Merge tag 'nios2-v5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/lftan...
[platform/kernel/linux-starfive.git] / crypto / vmac.c
1 /*
2  * VMAC: Message Authentication Code using Universal Hashing
3  *
4  * Reference: https://tools.ietf.org/html/draft-krovetz-vmac-01
5  *
6  * Copyright (c) 2009, Intel Corporation.
7  * Copyright (c) 2018, Google Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms and conditions of the GNU General Public License,
11  * version 2, as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
20  * Place - Suite 330, Boston, MA 02111-1307 USA.
21  */
22
23 /*
24  * Derived from:
25  *      VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
26  *      This implementation is herby placed in the public domain.
27  *      The authors offers no warranty. Use at your own risk.
28  *      Last modified: 17 APR 08, 1700 PDT
29  */
30
31 #include <asm/unaligned.h>
32 #include <linux/init.h>
33 #include <linux/types.h>
34 #include <linux/crypto.h>
35 #include <linux/module.h>
36 #include <linux/scatterlist.h>
37 #include <asm/byteorder.h>
38 #include <crypto/scatterwalk.h>
39 #include <crypto/internal/hash.h>
40
41 /*
42  * User definable settings.
43  */
44 #define VMAC_TAG_LEN    64
45 #define VMAC_KEY_SIZE   128/* Must be 128, 192 or 256                   */
46 #define VMAC_KEY_LEN    (VMAC_KEY_SIZE/8)
47 #define VMAC_NHBYTES    128/* Must 2^i for any 3 < i < 13 Standard = 128*/
48 #define VMAC_NONCEBYTES 16
49
50 /* per-transform (per-key) context */
51 struct vmac_tfm_ctx {
52         struct crypto_cipher *cipher;
53         u64 nhkey[(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)];
54         u64 polykey[2*VMAC_TAG_LEN/64];
55         u64 l3key[2*VMAC_TAG_LEN/64];
56 };
57
58 /* per-request context */
59 struct vmac_desc_ctx {
60         union {
61                 u8 partial[VMAC_NHBYTES];       /* partial block */
62                 __le64 partial_words[VMAC_NHBYTES / 8];
63         };
64         unsigned int partial_size;      /* size of the partial block */
65         bool first_block_processed;
66         u64 polytmp[2*VMAC_TAG_LEN/64]; /* running total of L2-hash */
67         union {
68                 u8 bytes[VMAC_NONCEBYTES];
69                 __be64 pads[VMAC_NONCEBYTES / 8];
70         } nonce;
71         unsigned int nonce_size; /* nonce bytes filled so far */
72 };
73
74 /*
75  * Constants and masks
76  */
77 #define UINT64_C(x) x##ULL
78 static const u64 p64   = UINT64_C(0xfffffffffffffeff);  /* 2^64 - 257 prime  */
79 static const u64 m62   = UINT64_C(0x3fffffffffffffff);  /* 62-bit mask       */
80 static const u64 m63   = UINT64_C(0x7fffffffffffffff);  /* 63-bit mask       */
81 static const u64 m64   = UINT64_C(0xffffffffffffffff);  /* 64-bit mask       */
82 static const u64 mpoly = UINT64_C(0x1fffffff1fffffff);  /* Poly key mask     */
83
84 #define pe64_to_cpup le64_to_cpup               /* Prefer little endian */
85
86 #ifdef __LITTLE_ENDIAN
87 #define INDEX_HIGH 1
88 #define INDEX_LOW 0
89 #else
90 #define INDEX_HIGH 0
91 #define INDEX_LOW 1
92 #endif
93
94 /*
95  * The following routines are used in this implementation. They are
96  * written via macros to simulate zero-overhead call-by-reference.
