arm64: dts: mediatek: asurada: Add display regulators
[platform/kernel/linux-starfive.git] / crypto / skcipher.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Symmetric key cipher operations.
4  *
5  * Generic encrypt/decrypt wrapper for ciphers, handles operations across
6  * multiple page boundaries by using temporary blocks.  In user context,
7  * the kernel is given a chance to schedule us once per page.
8  *
9  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
10  */
11
12 #include <crypto/internal/aead.h>
13 #include <crypto/internal/cipher.h>
14 #include <crypto/internal/skcipher.h>
15 #include <crypto/scatterwalk.h>
16 #include <linux/bug.h>
17 #include <linux/cryptouser.h>
18 #include <linux/compiler.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/seq_file.h>
23 #include <net/netlink.h>
24
25 #include "internal.h"
26
27 enum {
28         SKCIPHER_WALK_PHYS = 1 << 0,
29         SKCIPHER_WALK_SLOW = 1 << 1,
30         SKCIPHER_WALK_COPY = 1 << 2,
31         SKCIPHER_WALK_DIFF = 1 << 3,
32         SKCIPHER_WALK_SLEEP = 1 << 4,
33 };
34
35 struct skcipher_walk_buffer {
36         struct list_head entry;
37         struct scatter_walk dst;
38         unsigned int len;
39         u8 *data;
40         u8 buffer[];
41 };
42
43 static int skcipher_walk_next(struct skcipher_walk *walk);
44
45 static inline void skcipher_unmap(struct scatter_walk *walk, void *vaddr)
46 {
47         if (PageHighMem(scatterwalk_page(walk)))
48                 kunmap_atomic(vaddr);
49 }
50
51 static inline void *skcipher_map(struct scatter_walk *walk)
52 {
53         struct page *page = scatterwalk_page(walk);
54
55         return (PageHighMem(page) ? kmap_atomic(page) : page_address(page)) +
56                offset_in_page(walk->offset);
57 }
58
59 static inline void skcipher_map_src(struct skcipher_walk *walk)
60 {
61         walk->src.virt.addr = skcipher_map(&walk->in);
62 }
63
64 static inline void skcipher_map_dst(struct skcipher_walk *walk)
65 {
66         walk->dst.virt.addr = skcipher_map(&walk->out);
67 }
68
69 static inline void skcipher_unmap_src(struct skcipher_walk *walk)
70 {
71         skcipher_unmap(&walk->in, walk->src.virt.addr);
72 }
73
74 static inline void skcipher_unmap_dst(struct skcipher_walk *walk)
75 {
76         skcipher_unmap(&walk->out, walk->dst.virt.addr);
77 }
78
79 static inline gfp_t skcipher_walk_gfp(struct skcipher_walk *walk)
80 {
81         return walk->flags & SKCIPHER_WALK_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
82 }
83
84 /* Get a spot of the specified length that does not straddle a page.
85  * The caller needs to ensure that there is enough space for this operation.
86  */
87 static inline u8 *skcipher_get_spot(u8 *start, unsigned int len)
88 {
89         u8 *end_page = (u8 *)(((unsigned long)(start + len - 1)) & PAGE_MASK);
90
91         return max(start, end_page);
92 }
93
94 static int skcipher_done_slow(struct skcipher_walk *walk, unsigned int bsize)
95 {
96         u8 *addr;
97
98         addr = (u8 *)ALIGN((unsigned long)walk->buffer, walk->alignmask + 1);
99         addr = skcipher_get_spot(addr, bsize);
100         scatterwalk_copychunks(addr, &walk->out, bsize,
101                                (walk->flags & SKCIPHER_WALK_PHYS) ? 2 : 1);
102         return 0;
103 }
104
105 int skcipher_walk_done(struct skcipher_walk *walk, int err)
106 {
107         unsigned int n = walk->nbytes;
108         unsigned int nbytes = 0;
109
110         if (!n)
111                 goto finish;
112
113         if (likely(err >= 0)) {
114                 n -= err;
115                 nbytes = walk->total - n;
116         }
117
118         if (likely(!(walk->flags & (SKCIPHER_WALK_PHYS |
119                                     SKCIPHER_WALK_SLOW |
120                                     SKCIPHER_WALK_COPY |
121                                     SKCIPHER_WALK_DIFF)))) {
122 unmap_src:
123                 skcipher_unmap_src(walk);
124         } else if (walk->flags & SKCIPHER_WALK_DIFF) {
125                 skcipher_unmap_dst(walk);
126                 goto unmap_src;
127         } else if (walk->flags & SKCIPHER_WALK_COPY) {
128                 skcipher_map_dst(walk);
129                 memcpy(walk->dst.virt.addr, walk->page, n);
130                 skcipher_unmap_dst(walk);
131         } else if (unlikely(walk->flags & SKCIPHER_WALK_SLOW)) {
132                 if (err > 0) {
133                         /*
134                          * Didn't process all bytes.  Either the algorithm is
135                          * broken, or this was the last step and it turned out
136                          * the message wasn't evenly divisible into blocks but
137                          * the algorithm requires it.
