Merge branch 'work.minix' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-starfive.git] / crypto / skcipher.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/compiler.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/seq_file.h>
23 #include <net/netlink.h>
24
25 #include "internal.h"
26
27 enum {
28         SKCIPHER_WALK_PHYS = 1 << 0,
29         SKCIPHER_WALK_SLOW = 1 << 1,
30         SKCIPHER_WALK_COPY = 1 << 2,
31         SKCIPHER_WALK_DIFF = 1 << 3,
32         SKCIPHER_WALK_SLEEP = 1 << 4,
33 };
34
35 struct skcipher_walk_buffer {
36         struct list_head entry;
37         struct scatter_walk dst;
38         unsigned int len;
39         u8 *data;
40         u8 buffer[];
41 };
42
43 static int skcipher_walk_next(struct skcipher_walk *walk);
44
45 static inline void skcipher_map_src(struct skcipher_walk *walk)
46 {
47         walk->src.virt.addr = scatterwalk_map(&walk->in);
48 }
49
50 static inline void skcipher_map_dst(struct skcipher_walk *walk)
51 {
52         walk->dst.virt.addr = scatterwalk_map(&walk->out);
53 }
54
55 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
56 {
57         scatterwalk_unmap(walk->src.virt.addr);
58 }
59
60 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
61 {
62         scatterwalk_unmap(walk->dst.virt.addr);
63 }
64
65 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
66 {
67         return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
68 }
69
70 /* Get a spot of the specified length that does not straddle a page.
71  * The caller needs to ensure that there is enough space for this operation.
72  */
73 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
74 {
75         u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
76
77         return max(start, end_page);
78 }
79
80 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
81 {
82         u8 *addr;
83
84         addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
85         addr = skcipher_get_spot(addr, bsize);
86         scatterwalk_copychunks(addr, &walk->out, bsize,
87                                (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
88         return 0;
89 }
90
91 int skcipher_walk_done(struct skcipher_walk *walk, int err)
92 {
93         unsigned int n = walk->nbytes;
94         unsigned int nbytes = 0;
95
96         if (!n)
97                 goto finish;
98
99         if (likely(err >= 0)) {
100                 n -= err;
101                 nbytes = walk->total - n;
102         }
103
104         if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
105                                     SKCIPHER_WALK_SLOW |
106                                     SKCIPHER_WALK_COPY |
107                                     SKCIPHER_WALK_DIFF)))) {
108 unmap_src:
109                 skcipher_unmap_src(walk);
110         } else if (walk->flags & SKCIPHER_WALK_DIFF) {
111                 skcipher_unmap_dst(walk);
112                 goto unmap_src;
113         } else if (walk->flags & SKCIPHER_WALK_COPY) {
114                 skcipher_map_dst(walk);
115                 memcpy(walk->dst.virt.addr, walk->page, n);
116                 skcipher_unmap_dst(walk);
117         } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
118                 if (err > 0) {
119                         /*
120                          * Didn't process all bytes.  Either the algorithm is
121                          * broken, or this was the last step and it turned out
122                          * the message wasn't evenly divisible into blocks but
123                          * the algorithm requires it.
