BLOCK - root->node->node.header.nritems);
1151         printf("all searches good, deleting some items\n");
1152         i = 0;
1153         srand(55);
1154         for (i = 0 ; i < run_size/4; i++) {
1155                 num = next_key(i, max_key);
1156                 ins.objectid = num;
1157                 init_path(&path);
1158                 ret = search_slot(root, &ins, &path);
1159                 if (ret)
1160                         continue;
1161                 ret = del_item(root, &path);
1162                 if (ret != 0)
1163                         BUG();
1164                 release_path(root, &path);
1165                 tree_size--;
1166         }
1167         srand(128);
1168         for (i = 0; i < run_size; i++) {
1169                 buf = malloc(64);
1170                 num = next_key(i, max_key);
1171                 sprintf(buf, "string-%d", num);
1172                 ins.objectid = num;
1173                 ret = insert_item(root, &ins, buf, strlen(buf));
1174                 if (!ret)
1175                         tree_size++;
1176         }
1177         close_ctree(root);
1178         root = open_ctree("dbfile");
1179         printf("starting search2\n");
1180         srand(128);
1181         for (i = 0; i < run_size; i++) {
1182                 num = next_key(i, max_key);
1183                 ins.objectid = num;
1184                 init_path(&path);
1185                 ret = search_slot(root, &ins, &path);
1186                 if (ret) {
1187                         print_tree(root, root->node);
1188                         printf("unable to find %d\n", num);
1189                         exit(1);
1190                 }
1191                 release_path(root, &path);
1192         }
1193         printf("starting big long delete run\n");
1194         while(root->node && root->node->node.header.nritems > 0) {
1195                 struct leaf *leaf;
1196                 int slot;
1197                 ins.objectid = (u64)-1;
1198                 init_path(&path);
1199                 ret = search_slot(root, &ins, &path);
1200                 if (ret == 0)
1201                         BUG();
1202
1203                 leaf = &path.nodes[0]->leaf;
1204                 slot = path.slots[0];
1205                 if (slot != leaf->header.nritems)
1206                         BUG();
1207                 while(path.slots[0] > 0) {
1208                         path.slots[0] -= 1;
1209                         slot = path.slots[0];
1210                         leaf = &path.nodes[0]->leaf;
1211
1212                         if (comp_keys(&last, &leaf->items[slot].key) <= 0)
1213                                 BUG();
1214                         memcpy(&last, &leaf->items[slot].key, sizeof(last));
1215                         ret = del_item(root, &path);
1216                         if (ret != 0) {
1217                                 printf("del_item returned %d\n", ret);
1218                                 BUG();
1219                         }
1220                         tree_size--;
1221                 }
1222                 release_path(root, &path);
1223         }
1224         close_ctree(root);
1225         printf("tree size is now %d\n", tree_size);
1226         return 0;
1227 }