138                          */
139                         err = -EINVAL;
140                         nbytes = 0;
141                 } else
142                         n = skcipher_done_slow(walk, n);
143         }
144
145         if (err > 0)
146                 err = 0;
147
148         walk->total = nbytes;
149         walk->nbytes = 0;
150
151         scatterwalk_advance(&walk->in, n);
152         scatterwalk_advance(&walk->out, n);
153         scatterwalk_done(&walk->in, 0, nbytes);
154         scatterwalk_done(&walk->out, 1, nbytes);
155
156         if (nbytes) {
157                 crypto_yield(walk->flags & SKCIPHER_WALK_SLEEP ?
158                              CRYPTO_TFM_REQ_MAY_SLEEP : 0);
159                 return skcipher_walk_next(walk);
160         }
161
162 finish:
163         /* Short-circuit for the common/fast path. */
164         if (!((unsigned long)walk->buffer | (unsigned long)walk->page))
165                 goto out;
166
167         if (walk->flags & SKCIPHER_WALK_PHYS)
168                 goto out;
169
170         if (walk->iv != walk->oiv)
171                 memcpy(walk->oiv, walk->iv, walk->ivsize);
172         if (walk->buffer != walk->page)
173                 kfree(walk->buffer);
174         if (walk->page)
175                 free_page((unsigned long)walk->page);
176
177 out:
178         return err;
179 }
180 EXPORT_SYMBOL_GPL(skcipher_walk_done);
181
182 void skcipher_walk_complete(struct skcipher_walk *walk, int err)
183 {
184         struct skcipher_walk_buffer *p, *tmp;
185
186         list_for_each_entry_safe(p, tmp, &walk->buffers, entry) {
187                 u8 *data;
188
189                 if (err)
190                         goto done;
191
192                 data = p->data;
193                 if (!data) {
194                         data = PTR_ALIGN(&p->buffer[0], walk->alignmask + 1);
195                         data = skcipher_get_spot(data, walk->stride);
196                 }
197
198                 scatterwalk_copychunks(data, &p->dst, p->len, 1);
199
200                 if (offset_in_page(p->data) + p->len + walk->stride >
201                     PAGE_SIZE)
202                         free_page((unsigned long)p->data);
203
204 done:
205                 list_del(&p->entry);
206                 kfree(p);
207         }
208
209         if (!err && walk->iv != walk->oiv)
210                 memcpy(walk->oiv, walk->iv, walk->ivsize);
211         if (walk->buffer != walk->page)
212                 kfree(walk->buffer);
213         if (walk->page)
214                 free_page((unsigned long)walk->page);
215 }
216 EXPORT_SYMBOL_GPL(skcipher_walk_complete);
217
218 static void skcipher_queue_write(struct skcipher_walk *walk,
219                                  struct skcipher_walk_buffer *p)
220 {
221         p->dst = walk->out;
222         list_add_tail(&p->entry, &walk->buffers);
223 }
224
225 static int skcipher_next_slow(struct skcipher_walk *walk, unsigned int bsize)
226 {
227         bool phys = walk->flags & SKCIPHER_WALK_PHYS;
228         unsigned alignmask = walk->alignmask;
229         struct skcipher_walk_buffer *p;
230         unsigned a;
231         unsigned n;
232         u8 *buffer;
233         void *v;
234
235         if (!phys) {
236                 if (!walk->buffer)
237                         walk->buffer = walk->page;
238                 buffer = walk->buffer;
239                 if (buffer)
240                         goto ok;
241         }
242
243         /* Start with the minimum alignment of kmalloc. */
244         a = crypto_tfm_ctx_alignment() - 1;
245         n = bsize;
246
247         if (phys) {
248                 /* Calculate the minimum alignment of p->buffer. */
249                 a &= (sizeof(*p) ^ (sizeof(*p) - 1)) >> 1;
250                 n += sizeof(*p);
251         }
252
253         /* Minimum size to align p->buffer by alignmask. */
254         n += alignmask & ~a;
255
256         /* Minimum size to ensure p->buffer does not straddle a page. */
257         n += (bsize - 1) & ~(alignmask | a);
258
259         v = kzalloc(n, skcipher_walk_gfp(walk));
260         if (!v)
261                 return skcipher_walk_done(walk, -ENOMEM);
262
263         if (phys) {
264                 p = v;
265                 p->len = bsize;
266                 skcipher_queue_write(walk, p);
267                 buffer = p->buffer;
268         } else {
269                 walk->buffer = v;