124                          */
125                         err = -EINVAL;
126                         nbytes = 0;
127                 } else
128                         n = skcipher_done_slow(walk, n);
129         }
130
131         if (err > 0)
132                 err = 0;
133
134         walk->total = nbytes;
135         walk->nbytes = 0;
136
137         scatterwalk_advance(&walk->in, n);
138         scatterwalk_advance(&walk->out, n);
139         scatterwalk_done(&walk->in, 0, nbytes);
140         scatterwalk_done(&walk->out, 1, nbytes);
141
142         if (nbytes) {
143                 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
144                              CRYPTO_TFM_REQ_MAY_SLEEP : 0);
145                 return skcipher_walk_next(walk);
146         }
147
148 finish:
149         /* Short-circuit for the common/fast path. */
150         if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
151                 goto out;
152
153         if (walk->flags & SKCIPHER_WALK_PHYS)
154                 goto out;
155
156         if (walk->iv != walk->oiv)
157                 memcpy(walk->oiv, walk->iv, walk->ivsize);
158         if (walk->buffer != walk->page)
159                 kfree(walk->buffer);
160         if (walk->page)
161                 free_page((unsigned long)walk->page);
162
163 out:
164         return err;
165 }
166 EXPORT_SYMBOL_GPL(skcipher_walk_done);
167
168 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
169 {
170         struct skcipher_walk_buffer *p, *tmp;
171
172         list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
173                 u8 *data;
174
175                 if (err)
176                         goto done;
177
178                 data = p->data;
179                 if (!data) {
180                         data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
181                         data = skcipher_get_spot(data, walk->stride);
182                 }
183
184                 scatterwalk_copychunks(data, &p->dst, p->len, 1);
185
186                 if (offset_in_page(p->data) + p->len + walk->stride >
187                     PAGE_SIZE)
188                         free_page((unsigned long)p->data);
189
190 done:
191                 list_del(&p->entry);
192                 kfree(p);
193         }
194
195         if (!err && walk->iv != walk->oiv)
196                 memcpy(walk->oiv, walk->iv, walk->ivsize);
197         if (walk->buffer != walk->page)
198                 kfree(walk->buffer);
199         if (walk->page)
200                 free_page((unsigned long)walk->page);
201 }
202 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
203
204 static void skcipher_queue_write(struct skcipher_walk *walk,
205                                  struct skcipher_walk_buffer *p)
206 {
207         p->dst = walk->out;
208         list_add_tail(&p->entry, &walk->buffers);
209 }
210
211 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
212 {
213         bool phys = walk->flags & SKCIPHER_WALK_PHYS;
214         unsigned alignmask = walk->alignmask;
215         struct skcipher_walk_buffer *p;
216         unsigned a;
217         unsigned n;
218         u8 *buffer;
219         void *v;
220
221         if (!phys) {
222                 if (!walk->buffer)
223                         walk->buffer = walk->page;
224                 buffer = walk->buffer;
225                 if (buffer)
226                         goto ok;
227         }
228
229         /* Start with the minimum alignment of kmalloc. */
230         a = crypto_tfm_ctx_alignment() - 1;
231         n = bsize;
232
233         if (phys) {
234                 /* Calculate the minimum alignment of p->buffer. */
235                 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
236                 n += sizeof(*p);
237         }
238
239         /* Minimum size to align p->buffer by alignmask. */
240         n += alignmask & ~a;
241
242         /* Minimum size to ensure p->buffer does not straddle a page. */
243         n += (bsize - 1) & ~(alignmask | a);
244
245         v = kzalloc(n, skcipher_walk_gfp(walk));
246         if (!v)
247                 return skcipher_walk_done(walk, -ENOMEM);
248
249         if (phys) {
250                 p = v;
251                 p->len = bsize;
252                 skcipher_queue_write(walk, p);
253                 buffer = p->buffer;
254         } else {
255                 walk->buffer = v;
256                 buffer = v;
257         }
258
259 ok:
260         walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
261         walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
262         walk->src.virt.addr = walk->dst.virt.addr;
263
264         scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
265
266         walk->nbytes = bsize;
267         walk->flags |= SKCIPHER_WALK_SLOW;
268
269         return 0;
270 }
271
272 static int skcipher_next_copy(struct skcipher_walk *walk)
273 {
274         struct skcipher_walk_buffer *p;
275         u8 *tmp = walk->page;
276
277         skcipher_map_src(walk);
278         memcpy(tmp, walk->src.virt.addr, walk->nbytes);
279         skcipher_unmap_src(walk);
280
281         walk->src.virt.addr = tmp;
282         walk->dst.virt.addr = tmp;
283
284         if (!(walk->flags & SKCIPHER_WALK_PHYS))
285                 return 0;
286
287         p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
288         if (!p)
289                 return -ENOMEM;
290
291         p->data = walk->page;