97  *
98  * MUL64: 64x64->128-bit multiplication
99  * PMUL64: assumes top bits cleared on inputs
100  * ADD128: 128x128->128-bit addition
101  */
102
103 #define ADD128(rh, rl, ih, il)                                          \
104         do {                                                            \
105                 u64 _il = (il);                                         \
106                 (rl) += (_il);                                          \
107                 if ((rl) < (_il))                                       \
108                         (rh)++;                                         \
109                 (rh) += (ih);                                           \
110         } while (0)
111
112 #define MUL32(i1, i2)   ((u64)(u32)(i1)*(u32)(i2))
113
114 #define PMUL64(rh, rl, i1, i2)  /* Assumes m doesn't overflow */        \
115         do {                                                            \
116                 u64 _i1 = (i1), _i2 = (i2);                             \
117                 u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2);      \
118                 rh = MUL32(_i1>>32, _i2>>32);                           \
119                 rl = MUL32(_i1, _i2);                                   \
120                 ADD128(rh, rl, (m >> 32), (m << 32));                   \
121         } while (0)
122
123 #define MUL64(rh, rl, i1, i2)                                           \
124         do {                                                            \
125                 u64 _i1 = (i1), _i2 = (i2);                             \
126                 u64 m1 = MUL32(_i1, _i2>>32);                           \
127                 u64 m2 = MUL32(_i1>>32, _i2);                           \
128                 rh = MUL32(_i1>>32, _i2>>32);                           \
129                 rl = MUL32(_i1, _i2);                                   \
130                 ADD128(rh, rl, (m1 >> 32), (m1 << 32));                 \
131                 ADD128(rh, rl, (m2 >> 32), (m2 << 32));                 \
132         } while (0)
133
134 /*
135  * For highest performance the L1 NH and L2 polynomial hashes should be
136  * carefully implemented to take advantage of one's target architecture.
137  * Here these two hash functions are defined multiple time; once for
138  * 64-bit architectures, once for 32-bit SSE2 architectures, and once
139  * for the rest (32-bit) architectures.
140  * For each, nh_16 *must* be defined (works on multiples of 16 bytes).
141  * Optionally, nh_vmac_nhbytes can be defined (for multiples of
142  * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
143  * NH computations at once).
144  */
145
146 #ifdef CONFIG_64BIT
147
148 #define nh_16(mp, kp, nw, rh, rl)                                       \
149         do {                                                            \
150                 int i; u64 th, tl;                                      \
151                 rh = rl = 0;                                            \
152                 for (i = 0; i < nw; i += 2) {                           \
153                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
154                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
155                         ADD128(rh, rl, th, tl);                         \
156                 }                                                       \
157         } while (0)
158
159 #define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1)                           \
160         do {                                                            \
161                 int i; u64 th, tl;                                      \
162                 rh1 = rl1 = rh = rl = 0;                                \
163                 for (i = 0; i < nw; i += 2) {                           \
164                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
165                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
166                         ADD128(rh, rl, th, tl);                         \
167                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
168                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
169                         ADD128(rh1, rl1, th, tl);                       \
170                 }                                                       \
171         } while (0)
172
173 #if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