270                 buffer = v;
271         }
272
273 ok:
274         walk->dst.virt.addr = PTR_ALIGN(buffer, alignmask + 1);
275         walk->dst.virt.addr = skcipher_get_spot(walk->dst.virt.addr, bsize);
276         walk->src.virt.addr = walk->dst.virt.addr;
277
278         scatterwalk_copychunks(walk->src.virt.addr, &walk->in, bsize, 0);
279
280         walk->nbytes = bsize;
281         walk->flags |= SKCIPHER_WALK_SLOW;
282
283         return 0;
284 }
285
286 static int skcipher_next_copy(struct skcipher_walk *walk)
287 {
288         struct skcipher_walk_buffer *p;
289         u8 *tmp = walk->page;
290
291         skcipher_map_src(walk);
292         memcpy(tmp, walk->src.virt.addr, walk->nbytes);
293         skcipher_unmap_src(walk);
294
295         walk->src.virt.addr = tmp;
296         walk->dst.virt.addr = tmp;
297
298         if (!(walk->flags & SKCIPHER_WALK_PHYS))
299                 return 0;
300
301         p = kmalloc(sizeof(*p), skcipher_walk_gfp(walk));
302         if (!p)
303                 return -ENOMEM;
304
305         p->data = walk->page;
306         p->len = walk->nbytes;
307         skcipher_queue_write(walk, p);
308
309         if (offset_in_page(walk->page) + walk->nbytes + walk->stride >
310             PAGE_SIZE)
311                 walk->page = NULL;
312         else
313                 walk->page += walk->nbytes;
314
315         return 0;
316 }
317
318 static int skcipher_next_fast(struct skcipher_walk *walk)
319 {
320         unsigned long diff;
321
322         walk->src.phys.page = scatterwalk_page(&walk->in);
323         walk->src.phys.offset = offset_in_page(walk->in.offset);
324         walk->dst.phys.page = scatterwalk_page(&walk->out);
325         walk->dst.phys.offset = offset_in_page(walk->out.offset);
326
327         if (walk->flags & SKCIPHER_WALK_PHYS)
328                 return 0;
329
330         diff = walk->src.phys.offset - walk->dst.phys.offset;
331         diff |= walk->src.virt.page - walk->dst.virt.page;
332
333         skcipher_map_src(walk);
334         walk->dst.virt.addr = walk->src.virt.addr;
335
336         if (diff) {
337                 walk->flags |= SKCIPHER_WALK_DIFF;
338                 skcipher_map_dst(walk);
339         }
340
341         return 0;
342 }
343
344 static int skcipher_walk_next(struct skcipher_walk *walk)
345 {
346         unsigned int bsize;
347         unsigned int n;
348         int err;
349
350         walk->flags &= ~(SKCIPHER_WALK_SLOW | SKCIPHER_WALK_COPY |
351                          SKCIPHER_WALK_DIFF);
352
353         n = walk->total;
354         bsize = min(walk->stride, max(n, walk->blocksize));
355         n = scatterwalk_clamp(&walk->in, n);
356         n = scatterwalk_clamp(&walk->out, n);
357
358         if (unlikely(n < bsize)) {
359                 if (unlikely(walk->total < walk->blocksize))
360                         return skcipher_walk_done(walk, -EINVAL);
361
362 slow_path:
363                 err = skcipher_next_slow(walk, bsize);
364                 goto set_phys_lowmem;
365         }
366
367         if (unlikely((walk->in.offset | walk->out.offset) & walk->alignmask)) {
368                 if (!walk->page) {
369                         gfp_t gfp = skcipher_walk_gfp(walk);
370
371                         walk->page = (void *)__get_free_page(gfp);
372                         if (!walk->page)
373                                 goto slow_path;
374                 }
375
376                 walk->nbytes = min_t(unsigned, n,
377                                      PAGE_SIZE - offset_in_page(walk->page));
378                 walk->flags |= SKCIPHER_WALK_COPY;
379                 err = skcipher_next_copy(walk);
380                 goto set_phys_lowmem;
381         }
382
383         walk->nbytes = n;
384
385         return skcipher_next_fast(walk);
386
387 set_phys_lowmem:
388         if (!err && (walk->flags & SKCIPHER_WALK_PHYS)) {
389                 walk->src.phys.page = virt_to_page(walk->src.virt.addr);
390                 walk->dst.phys.page = virt_to_page(walk->dst.virt.addr);
391                 walk->src.phys.offset &= PAGE_SIZE - 1;
392                 walk->dst.phys.offset &= PAGE_SIZE - 1;
393         }
394         return err;
395 }
396
397 static int skcipher_copy_iv(struct skcipher_walk *walk)
398 {
399         unsigned a = crypto_tfm_ctx_alignment() - 1;
400         unsigned alignmask = walk->alignmask;
401         unsigned ivsize = walk->ivsize;