292         p->len = walk->nbytes;
293         skcipher_queue_write(walk, p);
294
295         if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
296             PAGE_SIZE)
297                 walk->page = NULL;
298         else
299                 walk->page += walk->nbytes;
300
301         return 0;
302 }
303
304 static int skcipher_next_fast(struct skcipher_walk *walk)
305 {
306         unsigned long diff;
307
308         walk->src.phys.page = scatterwalk_page(&walk->in);
309         walk->src.phys.offset = offset_in_page(walk->in.offset);
310         walk->dst.phys.page = scatterwalk_page(&walk->out);
311         walk->dst.phys.offset = offset_in_page(walk->out.offset);
312
313         if (walk->flags & SKCIPHER_WALK_PHYS)
314                 return 0;
315
316         diff = walk->src.phys.offset - walk->dst.phys.offset;
317         diff |= walk->src.virt.page - walk->dst.virt.page;
318
319         skcipher_map_src(walk);
320         walk->dst.virt.addr = walk->src.virt.addr;
321
322         if (diff) {
323                 walk->flags |= SKCIPHER_WALK_DIFF;
324                 skcipher_map_dst(walk);
325         }
326
327         return 0;
328 }
329
330 static int skcipher_walk_next(struct skcipher_walk *walk)
331 {
332         unsigned int bsize;
333         unsigned int n;
334         int err;
335
336         walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
337                          SKCIPHER_WALK_DIFF);
338
339         n = walk->total;
340         bsize = min(walk->stride, max(n, walk->blocksize));
341         n = scatterwalk_clamp(&walk->in, n);
342         n = scatterwalk_clamp(&walk->out, n);
343
344         if (unlikely(n < bsize)) {
345                 if (unlikely(walk->total < walk->blocksize))
346                         return skcipher_walk_done(walk, -EINVAL);
347
348 slow_path:
349                 err = skcipher_next_slow(walk, bsize);
350                 goto set_phys_lowmem;
351         }
352
353         if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
354                 if (!walk->page) {
355                         gfp_t gfp = skcipher_walk_gfp(walk);
356
357                         walk->page = (void *)__get_free_page(gfp);
358                         if (!walk->page)
359                                 goto slow_path;
360                 }
361
362                 walk->nbytes = min_t(unsigned, n,
363                                      PAGE_SIZE - offset_in_page(walk->page));
364                 walk->flags |= SKCIPHER_WALK_COPY;
365                 err = skcipher_next_copy(walk);
366                 goto set_phys_lowmem;
367         }
368
369         walk->nbytes = n;
370
371         return skcipher_next_fast(walk);
372
373 set_phys_lowmem:
374         if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
375                 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
376                 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
377                 walk->src.phys.offset &= PAGE_SIZE - 1;
378                 walk->dst.phys.offset &= PAGE_SIZE - 1;
379         }
380         return err;
381 }
382
383 static int skcipher_copy_iv(struct skcipher_walk *walk)
384 {
385         unsigned a = crypto_tfm_ctx_alignment() - 1;
386         unsigned alignmask = walk->alignmask;
387         unsigned ivsize = walk->ivsize;
388         unsigned bs = walk->stride;
389         unsigned aligned_bs;
390         unsigned size;
391         u8 *iv;
392
393         aligned_bs = ALIGN(bs, alignmask + 1);
394
395         /* Minimum size to align buffer by alignmask. */
396         size = alignmask & ~a;
397
398         if (walk->flags & SKCIPHER_WALK_PHYS)
399                 size += ivsize;
400         else {
401                 size += aligned_bs + ivsize;
402
403                 /* Minimum size to ensure buffer does not straddle a page. */
404                 size += (bs - 1) & ~(alignmask | a);
405         }
406
407         walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
408         if (!walk->buffer)
409                 return -ENOMEM;
410
411         iv = PTR_ALIGN(walk->buffer, alignmask + 1);
412         iv = skcipher_get_spot(iv, bs) + aligned_bs;
413
414         walk->iv = memcpy(iv, walk->iv, walk->ivsize);
415         return 0;
416 }
417
418 static int skcipher_walk_first(struct skcipher_walk *walk)
419 {
420         if (WARN_ON_ONCE(in_hardirq()))
421                 return -EDEADLK;
422
423         walk->buffer = NULL;
424         if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
425                 int err = skcipher_copy_iv(walk);
426                 if (err)
427                         return err;
428         }
429
430         walk->page = NULL;
431
432         return skcipher_walk_next(walk);
433 }
434
435 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
436                                   struct skcipher_request *req)
437 {
438         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
439
440         walk->total = req->cryptlen;
441         walk->nbytes = 0;
442         walk->iv = req->iv;
443         walk->oiv = req->iv;
444
445         if (unlikely(!walk->total))
446                 return 0;
447
448         scatterwalk_start(&walk->in, req->src);
449         scatterwalk_start(&walk->out, req->dst);
450
451         walk->flags &= ~SKCIPHER_WALK_SLEEP;
452         walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
453                        SKCIPHER_WALK_SLEEP : 0;
454