174 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
175         do {                                                            \
176                 int i; u64 th, tl;                                      \
177                 rh = rl = 0;                                            \
178                 for (i = 0; i < nw; i += 8) {                           \
179                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
180                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
181                         ADD128(rh, rl, th, tl);                         \
182                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
183                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
184                         ADD128(rh, rl, th, tl);                         \
185                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
186                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
187                         ADD128(rh, rl, th, tl);                         \
188                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
189                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
190                         ADD128(rh, rl, th, tl);                         \
191                 }                                                       \
192         } while (0)
193
194 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1)                 \
195         do {                                                            \
196                 int i; u64 th, tl;                                      \
197                 rh1 = rl1 = rh = rl = 0;                                \
198                 for (i = 0; i < nw; i += 8) {                           \
199                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i],     \
200                                 pe64_to_cpup((mp)+i+1)+(kp)[i+1]);      \
201                         ADD128(rh, rl, th, tl);                         \
202                         MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2],   \
203                                 pe64_to_cpup((mp)+i+1)+(kp)[i+3]);      \
204                         ADD128(rh1, rl1, th, tl);                       \
205                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
206                                 pe64_to_cpup((mp)+i+3)+(kp)[i+3]);      \
207                         ADD128(rh, rl, th, tl);                         \
208                         MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
209                                 pe64_to_cpup((mp)+i+3)+(kp)[i+5]);      \
210                         ADD128(rh1, rl1, th, tl);                       \
211                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
212                                 pe64_to_cpup((mp)+i+5)+(kp)[i+5]);      \
213                         ADD128(rh, rl, th, tl);                         \
214                         MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
215                                 pe64_to_cpup((mp)+i+5)+(kp)[i+7]);      \
216                         ADD128(rh1, rl1, th, tl);                       \
217                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
218                                 pe64_to_cpup((mp)+i+7)+(kp)[i+7]);      \
219                         ADD128(rh, rl, th, tl);                         \
220                         MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
221                                 pe64_to_cpup((mp)+i+7)+(kp)[i+9]);      \
222                         ADD128(rh1, rl1, th, tl);                       \
223                 }                                                       \
224         } while (0)
225 #endif
226
227 #define poly_step(ah, al, kh, kl, mh, ml)                               \
228         do {                                                            \
229                 u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0;                \
230                 /* compute ab*cd, put bd into result registers */       \
231                 PMUL64(t3h, t3l, al, kh);                               \
232                 PMUL64(t2h, t2l, ah, kl);                               \
233                 PMUL64(t1h, t1l, ah, 2*kh);                             \
234                 PMUL64(ah, al, al, kl);                                 \
235                 /* add 2 * ac to result */                              \
