LoongArch: Use the "jr" pseudo-instruction where applicable
[platform/kernel/linux-starfive.git] / crypto / simd.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Shared crypto simd helpers
4  *
5  * Copyright (c) 2012 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
6  * Copyright (c) 2016 Herbert Xu <herbert@gondor.apana.org.au>
7  * Copyright (c) 2019 Google LLC
8  *
9  * Based on aesni-intel_glue.c by:
10  *  Copyright (C) 2008, Intel Corp.
11  *    Author: Huang Ying <ying.huang@intel.com>
12  */
13
14 /*
15  * Shared crypto SIMD helpers.  These functions dynamically create and register
16  * an skcipher or AEAD algorithm that wraps another, internal algorithm.  The
17  * wrapper ensures that the internal algorithm is only executed in a context
18  * where SIMD instructions are usable, i.e. where may_use_simd() returns true.
19  * If SIMD is already usable, the wrapper directly calls the internal algorithm.
20  * Otherwise it defers execution to a workqueue via cryptd.
21  *
22  * This is an alternative to the internal algorithm implementing a fallback for
23  * the !may_use_simd() case itself.
24  *
25  * Note that the wrapper algorithm is asynchronous, i.e. it has the
26  * CRYPTO_ALG_ASYNC flag set.  Therefore it won't be found by users who
27  * explicitly allocate a synchronous algorithm.
28  */
29
30 #include <crypto/cryptd.h>
31 #include <crypto/internal/aead.h>
32 #include <crypto/internal/simd.h>
33 #include <crypto/internal/skcipher.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/preempt.h>
37 #include <asm/simd.h>
38
39 /* skcipher support */
40
41 struct simd_skcipher_alg {
42         const char *ialg_name;
43         struct skcipher_alg alg;
44 };
45
46 struct simd_skcipher_ctx {
47         struct cryptd_skcipher *cryptd_tfm;
48 };
49
50 static int simd_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
51                                 unsigned int key_len)
52 {
53         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
54         struct crypto_skcipher *child = &ctx->cryptd_tfm->base;
55
56         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
57         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(tfm) &
58                                          CRYPTO_TFM_REQ_MASK);
59         return crypto_skcipher_setkey(child, key, key_len);
60 }
61
62 static int simd_skcipher_encrypt(struct skcipher_request *req)
63 {
64         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
65         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
66         struct skcipher_request *subreq;
67         struct crypto_skcipher *child;
68
69         subreq = skcipher_request_ctx(req);
70         *subreq = *req;
71
72         if (!crypto_simd_usable() ||
73             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
74                 child = &ctx->cryptd_tfm->base;
75         else
76                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
77
78         skcipher_request_set_tfm(subreq, child);
79
80         return crypto_skcipher_encrypt(subreq);
81 }
82
83 static int simd_skcipher_decrypt(struct skcipher_request *req)
84 {
85         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
86         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
87         struct skcipher_request *subreq;
88         struct crypto_skcipher *child;
89
90         subreq = skcipher_request_ctx(req);
91         *subreq = *req;
92
93         if (!crypto_simd_usable() ||
94             (in_atomic() && cryptd_skcipher_queued(ctx->cryptd_tfm)))
95                 child = &ctx->cryptd_tfm->base;
96         else
97                 child = cryptd_skcipher_child(ctx->cryptd_tfm);
98
99         skcipher_request_set_tfm(subreq, child);
100
101         return crypto_skcipher_decrypt(subreq);
102 }
103
104 static void simd_skcipher_exit(struct crypto_skcipher *tfm)
105 {
106         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
107
108         cryptd_free_skcipher(ctx->cryptd_tfm);
109 }
110
111 static int simd_skcipher_init(struct crypto_skcipher *tfm)
112 {
113         struct simd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm);
114         struct cryptd_skcipher *cryptd_tfm;
115         struct simd_skcipher_alg *salg;
116         struct skcipher_alg *alg;
117         unsigned reqsize;
118