455         walk->blocksize = crypto_skcipher_blocksize(tfm);
456         walk->stride = crypto_skcipher_walksize(tfm);
457         walk->ivsize = crypto_skcipher_ivsize(tfm);
458         walk->alignmask = crypto_skcipher_alignmask(tfm);
459
460         return skcipher_walk_first(walk);
461 }
462
463 int skcipher_walk_virt(struct skcipher_walk *walk,
464                        struct skcipher_request *req, bool atomic)
465 {
466         int err;
467
468         might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
469
470         walk->flags &= ~SKCIPHER_WALK_PHYS;
471
472         err = skcipher_walk_skcipher(walk, req);
473
474         walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
475
476         return err;
477 }
478 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
479
480 int skcipher_walk_async(struct skcipher_walk *walk,
481                         struct skcipher_request *req)
482 {
483         walk->flags |= SKCIPHER_WALK_PHYS;
484
485         INIT_LIST_HEAD(&walk->buffers);
486
487         return skcipher_walk_skcipher(walk, req);
488 }
489 EXPORT_SYMBOL_GPL(skcipher_walk_async);
490
491 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
492                                      struct aead_request *req, bool atomic)
493 {
494         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
495         int err;
496
497         walk->nbytes = 0;
498         walk->iv = req->iv;
499         walk->oiv = req->iv;
500
501         if (unlikely(!walk->total))
502                 return 0;
503
504         walk->flags &= ~SKCIPHER_WALK_PHYS;
505
506         scatterwalk_start(&walk->in, req->src);
507         scatterwalk_start(&walk->out, req->dst);
508
509         scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
510         scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
511
512         scatterwalk_done(&walk->in, 0, walk->total);
513         scatterwalk_done(&walk->out, 0, walk->total);
514
515         if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
516                 walk->flags |= SKCIPHER_WALK_SLEEP;
517         else
518                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
519
520         walk->blocksize = crypto_aead_blocksize(tfm);
521         walk->stride = crypto_aead_chunksize(tfm);
522         walk->ivsize = crypto_aead_ivsize(tfm);
523         walk->alignmask = crypto_aead_alignmask(tfm);
524
525         err = skcipher_walk_first(walk);
526
527         if (atomic)
528                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
529
530         return err;
531 }
532
533 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
534                                struct aead_request *req, bool atomic)
535 {
536         walk->total = req->cryptlen;
537
538         return skcipher_walk_aead_common(walk, req, atomic);
539 }
540 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
541
542 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
543                                struct aead_request *req, bool atomic)
544 {
545         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
546
547         walk->total = req->cryptlen - crypto_aead_authsize(tfm);
548
549         return skcipher_walk_aead_common(walk, req, atomic);
550 }
551 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
552
553 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
554 {
555         if (crypto_skcipher_max_keysize(tfm) != 0)
556                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
557 }
558
559 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
560                                      const u8 *key, unsigned int keylen)
561 {
562         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
563         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
564         u8 *buffer, *alignbuffer;
565         unsigned long absize;
566         int ret;
567
568         absize = keylen + alignmask;
569         buffer = kmalloc(absize, GFP_ATOMIC);
570         if (!buffer)
571                 return -ENOMEM;
572
573         alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
574         memcpy(alignbuffer, key, keylen);
575         ret = cipher->setkey(tfm, alignbuffer, keylen);
576         kfree_sensitive(buffer);
577         return ret;
578 }
579
580 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
581                            unsigned int keylen)
582 {
583         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
584         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
585         int err;
586
587         if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
588                 return -EINVAL;
589
590         if ((unsigned long)key & alignmask)
591                 err = skcipher_setkey_unaligned(tfm, key, keylen);
592         else
593                 err = cipher->setkey(tfm, key, keylen);
594
595         if (unlikely(err)) {
596                 skcipher_set_needkey(tfm);
597                 return err;
598         }
599
600         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
601         return 0;
602 }
603 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
604
605 int crypto_skcipher_encrypt(struct skcipher_request *req)
606 {
607         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
608         struct crypto_alg *alg = tfm->base.__crt_alg;
609         unsigned int cryptlen = req->cryptlen;
610         int ret;
611
612         crypto_stats_get(alg);
613         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