236                 ADD128(ah, al, t1h, t1l);                               \
237                 /* add together ad + bc */                              \
238                 ADD128(t2h, t2l, t3h, t3l);                             \
239                 /* now (ah,al), (t2l,2*t2h) need summing */             \
240                 /* first add the high registers, carrying into t2h */   \
241                 ADD128(t2h, ah, z, t2l);                                \
242                 /* double t2h and add top bit of ah */                  \
243                 t2h = 2 * t2h + (ah >> 63);                             \
244                 ah &= m63;                                              \
245                 /* now add the low registers */                         \
246                 ADD128(ah, al, mh, ml);                                 \
247                 ADD128(ah, al, z, t2h);                                 \
248         } while (0)
249
250 #else /* ! CONFIG_64BIT */
251
252 #ifndef nh_16
253 #define nh_16(mp, kp, nw, rh, rl)                                       \
254         do {                                                            \
255                 u64 t1, t2, m1, m2, t;                                  \
256                 int i;                                                  \
257                 rh = rl = t = 0;                                        \
258                 for (i = 0; i < nw; i += 2)  {                          \
259                         t1 = pe64_to_cpup(mp+i) + kp[i];                \
260                         t2 = pe64_to_cpup(mp+i+1) + kp[i+1];            \
261                         m2 = MUL32(t1 >> 32, t2);                       \
262                         m1 = MUL32(t1, t2 >> 32);                       \
263                         ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32),       \
264                                 MUL32(t1, t2));                         \
265                         rh += (u64)(u32)(m1 >> 32)                      \
266                                 + (u32)(m2 >> 32);                      \
267                         t += (u64)(u32)m1 + (u32)m2;                    \
268                 }                                                       \
269                 ADD128(rh, rl, (t >> 32), (t << 32));                   \
270         } while (0)
271 #endif
272
273 static void poly_step_func(u64 *ahi, u64 *alo,
274                         const u64 *kh, const u64 *kl,
275                         const u64 *mh, const u64 *ml)
276 {
277 #define a0 (*(((u32 *)alo)+INDEX_LOW))
278 #define a1 (*(((u32 *)alo)+INDEX_HIGH))
279 #define a2 (*(((u32 *)ahi)+INDEX_LOW))
280 #define a3 (*(((u32 *)ahi)+INDEX_HIGH))
281 #define k0 (*(((u32 *)kl)+INDEX_LOW))
282 #define k1 (*(((u32 *)kl)+INDEX_HIGH))
283 #define k2 (*(((u32 *)kh)+INDEX_LOW))
284 #define k3 (*(((u32 *)kh)+INDEX_HIGH))
285
286         u64 p, q, t;
287         u32 t2;
288
289         p = MUL32(a3, k3);
290         p += p;
291         p += *(u64 *)mh;
292         p += MUL32(a0, k2);
293         p += MUL32(a1, k1);
294         p += MUL32(a2, k0);
295         t = (u32)(p);
296         p >>= 32;
297         p += MUL32(a0, k3);
298         p += MUL32(a1, k2);
299         p += MUL32(a2, k1);
300         p += MUL32(a3, k0);
301         t |= ((u64)((u32)p & 0x7fffffff)) << 32;
302         p >>= 31;
303         p += (u64)(((u32 *)ml)[INDEX_LOW]);
304         p += MUL32(a0, k0);
305         q =  MUL32(a1, k3);
306         q += MUL32(a2, k2);
307         q += MUL32(a3, k1);
308         q += q;
309         p += q;
310         t2 = (u32)(p);
311         p >>= 32;
312         p += (u64)(((u32 *)ml)[INDEX_HIGH]);
313         p += MUL32(a0, k1);
314         p += MUL32(a1, k0);
315         q =  MUL32(a2, k3);
316         q += MUL32(a3, k2);
317         q += q;
318         p += q;
319         *(u64 *)(alo) = (p << 32) | t2;
320         p >>= 32;
321         *(u64 *)(ahi) = p + t;
322
323 #undef a0
324 #undef a1
325 #undef a2
326 #undef a3
327 #undef k0
328 #undef k1
329 #undef k2
330 #undef k3
331 }
332
333 #define poly_step(ah, al, kh, kl, mh, ml)                               \
334         poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
335
336 #endif  /* end of specialized NH and poly definitions */
337
338 /* At least nh_16 is defined. Defined others as needed here */
339 #ifndef nh_16_2
340 #define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2)                           \
