packaging: remove unnecessary requirement
[platform/kernel/linux-rpi.git] / crypto / tea.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* 
3  * Cryptographic API.
4  *
5  * TEA, XTEA, and XETA crypto alogrithms
6  *
7  * The TEA and Xtended TEA algorithms were developed by David Wheeler 
8  * and Roger Needham at the Computer Laboratory of Cambridge University.
9  *
10  * Due to the order of evaluation in XTEA many people have incorrectly
11  * implemented it.  XETA (XTEA in the wrong order), exists for
12  * compatibility with these implementations.
13  *
14  * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
15  */
16
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/mm.h>
20 #include <asm/byteorder.h>
21 #include <linux/crypto.h>
22 #include <linux/types.h>
23
24 #define TEA_KEY_SIZE            16
25 #define TEA_BLOCK_SIZE          8
26 #define TEA_ROUNDS              32
27 #define TEA_DELTA               0x9e3779b9
28
29 #define XTEA_KEY_SIZE           16
30 #define XTEA_BLOCK_SIZE         8
31 #define XTEA_ROUNDS             32
32 #define XTEA_DELTA              0x9e3779b9
33
34 struct tea_ctx {
35         u32 KEY[4];
36 };
37
38 struct xtea_ctx {
39         u32 KEY[4];
40 };
41
42 static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
43                       unsigned int key_len)
44 {
45         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
46         const __le32 *key = (const __le32 *)in_key;
47
48         ctx->KEY[0] = le32_to_cpu(key[0]);
49         ctx->KEY[1] = le32_to_cpu(key[1]);
50         ctx->KEY[2] = le32_to_cpu(key[2]);
51         ctx->KEY[3] = le32_to_cpu(key[3]);
52
53         return 0; 
54
55 }
56
57 static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
58 {
59         u32 y, z, n, sum = 0;
60         u32 k0, k1, k2, k3;
61         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
62         const __le32 *in = (const __le32 *)src;
63         __le32 *out = (__le32 *)dst;
64
65         y = le32_to_cpu(in[0]);
66         z = le32_to_cpu(in[1]);
67
68         k0 = ctx->KEY[0];
69         k1 = ctx->KEY[1];
70         k2 = ctx->KEY[2];
71         k3 = ctx->KEY[3];
72
73         n = TEA_ROUNDS;
74
75         while (n-- > 0) {
76                 sum += TEA_DELTA;
77                 y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
78                 z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
79         }
80         
81         out[0] = cpu_to_le32(y);
82         out[1] = cpu_to_le32(z);
83 }
84
85 static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
86 {
87         u32 y, z, n, sum;
88         u32 k0, k1, k2, k3;
89         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
90         const __le32 *in = (const __le32 *)src;
91         __le32 *out = (__le32 *)dst;
92
93         y = le32_to_cpu(in[0]);
94         z = le32_to_cpu(in[1]);
95
96         k0 = ctx->KEY[0];
97         k1 = ctx->KEY[1];
98         k2 = ctx->KEY[2];
99         k3 = ctx->KEY[3];
100
101         sum = TEA_DELTA << 5;
102
103         n = TEA_ROUNDS;
104
105         while (n-- > 0) {
106                 z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
107                 y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
108                 sum -= TEA_DELTA;
109         }
110         
111         out[0] = cpu_to_le32(y);
112         out[1] = cpu_to_le32(z);
113 }
114
115 static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
116                        unsigned int key_len)
117 {
118         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
119         const __le32 *key = (const __le32 *)in_key;
120
121         ctx->KEY[0] = le32_to_cpu(key[0]);
122         ctx->KEY[1] = le32_to_cpu(key[1]);
123         ctx->KEY[2] = le32_to_cpu(key[2]);
124         ctx->KEY[3] = le32_to_cpu(key[3]);
125
126         return 0; 
127
128 }
129
130 static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
131 {
132         u32 y, z, sum = 0;
133         u32 limit = XTEA_DELTA * XTEA_ROUNDS;
134         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
135         const __le32 *in = (const __le32 *)src;
136         __le32 *out = (__le32 *)dst;
137
138         y = le32_to_cpu(in[0]);
139         z = le32_to_cpu(in[1]);
140
141         while (sum != limit) {
142                 y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
143                 sum += XTEA_DELTA;
144                 z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
145         }
146         
147         out[0] = cpu_to_le32(y);
148         out[1] = cpu_to_le32(z);
149 }
150
151 static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
152 {
153         u32 y, z, sum;
154         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
155         const __le32 *in = (const __le32 *)src;