614                 ret = -ENOKEY;
615         else
616                 ret = crypto_skcipher_alg(tfm)->encrypt(req);
617         crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
618         return ret;
619 }
620 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
621
622 int crypto_skcipher_decrypt(struct skcipher_request *req)
623 {
624         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
625         struct crypto_alg *alg = tfm->base.__crt_alg;
626         unsigned int cryptlen = req->cryptlen;
627         int ret;
628
629         crypto_stats_get(alg);
630         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
631                 ret = -ENOKEY;
632         else
633                 ret = crypto_skcipher_alg(tfm)->decrypt(req);
634         crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
635         return ret;
636 }
637 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
638
639 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
640 {
641         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
642         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
643
644         alg->exit(skcipher);
645 }
646
647 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
648 {
649         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
650         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
651
652         skcipher_set_needkey(skcipher);
653
654         if (alg->exit)
655                 skcipher->base.exit = crypto_skcipher_exit_tfm;
656
657         if (alg->init)
658                 return alg->init(skcipher);
659
660         return 0;
661 }
662
663 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
664 {
665         struct skcipher_instance *skcipher =
666                 container_of(inst, struct skcipher_instance, s.base);
667
668         skcipher->free(skcipher);
669 }
670
671 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
672         __maybe_unused;
673 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
674 {
675         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
676                                                      base);
677
678         seq_printf(m, "type         : skcipher\n");
679         seq_printf(m, "async        : %s\n",
680                    alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
681         seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
682         seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
683         seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
684         seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
685         seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
686         seq_printf(m, "walksize     : %u\n", skcipher->walksize);
687 }
688
689 #ifdef CONFIG_NET
690 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
691 {
692         struct crypto_report_blkcipher rblkcipher;
693         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
694                                                      base);
695
696         memset(&rblkcipher, 0, sizeof(rblkcipher));
697
698         strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
699         strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
700
701         rblkcipher.blocksize = alg->cra_blocksize;
702         rblkcipher.min_keysize = skcipher->min_keysize;
703         rblkcipher.max_keysize = skcipher->max_keysize;
704         rblkcipher.ivsize = skcipher->ivsize;
705
706         return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
707                        sizeof(rblkcipher), &rblkcipher);
708 }
709 #else
710 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
711 {
712         return -ENOSYS;
713 }
714 #endif
715
716 static const struct crypto_type crypto_skcipher_type = {
717         .extsize = crypto_alg_extsize,
718         .init_tfm = crypto_skcipher_init_tfm,
719         .free = crypto_skcipher_free_instance,
720 #ifdef CONFIG_PROC_FS
721         .show = crypto_skcipher_show,
722 #endif
723         .report = crypto_skcipher_report,
724         .maskclear = ~CRYPTO_ALG_TYPE_MASK,
725         .maskset = CRYPTO_ALG_TYPE_MASK,
726         .type = CRYPTO_ALG_TYPE_SKCIPHER,
727         .tfmsize = offsetof(struct crypto_skcipher, base),
728 };
729
730 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
731                          struct crypto_instance *inst,
732                          const char *name, u32 type, u32 mask)
733 {
734         spawn->base.frontend = &crypto_skcipher_type;
735         return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
736 }
737 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
738
739 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
740                                               u32 type, u32 mask)
741 {
742         return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
743 }
744 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
745
746 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
747                                 const char *alg_name, u32 type, u32 mask)
748 {
749         struct crypto_skcipher *tfm;
750
751         /* Only sync algorithms allowed. */
752         mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
753
754         tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
755
756         /*
757          * Make sure we do not allocate something that might get used with
758          * an on-stack request: check the request size.