119         alg = crypto_skcipher_alg(tfm);
120         salg = container_of(alg, struct simd_skcipher_alg, alg);
121
122         cryptd_tfm = cryptd_alloc_skcipher(salg->ialg_name,
123                                            CRYPTO_ALG_INTERNAL,
124                                            CRYPTO_ALG_INTERNAL);
125         if (IS_ERR(cryptd_tfm))
126                 return PTR_ERR(cryptd_tfm);
127
128         ctx->cryptd_tfm = cryptd_tfm;
129
130         reqsize = crypto_skcipher_reqsize(cryptd_skcipher_child(cryptd_tfm));
131         reqsize = max(reqsize, crypto_skcipher_reqsize(&cryptd_tfm->base));
132         reqsize += sizeof(struct skcipher_request);
133
134         crypto_skcipher_set_reqsize(tfm, reqsize);
135
136         return 0;
137 }
138
139 struct simd_skcipher_alg *simd_skcipher_create_compat(const char *algname,
140                                                       const char *drvname,
141                                                       const char *basename)
142 {
143         struct simd_skcipher_alg *salg;
144         struct crypto_skcipher *tfm;
145         struct skcipher_alg *ialg;
146         struct skcipher_alg *alg;
147         int err;
148
149         tfm = crypto_alloc_skcipher(basename, CRYPTO_ALG_INTERNAL,
150                                     CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
151         if (IS_ERR(tfm))
152                 return ERR_CAST(tfm);
153
154         ialg = crypto_skcipher_alg(tfm);
155
156         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
157         if (!salg) {
158                 salg = ERR_PTR(-ENOMEM);
159                 goto out_put_tfm;
160         }
161
162         salg->ialg_name = basename;
163         alg = &salg->alg;
164
165         err = -ENAMETOOLONG;
166         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
167             CRYPTO_MAX_ALG_NAME)
168                 goto out_free_salg;
169
170         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
171                      drvname) >= CRYPTO_MAX_ALG_NAME)
172                 goto out_free_salg;
173
174         alg->base.cra_flags = CRYPTO_ALG_ASYNC |
175                 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
176         alg->base.cra_priority = ialg->base.cra_priority;
177         alg->base.cra_blocksize = ialg->base.cra_blocksize;
178         alg->base.cra_alignmask = ialg->base.cra_alignmask;
179         alg->base.cra_module = ialg->base.cra_module;
180         alg->base.cra_ctxsize = sizeof(struct simd_skcipher_ctx);
181
182         alg->ivsize = ialg->ivsize;
183         alg->chunksize = ialg->chunksize;
184         alg->min_keysize = ialg->min_keysize;
185         alg->max_keysize = ialg->max_keysize;
186
187         alg->init = simd_skcipher_init;
188         alg->exit = simd_skcipher_exit;
189
190         alg->setkey = simd_skcipher_setkey;
191         alg->encrypt = simd_skcipher_encrypt;
192         alg->decrypt = simd_skcipher_decrypt;
193
194         err = crypto_register_skcipher(alg);
195         if (err)
196                 goto out_free_salg;
197
198 out_put_tfm:
199         crypto_free_skcipher(tfm);
200         return salg;
201
202 out_free_salg:
203         kfree(salg);
204         salg = ERR_PTR(err);
205         goto out_put_tfm;
206 }
207 EXPORT_SYMBOL_GPL(simd_skcipher_create_compat);
208
209 struct simd_skcipher_alg *simd_skcipher_create(const char *algname,
210                                                const char *basename)
211 {
212         char drvname[CRYPTO_MAX_ALG_NAME];
213
214         if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
215             CRYPTO_MAX_ALG_NAME)
216                 return ERR_PTR(-ENAMETOOLONG);
217
218         return simd_skcipher_create_compat(algname, drvname, basename);
219 }
220 EXPORT_SYMBOL_GPL(simd_skcipher_create);
221
222 void simd_skcipher_free(struct simd_skcipher_alg *salg)
223 {
224         crypto_unregister_skcipher(&salg->alg);
225         kfree(salg);
226 }
227 EXPORT_SYMBOL_GPL(simd_skcipher_free);
228
229 int simd_register_skciphers_compat(struct skcipher_alg *algs, int count,
230                                    struct simd_skcipher_alg **simd_algs)
231 {
232         int err;
233         int i;
234         const char *algname;
235         const char *drvname;
236         const char *basename;