341         do {                                                            \
342                 nh_16(mp, kp, nw, rh, rl);                              \
343                 nh_16(mp, ((kp)+2), nw, rh2, rl2);                      \
344         } while (0)
345 #endif
346 #ifndef nh_vmac_nhbytes
347 #define nh_vmac_nhbytes(mp, kp, nw, rh, rl)                             \
348         nh_16(mp, kp, nw, rh, rl)
349 #endif
350 #ifndef nh_vmac_nhbytes_2
351 #define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2)                 \
352         do {                                                            \
353                 nh_vmac_nhbytes(mp, kp, nw, rh, rl);                    \
354                 nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2);            \
355         } while (0)
356 #endif
357
358 static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
359 {
360         u64 rh, rl, t, z = 0;
361
362         /* fully reduce (p1,p2)+(len,0) mod p127 */
363         t = p1 >> 63;
364         p1 &= m63;
365         ADD128(p1, p2, len, t);
366         /* At this point, (p1,p2) is at most 2^127+(len<<64) */
367         t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
368         ADD128(p1, p2, z, t);
369         p1 &= m63;
370
371         /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
372         t = p1 + (p2 >> 32);
373         t += (t >> 32);
374         t += (u32)t > 0xfffffffeu;
375         p1 += (t >> 32);
376         p2 += (p1 << 32);
377
378         /* compute (p1+k1)%p64 and (p2+k2)%p64 */
379         p1 += k1;
380         p1 += (0 - (p1 < k1)) & 257;
381         p2 += k2;
382         p2 += (0 - (p2 < k2)) & 257;
383
384         /* compute (p1+k1)*(p2+k2)%p64 */
385         MUL64(rh, rl, p1, p2);
386         t = rh >> 56;
387         ADD128(t, rl, z, rh);
388         rh <<= 8;
389         ADD128(t, rl, z, rh);
390         t += t << 8;
391         rl += t;
392         rl += (0 - (rl < t)) & 257;
393         rl += (0 - (rl > p64-1)) & 257;
394         return rl;
395 }
396
397 /* L1 and L2-hash one or more VMAC_NHBYTES-byte blocks */
398 static void vhash_blocks(const struct vmac_tfm_ctx *tctx,
399                          struct vmac_desc_ctx *dctx,
400                          const __le64 *mptr, unsigned int blocks)
401 {
402         const u64 *kptr = tctx->nhkey;
403         const u64 pkh = tctx->polykey[0];
404         const u64 pkl = tctx->polykey[1];
405         u64 ch = dctx->polytmp[0];
406         u64 cl = dctx->polytmp[1];
407         u64 rh, rl;
408
409         if (!dctx->first_block_processed) {
410                 dctx->first_block_processed = true;
411                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
412                 rh &= m62;
413                 ADD128(ch, cl, rh, rl);
414                 mptr += (VMAC_NHBYTES/sizeof(u64));
415                 blocks--;
416         }
417
418         while (blocks--) {
419                 nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
420                 rh &= m62;
421                 poly_step(ch, cl, pkh, pkl, rh, rl);
422                 mptr += (VMAC_NHBYTES/sizeof(u64));
423         }
424
425         dctx->polytmp[0] = ch;
426         dctx->polytmp[1] = cl;
427 }
428
429 static int vmac_setkey(struct crypto_shash *tfm,
430                        const u8 *key, unsigned int keylen)
431 {
432         struct vmac_tfm_ctx *tctx = crypto_shash_ctx(tfm);
433         __be64 out[2];
434         u8 in[16] = { 0 };
435         unsigned int i;
436         int err;
437
438         if (keylen != VMAC_KEY_LEN)
439                 return -EINVAL;
440
441         err = crypto_cipher_setkey(tctx->cipher, key, keylen);
442         if (err)
443                 return err;
444
445         /* Fill nh key */
446         in[0] = 0x80;
447         for (i = 0; i < ARRAY_SIZE(tctx->nhkey); i += 2) {
448                 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
449                 tctx->nhkey[i] = be64_to_cpu(out[0]);
450                 tctx->nhkey[i+1] = be64_to_cpu(out[1]);
451                 in[15]++;
452         }
453
454         /* Fill poly key */
455         in[0] = 0xC0;
456         in[15] = 0;
457         for (i = 0; i < ARRAY_SIZE(tctx->polykey); i += 2) {
458                 crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
459                 tctx->polykey[i] = be64_to_cpu(out[0]) & mpoly;
460                 tctx->polykey[i+1] = be64_to_cpu(out[1]) & mpoly;