402         unsigned bs = walk->stride;
403         unsigned aligned_bs;
404         unsigned size;
405         u8 *iv;
406
407         aligned_bs = ALIGN(bs, alignmask + 1);
408
409         /* Minimum size to align buffer by alignmask. */
410         size = alignmask & ~a;
411
412         if (walk->flags & SKCIPHER_WALK_PHYS)
413                 size += ivsize;
414         else {
415                 size += aligned_bs + ivsize;
416
417                 /* Minimum size to ensure buffer does not straddle a page. */
418                 size += (bs - 1) & ~(alignmask | a);
419         }
420
421         walk->buffer = kmalloc(size, skcipher_walk_gfp(walk));
422         if (!walk->buffer)
423                 return -ENOMEM;
424
425         iv = PTR_ALIGN(walk->buffer, alignmask + 1);
426         iv = skcipher_get_spot(iv, bs) + aligned_bs;
427
428         walk->iv = memcpy(iv, walk->iv, walk->ivsize);
429         return 0;
430 }
431
432 static int skcipher_walk_first(struct skcipher_walk *walk)
433 {
434         if (WARN_ON_ONCE(in_hardirq()))
435                 return -EDEADLK;
436
437         walk->buffer = NULL;
438         if (unlikely(((unsigned long)walk->iv & walk->alignmask))) {
439                 int err = skcipher_copy_iv(walk);
440                 if (err)
441                         return err;
442         }
443
444         walk->page = NULL;
445
446         return skcipher_walk_next(walk);
447 }
448
449 static int skcipher_walk_skcipher(struct skcipher_walk *walk,
450                                   struct skcipher_request *req)
451 {
452         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
453
454         walk->total = req->cryptlen;
455         walk->nbytes = 0;
456         walk->iv = req->iv;
457         walk->oiv = req->iv;
458
459         if (unlikely(!walk->total))
460                 return 0;
461
462         scatterwalk_start(&walk->in, req->src);
463         scatterwalk_start(&walk->out, req->dst);
464
465         walk->flags &= ~SKCIPHER_WALK_SLEEP;
466         walk->flags |= req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
467                        SKCIPHER_WALK_SLEEP : 0;
468
469         walk->blocksize = crypto_skcipher_blocksize(tfm);
470         walk->stride = crypto_skcipher_walksize(tfm);
471         walk->ivsize = crypto_skcipher_ivsize(tfm);
472         walk->alignmask = crypto_skcipher_alignmask(tfm);
473
474         return skcipher_walk_first(walk);
475 }
476
477 int skcipher_walk_virt(struct skcipher_walk *walk,
478                        struct skcipher_request *req, bool atomic)
479 {
480         int err;
481
482         might_sleep_if(req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP);
483
484         walk->flags &= ~SKCIPHER_WALK_PHYS;
485
486         err = skcipher_walk_skcipher(walk, req);
487
488         walk->flags &= atomic ? ~SKCIPHER_WALK_SLEEP : ~0;
489
490         return err;
491 }
492 EXPORT_SYMBOL_GPL(skcipher_walk_virt);
493
494 int skcipher_walk_async(struct skcipher_walk *walk,
495                         struct skcipher_request *req)
496 {
497         walk->flags |= SKCIPHER_WALK_PHYS;
498
499         INIT_LIST_HEAD(&walk->buffers);
500
501         return skcipher_walk_skcipher(walk, req);
502 }
503 EXPORT_SYMBOL_GPL(skcipher_walk_async);
504
505 static int skcipher_walk_aead_common(struct skcipher_walk *walk,
506                                      struct aead_request *req, bool atomic)
507 {
508         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
509         int err;
510
511         walk->nbytes = 0;
512         walk->iv = req->iv;
513         walk->oiv = req->iv;
514
515         if (unlikely(!walk->total))
516                 return 0;
517
518         walk->flags &= ~SKCIPHER_WALK_PHYS;
519
520         scatterwalk_start(&walk->in, req->src);
521         scatterwalk_start(&walk->out, req->dst);
522
523         scatterwalk_copychunks(NULL, &walk->in, req->assoclen, 2);
524         scatterwalk_copychunks(NULL, &walk->out, req->assoclen, 2);
525
526         scatterwalk_done(&walk->in, 0, walk->total);
527         scatterwalk_done(&walk->out, 0, walk->total);
528
529         if (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP)
530                 walk->flags |= SKCIPHER_WALK_SLEEP;
531         else
532                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
533
534         walk->blocksize = crypto_aead_blocksize(tfm);