759          */
760         if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
761                                     MAX_SYNC_SKCIPHER_REQSIZE)) {
762                 crypto_free_skcipher(tfm);
763                 return ERR_PTR(-EINVAL);
764         }
765
766         return (struct crypto_sync_skcipher *)tfm;
767 }
768 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
769
770 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
771 {
772         return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
773 }
774 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
775
776 static int skcipher_prepare_alg(struct skcipher_alg *alg)
777 {
778         struct crypto_alg *base = &alg->base;
779
780         if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
781             alg->walksize > PAGE_SIZE / 8)
782                 return -EINVAL;
783
784         if (!alg->chunksize)
785                 alg->chunksize = base->cra_blocksize;
786         if (!alg->walksize)
787                 alg->walksize = alg->chunksize;
788
789         base->cra_type = &crypto_skcipher_type;
790         base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
791         base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
792
793         return 0;
794 }
795
796 int crypto_register_skcipher(struct skcipher_alg *alg)
797 {
798         struct crypto_alg *base = &alg->base;
799         int err;
800
801         err = skcipher_prepare_alg(alg);
802         if (err)
803                 return err;
804
805         return crypto_register_alg(base);
806 }
807 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
808
809 void crypto_unregister_skcipher(struct skcipher_alg *alg)
810 {
811         crypto_unregister_alg(&alg->base);
812 }
813 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
814
815 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
816 {
817         int i, ret;
818
819         for (i = 0; i < count; i++) {
820                 ret = crypto_register_skcipher(&algs[i]);
821                 if (ret)
822                         goto err;
823         }
824
825         return 0;
826
827 err:
828         for (--i; i >= 0; --i)
829                 crypto_unregister_skcipher(&algs[i]);
830
831         return ret;
832 }
833 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
834
835 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
836 {
837         int i;
838
839         for (i = count - 1; i >= 0; --i)
840                 crypto_unregister_skcipher(&algs[i]);
841 }
842 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
843
844 int skcipher_register_instance(struct crypto_template *tmpl,
845                            struct skcipher_instance *inst)
846 {
847         int err;
848
849         if (WARN_ON(!inst->free))
850                 return -EINVAL;
851
852         err = skcipher_prepare_alg(&inst->alg);
853         if (err)
854                 return err;
855
856         return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
857 }
858 EXPORT_SYMBOL_GPL(skcipher_register_instance);
859
860 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
861                                   unsigned int keylen)
862 {
863         struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
864
865         crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
866         crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
867                                 CRYPTO_TFM_REQ_MASK);
868         return crypto_cipher_setkey(cipher, key, keylen);
869 }
870
871 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
872 {
873         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
874         struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
875         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
876         struct crypto_cipher *cipher;
877
878         cipher = crypto_spawn_cipher(spawn);
879         if (IS_ERR(cipher))
880                 return PTR_ERR(cipher);
881
882         ctx->cipher = cipher;
883         return 0;
884 }
885
886 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
887 {
888         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
889
890         crypto_free_cipher(ctx->cipher);
891 }
892
893 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
894 {
895         crypto_drop_cipher(skcipher_instance_ctx(inst));
896         kfree(inst);
897 }
898
899 /**
900  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
901  *
902  * Allocate an skcipher_instance for a simple block cipher mode of operation,
903  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
904  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
905  * alignmask, and priority are set from the underlying cipher but can be
906  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
907  * default ->setkey(), ->init(), and ->exit() methods are installed.
908  *
909  * @tmpl: the template being instantiated
910  * @tb: the template parameters
911  *
912  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
913  *         needs to register the instance.
914  */
915 struct skcipher_instance *skcipher_alloc_instance_simple(
916         struct crypto_template *tmpl, struct rtattr **tb)
917 {
918         u32 mask;
919         struct skcipher_instance *inst;
920         struct crypto_cipher_spawn *spawn;
921         struct crypto_alg *cipher_alg;
922         int err;
923
924         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
925         if (err)
926                 return ERR_PTR(err);
927
928         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
929         if (!inst)
930                 return ERR_PTR(-ENOMEM);
931         spawn = skcipher_instance_ctx(inst);
932
933         err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
934                                  crypto_attr_alg_name(tb[1]), 0, mask);
935         if (err)
936                 goto err_free_inst;
937         cipher_alg = crypto_spawn_cipher_alg(spawn);
938
939         err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
940                                   cipher_alg);
941         if (err)
942                 goto err_free_inst;
943
944         inst->free = skcipher_free_instance_simple;
945
946         /* Default algorithm properties, can be overridden */
947         inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
948         inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
949         inst->alg.base.cra_priority = cipher_alg->cra_priority;
950         inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
951         inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
952         inst->alg.ivsize = cipher_alg->cra_blocksize;
953
954         /* Use skcipher_ctx_simple by default, can be overridden */
955         inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
956         inst->alg.setkey = skcipher_setkey_simple;
957         inst->alg.init = skcipher_init_tfm_simple;
958         inst->alg.exit = skcipher_exit_tfm_simple;
959
960         return inst;
961
962 err_free_inst:
963         skcipher_free_instance_simple(inst);
964         return ERR_PTR(err);
965 }
966 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
967
968 MODULE_LICENSE("GPL");
969 MODULE_DESCRIPTION("Symmetric key cipher type");
970 MODULE_IMPORT_NS(CRYPTO_INTERNAL);