461                 in[15]++;
462         }
463
464         /* Fill ip key */
465         in[0] = 0xE0;
466         in[15] = 0;
467         for (i = 0; i < ARRAY_SIZE(tctx->l3key); i += 2) {
468                 do {
469                         crypto_cipher_encrypt_one(tctx->cipher, (u8 *)out, in);
470                         tctx->l3key[i] = be64_to_cpu(out[0]);
471                         tctx->l3key[i+1] = be64_to_cpu(out[1]);
472                         in[15]++;
473                 } while (tctx->l3key[i] >= p64 || tctx->l3key[i+1] >= p64);
474         }
475
476         return 0;
477 }
478
479 static int vmac_init(struct shash_desc *desc)
480 {
481         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
482         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
483
484         dctx->partial_size = 0;
485         dctx->first_block_processed = false;
486         memcpy(dctx->polytmp, tctx->polykey, sizeof(dctx->polytmp));
487         dctx->nonce_size = 0;
488         return 0;
489 }
490
491 static int vmac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
492 {
493         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
494         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
495         unsigned int n;
496
497         /* Nonce is passed as first VMAC_NONCEBYTES bytes of data */
498         if (dctx->nonce_size < VMAC_NONCEBYTES) {
499                 n = min(len, VMAC_NONCEBYTES - dctx->nonce_size);
500                 memcpy(&dctx->nonce.bytes[dctx->nonce_size], p, n);
501                 dctx->nonce_size += n;
502                 p += n;
503                 len -= n;
504         }
505
506         if (dctx->partial_size) {
507                 n = min(len, VMAC_NHBYTES - dctx->partial_size);
508                 memcpy(&dctx->partial[dctx->partial_size], p, n);
509                 dctx->partial_size += n;
510                 p += n;
511                 len -= n;
512                 if (dctx->partial_size == VMAC_NHBYTES) {
513                         vhash_blocks(tctx, dctx, dctx->partial_words, 1);
514                         dctx->partial_size = 0;
515                 }
516         }
517
518         if (len >= VMAC_NHBYTES) {
519                 n = round_down(len, VMAC_NHBYTES);
520                 /* TODO: 'p' may be misaligned here */
521                 vhash_blocks(tctx, dctx, (const __le64 *)p, n / VMAC_NHBYTES);
522                 p += n;
523                 len -= n;
524         }
525
526         if (len) {
527                 memcpy(dctx->partial, p, len);
528                 dctx->partial_size = len;
529         }
530
531         return 0;
532 }
533
534 static u64 vhash_final(const struct vmac_tfm_ctx *tctx,
535                        struct vmac_desc_ctx *dctx)
536 {
537         unsigned int partial = dctx->partial_size;
538         u64 ch = dctx->polytmp[0];
539         u64 cl = dctx->polytmp[1];
540
541         /* L1 and L2-hash the final block if needed */
542         if (partial) {
543                 /* Zero-pad to next 128-bit boundary */
544                 unsigned int n = round_up(partial, 16);
545                 u64 rh, rl;
546
547                 memset(&dctx->partial[partial], 0, n - partial);
548                 nh_16(dctx->partial_words, tctx->nhkey, n / 8, rh, rl);
549                 rh &= m62;
550                 if (dctx->first_block_processed)
551                         poly_step(ch, cl, tctx->polykey[0], tctx->polykey[1],
552                                   rh, rl);
553                 else
554                         ADD128(ch, cl, rh, rl);
555         }
556
557         /* L3-hash the 128-bit output of L2-hash */
558         return l3hash(ch, cl, tctx->l3key[0], tctx->l3key[1], partial * 8);
559 }
560
561 static int vmac_final(struct shash_desc *desc, u8 *out)
562 {
563         const struct vmac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
564         struct vmac_desc_ctx *dctx = shash_desc_ctx(desc);
565         int index;
566         u64 hash, pad;
567
568         if (dctx->nonce_size != VMAC_NONCEBYTES)
569                 return -EINVAL;
570
571         /*
572          * The VMAC specification requires a nonce at least 1 bit shorter than
573          * the block cipher's block length, so we actually only accept a 127-bit
574          * nonce.  We define the unused bit to be the first one and require that
575          * it be 0, so the needed prepending of a 0 bit is implicit.