535         walk->stride = crypto_aead_chunksize(tfm);
536         walk->ivsize = crypto_aead_ivsize(tfm);
537         walk->alignmask = crypto_aead_alignmask(tfm);
538
539         err = skcipher_walk_first(walk);
540
541         if (atomic)
542                 walk->flags &= ~SKCIPHER_WALK_SLEEP;
543
544         return err;
545 }
546
547 int skcipher_walk_aead_encrypt(struct skcipher_walk *walk,
548                                struct aead_request *req, bool atomic)
549 {
550         walk->total = req->cryptlen;
551
552         return skcipher_walk_aead_common(walk, req, atomic);
553 }
554 EXPORT_SYMBOL_GPL(skcipher_walk_aead_encrypt);
555
556 int skcipher_walk_aead_decrypt(struct skcipher_walk *walk,
557                                struct aead_request *req, bool atomic)
558 {
559         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
560
561         walk->total = req->cryptlen - crypto_aead_authsize(tfm);
562
563         return skcipher_walk_aead_common(walk, req, atomic);
564 }
565 EXPORT_SYMBOL_GPL(skcipher_walk_aead_decrypt);
566
567 static void skcipher_set_needkey(struct crypto_skcipher *tfm)
568 {
569         if (crypto_skcipher_max_keysize(tfm) != 0)
570                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_NEED_KEY);
571 }
572
573 static int skcipher_setkey_unaligned(struct crypto_skcipher *tfm,
574                                      const u8 *key, unsigned int keylen)
575 {
576         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
577         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
578         u8 *buffer, *alignbuffer;
579         unsigned long absize;
580         int ret;
581
582         absize = keylen + alignmask;
583         buffer = kmalloc(absize, GFP_ATOMIC);
584         if (!buffer)
585                 return -ENOMEM;
586
587         alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
588         memcpy(alignbuffer, key, keylen);
589         ret = cipher->setkey(tfm, alignbuffer, keylen);
590         kfree_sensitive(buffer);
591         return ret;
592 }
593
594 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
595                            unsigned int keylen)
596 {
597         struct skcipher_alg *cipher = crypto_skcipher_alg(tfm);
598         unsigned long alignmask = crypto_skcipher_alignmask(tfm);
599         int err;
600
601         if (keylen < cipher->min_keysize || keylen > cipher->max_keysize)
602                 return -EINVAL;
603
604         if ((unsigned long)key & alignmask)
605                 err = skcipher_setkey_unaligned(tfm, key, keylen);
606         else
607                 err = cipher->setkey(tfm, key, keylen);
608
609         if (unlikely(err)) {
610                 skcipher_set_needkey(tfm);
611                 return err;
612         }
613
614         crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_NEED_KEY);
615         return 0;
616 }
617 EXPORT_SYMBOL_GPL(crypto_skcipher_setkey);
618
619 int crypto_skcipher_encrypt(struct skcipher_request *req)
620 {
621         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
622         struct crypto_alg *alg = tfm->base.__crt_alg;
623         unsigned int cryptlen = req->cryptlen;
624         int ret;
625
626         crypto_stats_get(alg);
627         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
628                 ret = -ENOKEY;
629         else
630                 ret = crypto_skcipher_alg(tfm)->encrypt(req);
631         crypto_stats_skcipher_encrypt(cryptlen, ret, alg);
632         return ret;
633 }
634 EXPORT_SYMBOL_GPL(crypto_skcipher_encrypt);
635
636 int crypto_skcipher_decrypt(struct skcipher_request *req)
637 {
638         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
639         struct crypto_alg *alg = tfm->base.__crt_alg;
640         unsigned int cryptlen = req->cryptlen;
641         int ret;
642
643         crypto_stats_get(alg);
644         if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
645                 ret = -ENOKEY;
646         else
647                 ret = crypto_skcipher_alg(tfm)->decrypt(req);
648         crypto_stats_skcipher_decrypt(cryptlen, ret, alg);
649         return ret;
650 }
651 EXPORT_SYMBOL_GPL(crypto_skcipher_decrypt);
652
653 static void crypto_skcipher_exit_tfm(struct crypto_tfm *tfm)
654 {
655         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
656         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
657
658         alg->exit(skcipher);
659 }