156         __le32 *out = (__le32 *)dst;
157
158         y = le32_to_cpu(in[0]);
159         z = le32_to_cpu(in[1]);
160
161         sum = XTEA_DELTA * XTEA_ROUNDS;
162
163         while (sum) {
164                 z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
165                 sum -= XTEA_DELTA;
166                 y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
167         }
168         
169         out[0] = cpu_to_le32(y);
170         out[1] = cpu_to_le32(z);
171 }
172
173
174 static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
175 {
176         u32 y, z, sum = 0;
177         u32 limit = XTEA_DELTA * XTEA_ROUNDS;
178         struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
179         const __le32 *in = (const __le32 *)src;
180         __le32 *out = (__le32 *)dst;
181
182         y = le32_to_cpu(in[0]);
183         z = le32_to_cpu(in[1]);
184
185         while (sum != limit) {
186                 y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
187                 sum += XTEA_DELTA;
188                 z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
189         }
190         
191         out[0] = cpu_to_le32(y);
192         out[1] = cpu_to_le32(z);
193 }
194
195 static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
196 {
197         u32 y, z, sum;
198         struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
199         const __le32 *in = (const __le32 *)src;
200         __le32 *out = (__le32 *)dst;
201
202         y = le32_to_cpu(in[0]);
203         z = le32_to_cpu(in[1]);
204
205         sum = XTEA_DELTA * XTEA_ROUNDS;
206
207         while (sum) {
208                 z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
209                 sum -= XTEA_DELTA;
210                 y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
211         }
212         
213         out[0] = cpu_to_le32(y);
214         out[1] = cpu_to_le32(z);
215 }
216
217 static struct crypto_alg tea_algs[3] = { {
218         .cra_name               =       "tea",
219         .cra_driver_name        =       "tea-generic",
220         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
221         .cra_blocksize          =       TEA_BLOCK_SIZE,
222         .cra_ctxsize            =       sizeof (struct tea_ctx),
223         .cra_alignmask          =       3,
224         .cra_module             =       THIS_MODULE,
225         .cra_u                  =       { .cipher = {
226         .cia_min_keysize        =       TEA_KEY_SIZE,
227         .cia_max_keysize        =       TEA_KEY_SIZE,
228         .cia_setkey             =       tea_setkey,
229         .cia_encrypt            =       tea_encrypt,
230         .cia_decrypt            =       tea_decrypt } }
231 }, {
232         .cra_name               =       "xtea",
233         .cra_driver_name        =       "xtea-generic",
234         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
235         .cra_blocksize          =       XTEA_BLOCK_SIZE,
236         .cra_ctxsize            =       sizeof (struct xtea_ctx),
237         .cra_alignmask          =       3,
238         .cra_module             =       THIS_MODULE,
239         .cra_u                  =       { .cipher = {
240         .cia_min_keysize        =       XTEA_KEY_SIZE,
241         .cia_max_keysize        =       XTEA_KEY_SIZE,
242         .cia_setkey             =       xtea_setkey,
243         .cia_encrypt            =       xtea_encrypt,
244         .cia_decrypt            =       xtea_decrypt } }
245 }, {
246         .cra_name               =       "xeta",
247         .cra_driver_name        =       "xeta-generic",
248         .cra_flags              =       CRYPTO_ALG_TYPE_CIPHER,
249         .cra_blocksize          =       XTEA_BLOCK_SIZE,
250         .cra_ctxsize            =       sizeof (struct xtea_ctx),
251         .cra_alignmask          =       3,
252         .cra_module             =       THIS_MODULE,
253         .cra_u                  =       { .cipher = {
254         .cia_min_keysize        =       XTEA_KEY_SIZE,
255         .cia_max_keysize        =       XTEA_KEY_SIZE,
256         .cia_setkey             =       xtea_setkey,
257         .cia_encrypt            =       xeta_encrypt,
258         .cia_decrypt            =       xeta_decrypt } }
259 } };
260
261 static int __init tea_mod_init(void)
262 {
263         return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
264 }
265
266 static void __exit tea_mod_fini(void)
267 {
268         crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
269 }
270
271 MODULE_ALIAS_CRYPTO("tea");
272 MODULE_ALIAS_CRYPTO("xtea");
273 MODULE_ALIAS_CRYPTO("xeta");
274
275 subsys_initcall(tea_mod_init);
276 module_exit(tea_mod_fini);
277
278 MODULE_LICENSE("GPL");
279 MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");