576          */
577         if (dctx->nonce.bytes[0] & 0x80)
578                 return -EINVAL;
579
580         /* Finish calculating the VHASH of the message */
581         hash = vhash_final(tctx, dctx);
582
583         /* Generate pseudorandom pad by encrypting the nonce */
584         BUILD_BUG_ON(VMAC_NONCEBYTES != 2 * (VMAC_TAG_LEN / 8));
585         index = dctx->nonce.bytes[VMAC_NONCEBYTES - 1] & 1;
586         dctx->nonce.bytes[VMAC_NONCEBYTES - 1] &= ~1;
587         crypto_cipher_encrypt_one(tctx->cipher, dctx->nonce.bytes,
588                                   dctx->nonce.bytes);
589         pad = be64_to_cpu(dctx->nonce.pads[index]);
590
591         /* The VMAC is the sum of VHASH and the pseudorandom pad */
592         put_unaligned_be64(hash + pad, out);
593         return 0;
594 }
595
596 static int vmac_init_tfm(struct crypto_tfm *tfm)
597 {
598         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
599         struct crypto_cipher_spawn *spawn = crypto_instance_ctx(inst);
600         struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
601         struct crypto_cipher *cipher;
602
603         cipher = crypto_spawn_cipher(spawn);
604         if (IS_ERR(cipher))
605                 return PTR_ERR(cipher);
606
607         tctx->cipher = cipher;
608         return 0;
609 }
610
611 static void vmac_exit_tfm(struct crypto_tfm *tfm)
612 {
613         struct vmac_tfm_ctx *tctx = crypto_tfm_ctx(tfm);
614
615         crypto_free_cipher(tctx->cipher);
616 }
617
618 static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
619 {
620         struct shash_instance *inst;
621         struct crypto_cipher_spawn *spawn;
622         struct crypto_alg *alg;
623         int err;
624
625         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
626         if (err)
627                 return err;
628
629         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
630         if (!inst)
631                 return -ENOMEM;
632         spawn = shash_instance_ctx(inst);
633
634         err = crypto_grab_cipher(spawn, shash_crypto_instance(inst),
635                                  crypto_attr_alg_name(tb[1]), 0, 0);
636         if (err)
637                 goto err_free_inst;
638         alg = crypto_spawn_cipher_alg(spawn);
639
640         err = -EINVAL;
641         if (alg->cra_blocksize != VMAC_NONCEBYTES)
642                 goto err_free_inst;
643
644         err = crypto_inst_setname(shash_crypto_instance(inst), tmpl->name, alg);
645         if (err)
646                 goto err_free_inst;
647
648         inst->alg.base.cra_priority = alg->cra_priority;
649         inst->alg.base.cra_blocksize = alg->cra_blocksize;
650         inst->alg.base.cra_alignmask = alg->cra_alignmask;
651
652         inst->alg.base.cra_ctxsize = sizeof(struct vmac_tfm_ctx);
653         inst->alg.base.cra_init = vmac_init_tfm;
654         inst->alg.base.cra_exit = vmac_exit_tfm;
655
656         inst->alg.descsize = sizeof(struct vmac_desc_ctx);
657         inst->alg.digestsize = VMAC_TAG_LEN / 8;
658         inst->alg.init = vmac_init;
659         inst->alg.update = vmac_update;
660         inst->alg.final = vmac_final;
661         inst->alg.setkey = vmac_setkey;
662
663         inst->free = shash_free_singlespawn_instance;
664
665         err = shash_register_instance(tmpl, inst);
666         if (err) {
667 err_free_inst:
668                 shash_free_singlespawn_instance(inst);
669         }
670         return err;
671 }
672
673 static struct crypto_template vmac64_tmpl = {
674         .name = "vmac64",
675         .create = vmac_create,
676         .module = THIS_MODULE,
677 };
678
679 static int __init vmac_module_init(void)
680 {
681         return crypto_register_template(&vmac64_tmpl);
682 }
683
684 static void __exit vmac_module_exit(void)
685 {
686         crypto_unregister_template(&vmac64_tmpl);
687 }
688
689 subsys_initcall(vmac_module_init);
690 module_exit(vmac_module_exit);
691
692 MODULE_LICENSE("GPL");
693 MODULE_DESCRIPTION("VMAC hash algorithm");
694 MODULE_ALIAS_CRYPTO("vmac64");