660
661 static int crypto_skcipher_init_tfm(struct crypto_tfm *tfm)
662 {
663         struct crypto_skcipher *skcipher = __crypto_skcipher_cast(tfm);
664         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
665
666         skcipher_set_needkey(skcipher);
667
668         if (alg->exit)
669                 skcipher->base.exit = crypto_skcipher_exit_tfm;
670
671         if (alg->init)
672                 return alg->init(skcipher);
673
674         return 0;
675 }
676
677 static void crypto_skcipher_free_instance(struct crypto_instance *inst)
678 {
679         struct skcipher_instance *skcipher =
680                 container_of(inst, struct skcipher_instance, s.base);
681
682         skcipher->free(skcipher);
683 }
684
685 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
686         __maybe_unused;
687 static void crypto_skcipher_show(struct seq_file *m, struct crypto_alg *alg)
688 {
689         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
690                                                      base);
691
692         seq_printf(m, "type         : skcipher\n");
693         seq_printf(m, "async        : %s\n",
694                    alg->cra_flags & CRYPTO_ALG_ASYNC ?  "yes" : "no");
695         seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
696         seq_printf(m, "min keysize  : %u\n", skcipher->min_keysize);
697         seq_printf(m, "max keysize  : %u\n", skcipher->max_keysize);
698         seq_printf(m, "ivsize       : %u\n", skcipher->ivsize);
699         seq_printf(m, "chunksize    : %u\n", skcipher->chunksize);
700         seq_printf(m, "walksize     : %u\n", skcipher->walksize);
701 }
702
703 #ifdef CONFIG_NET
704 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
705 {
706         struct crypto_report_blkcipher rblkcipher;
707         struct skcipher_alg *skcipher = container_of(alg, struct skcipher_alg,
708                                                      base);
709
710         memset(&rblkcipher, 0, sizeof(rblkcipher));
711
712         strscpy(rblkcipher.type, "skcipher", sizeof(rblkcipher.type));
713         strscpy(rblkcipher.geniv, "<none>", sizeof(rblkcipher.geniv));
714
715         rblkcipher.blocksize = alg->cra_blocksize;
716         rblkcipher.min_keysize = skcipher->min_keysize;
717         rblkcipher.max_keysize = skcipher->max_keysize;
718         rblkcipher.ivsize = skcipher->ivsize;
719
720         return nla_put(skb, CRYPTOCFGA_REPORT_BLKCIPHER,
721                        sizeof(rblkcipher), &rblkcipher);
722 }
723 #else
724 static int crypto_skcipher_report(struct sk_buff *skb, struct crypto_alg *alg)
725 {
726         return -ENOSYS;
727 }
728 #endif
729
730 static const struct crypto_type crypto_skcipher_type = {
731         .extsize = crypto_alg_extsize,
732         .init_tfm = crypto_skcipher_init_tfm,
733         .free = crypto_skcipher_free_instance,
734 #ifdef CONFIG_PROC_FS
735         .show = crypto_skcipher_show,
736 #endif
737         .report = crypto_skcipher_report,
738         .maskclear = ~CRYPTO_ALG_TYPE_MASK,
739         .maskset = CRYPTO_ALG_TYPE_MASK,
740         .type = CRYPTO_ALG_TYPE_SKCIPHER,
741         .tfmsize = offsetof(struct crypto_skcipher, base),
742 };
743
744 int crypto_grab_skcipher(struct crypto_skcipher_spawn *spawn,
745                          struct crypto_instance *inst,
746                          const char *name, u32 type, u32 mask)
747 {
748         spawn->base.frontend = &crypto_skcipher_type;
749         return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
750 }
751 EXPORT_SYMBOL_GPL(crypto_grab_skcipher);
752
753 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
754                                               u32 type, u32 mask)
755 {
756         return crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
757 }
758 EXPORT_SYMBOL_GPL(crypto_alloc_skcipher);
759
760 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(
761                                 const char *alg_name, u32 type, u32 mask)
762 {
763         struct crypto_skcipher *tfm;
764
765         /* Only sync algorithms allowed. */
766         mask |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_SKCIPHER_REQSIZE_LARGE;
767
768         tfm = crypto_alloc_tfm(alg_name, &crypto_skcipher_type, type, mask);
769
770         /*
771          * Make sure we do not allocate something that might get used with
772          * an on-stack request: check the request size.
773          */
774         if (!IS_ERR(tfm) && WARN_ON(crypto_skcipher_reqsize(tfm) >
775                                     MAX_SYNC_SKCIPHER_REQSIZE)) {
776                 crypto_free_skcipher(tfm);
777                 return ERR_PTR(-EINVAL);
778         }
779
780         return (struct crypto_sync_skcipher *)tfm;
781 }
782 EXPORT_SYMBOL_GPL(crypto_alloc_sync_skcipher);
783
784 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask)
785 {
786         return crypto_type_has_alg(alg_name, &crypto_skcipher_type, type, mask);
787 }
788 EXPORT_SYMBOL_GPL(crypto_has_skcipher);
789
790 static int skcipher_prepare_alg(struct skcipher_alg *alg)
791 {
792         struct crypto_alg *base = &alg->base;
793
794         if (alg->ivsize > PAGE_SIZE / 8 || alg->chunksize > PAGE_SIZE / 8 ||
795             alg->walksize > PAGE_SIZE / 8)
796                 return -EINVAL;
797
798         if (!alg->chunksize)
799                 alg->chunksize = base->cra_blocksize;
800         if (!alg->walksize)
801                 alg->walksize = alg->chunksize;
802
803         base->cra_type = &crypto_skcipher_type;
804         base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
805         base->cra_flags |= CRYPTO_ALG_TYPE_SKCIPHER;
806
807         return 0;
808 }
809
810 int crypto_register_skcipher(struct skcipher_alg *alg)
811 {
812         struct crypto_alg *base = &alg->base;
813         int err;
814
815         err = skcipher_prepare_alg(alg);
816         if (err)
817                 return err;
818
819         return crypto_register_alg(base);
820 }
821 EXPORT_SYMBOL_GPL(crypto_register_skcipher);
822
823 void crypto_unregister_skcipher(struct skcipher_alg *alg)
824 {
825         crypto_unregister_alg(&alg->base);
826 }
827 EXPORT_SYMBOL_GPL(crypto_unregister_skcipher);
828
829 int crypto_register_skciphers(struct skcipher_alg *algs, int count)
830 {
831         int i, ret;
832
833         for (i = 0; i < count; i++) {
834                 ret = crypto_register_skcipher(&algs[i]);
835                 if (ret)
836                         goto err;
837         }
838
839         return 0;
840
841 err:
842         for (--i; i >= 0; --i)
843                 crypto_unregister_skcipher(&algs[i]);
844
845         return ret;
846 }
847 EXPORT_SYMBOL_GPL(crypto_register_skciphers);
848
849 void crypto_unregister_skciphers(struct skcipher_alg *algs, int count)
850 {
851         int i;
852
853         for (i = count - 1; i >= 0; --i)
854                 crypto_unregister_skcipher(&algs[i]);
855 }
856 EXPORT_SYMBOL_GPL(crypto_unregister_skciphers);
857
858 int skcipher_register_instance(struct crypto_template *tmpl,
859                            struct skcipher_instance *inst)
860 {
861         int err;
862
863         if (WARN_ON(!inst->free))
864                 return -EINVAL;
865
866         err = skcipher_prepare_alg(&inst->alg);
867         if (err)
868                 return err;
869
870         return crypto_register_instance(tmpl, skcipher_crypto_instance(inst));
871 }
872 EXPORT_SYMBOL_GPL(skcipher_register_instance);
873
874 static int skcipher_setkey_simple(struct crypto_skcipher *tfm, const u8 *key,
875                                   unsigned int keylen)
876 {
877         struct crypto_cipher *cipher = skcipher_cipher_simple(tfm);
878
879         crypto_cipher_clear_flags(cipher, CRYPTO_TFM_REQ_MASK);
880         crypto_cipher_set_flags(cipher, crypto_skcipher_get_flags(tfm) &
881                                 CRYPTO_TFM_REQ_MASK);
882         return crypto_cipher_setkey(cipher, key, keylen);
883 }
884
885 static int skcipher_init_tfm_simple(struct crypto_skcipher *tfm)
886 {
887         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
888         struct crypto_cipher_spawn *spawn = skcipher_instance_ctx(inst);
889         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
890         struct crypto_cipher *cipher;
891
892         cipher = crypto_spawn_cipher(spawn);
893         if (IS_ERR(cipher))
894                 return PTR_ERR(cipher);
895
896         ctx->cipher = cipher;
897         return 0;
898 }
899
900 static void skcipher_exit_tfm_simple(struct crypto_skcipher *tfm)
901 {
902         struct skcipher_ctx_simple *ctx = crypto_skcipher_ctx(tfm);
903
904         crypto_free_cipher(ctx->cipher);
905 }
906
907 static void skcipher_free_instance_simple(struct skcipher_instance *inst)
908 {
909         crypto_drop_cipher(skcipher_instance_ctx(inst));
910         kfree(inst);
911 }
912
913 /**
914  * skcipher_alloc_instance_simple - allocate instance of simple block cipher mode
915  *
916  * Allocate an skcipher_instance for a simple block cipher mode of operation,
917  * e.g. cbc or ecb.  The instance context will have just a single crypto_spawn,
918  * that for the underlying cipher.  The {min,max}_keysize, ivsize, blocksize,
919  * alignmask, and priority are set from the underlying cipher but can be
920  * overridden if needed.  The tfm context defaults to skcipher_ctx_simple, and
921  * default ->setkey(), ->init(), and ->exit() methods are installed.
922  *
923  * @tmpl: the template being instantiated
924  * @tb: the template parameters
925  *
926  * Return: a pointer to the new instance, or an ERR_PTR().  The caller still
927  *         needs to register the instance.
928  */
929 struct skcipher_instance *skcipher_alloc_instance_simple(
930         struct crypto_template *tmpl, struct rtattr **tb)
931 {
932         u32 mask;
933         struct skcipher_instance *inst;
934         struct crypto_cipher_spawn *spawn;
935         struct crypto_alg *cipher_alg;
936         int err;
937
938         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
939         if (err)
940                 return ERR_PTR(err);
941
942         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
943         if (!inst)
944                 return ERR_PTR(-ENOMEM);
945         spawn = skcipher_instance_ctx(inst);
946
947         err = crypto_grab_cipher(spawn, skcipher_crypto_instance(inst),
948                                  crypto_attr_alg_name(tb[1]), 0, mask);
949         if (err)
950                 goto err_free_inst;
951         cipher_alg = crypto_spawn_cipher_alg(spawn);
952
953         err = crypto_inst_setname(skcipher_crypto_instance(inst), tmpl->name,
954                                   cipher_alg);
955         if (err)
956                 goto err_free_inst;
957
958         inst->free = skcipher_free_instance_simple;
959
960         /* Default algorithm properties, can be overridden */
961         inst->alg.base.cra_blocksize = cipher_alg->cra_blocksize;
962         inst->alg.base.cra_alignmask = cipher_alg->cra_alignmask;
963         inst->alg.base.cra_priority = cipher_alg->cra_priority;
964         inst->alg.min_keysize = cipher_alg->cra_cipher.cia_min_keysize;
965         inst->alg.max_keysize = cipher_alg->cra_cipher.cia_max_keysize;
966         inst->alg.ivsize = cipher_alg->cra_blocksize;
967
968         /* Use skcipher_ctx_simple by default, can be overridden */
969         inst->alg.base.cra_ctxsize = sizeof(struct skcipher_ctx_simple);
970         inst->alg.setkey = skcipher_setkey_simple;
971         inst->alg.init = skcipher_init_tfm_simple;
972         inst->alg.exit = skcipher_exit_tfm_simple;
973
974         return inst;
975
976 err_free_inst:
977         skcipher_free_instance_simple(inst);
978         return ERR_PTR(err);
979 }
980 EXPORT_SYMBOL_GPL(skcipher_alloc_instance_simple);
981
982 MODULE_LICENSE("GPL");
983 MODULE_DESCRIPTION("Symmetric key cipher type");
984 MODULE_IMPORT_NS(CRYPTO_INTERNAL);