237         struct simd_skcipher_alg *simd;
238
239         err = crypto_register_skciphers(algs, count);
240         if (err)
241                 return err;
242
243         for (i = 0; i < count; i++) {
244                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
245                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
246                 algname = algs[i].base.cra_name + 2;
247                 drvname = algs[i].base.cra_driver_name + 2;
248                 basename = algs[i].base.cra_driver_name;
249                 simd = simd_skcipher_create_compat(algname, drvname, basename);
250                 err = PTR_ERR(simd);
251                 if (IS_ERR(simd))
252                         goto err_unregister;
253                 simd_algs[i] = simd;
254         }
255         return 0;
256
257 err_unregister:
258         simd_unregister_skciphers(algs, count, simd_algs);
259         return err;
260 }
261 EXPORT_SYMBOL_GPL(simd_register_skciphers_compat);
262
263 void simd_unregister_skciphers(struct skcipher_alg *algs, int count,
264                                struct simd_skcipher_alg **simd_algs)
265 {
266         int i;
267
268         crypto_unregister_skciphers(algs, count);
269
270         for (i = 0; i < count; i++) {
271                 if (simd_algs[i]) {
272                         simd_skcipher_free(simd_algs[i]);
273                         simd_algs[i] = NULL;
274                 }
275         }
276 }
277 EXPORT_SYMBOL_GPL(simd_unregister_skciphers);
278
279 /* AEAD support */
280
281 struct simd_aead_alg {
282         const char *ialg_name;
283         struct aead_alg alg;
284 };
285
286 struct simd_aead_ctx {
287         struct cryptd_aead *cryptd_tfm;
288 };
289
290 static int simd_aead_setkey(struct crypto_aead *tfm, const u8 *key,
291                                 unsigned int key_len)
292 {
293         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
294         struct crypto_aead *child = &ctx->cryptd_tfm->base;
295
296         crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
297         crypto_aead_set_flags(child, crypto_aead_get_flags(tfm) &
298                                      CRYPTO_TFM_REQ_MASK);
299         return crypto_aead_setkey(child, key, key_len);
300 }
301
302 static int simd_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
303 {
304         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
305         struct crypto_aead *child = &ctx->cryptd_tfm->base;
306
307         return crypto_aead_setauthsize(child, authsize);
308 }
309
310 static int simd_aead_encrypt(struct aead_request *req)
311 {
312         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
313         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
314         struct aead_request *subreq;
315         struct crypto_aead *child;
316
317         subreq = aead_request_ctx(req);
318         *subreq = *req;
319
320         if (!crypto_simd_usable() ||
321             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
322                 child = &ctx->cryptd_tfm->base;
323         else
324                 child = cryptd_aead_child(ctx->cryptd_tfm);
325
326         aead_request_set_tfm(subreq, child);
327
328         return crypto_aead_encrypt(subreq);
329 }
330
331 static int simd_aead_decrypt(struct aead_request *req)
332 {
333         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
334         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
335         struct aead_request *subreq;
336         struct crypto_aead *child;
337
338         subreq = aead_request_ctx(req);
339         *subreq = *req;
340
341         if (!crypto_simd_usable() ||
342             (in_atomic() && cryptd_aead_queued(ctx->cryptd_tfm)))
343                 child = &ctx->cryptd_tfm->base;
344         else
345                 child = cryptd_aead_child(ctx->cryptd_tfm);
346
347         aead_request_set_tfm(subreq, child);
348
349         return crypto_aead_decrypt(subreq);
350 }
351
352 static void simd_aead_exit(struct crypto_aead *tfm)
353 {
354         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
355
356         cryptd_free_aead(ctx->cryptd_tfm);
357 }
358
359 static int simd_aead_init(struct crypto_aead *tfm)
360 {
361         struct simd_aead_ctx *ctx = crypto_aead_ctx(tfm);
362         struct cryptd_aead *cryptd_tfm;
363         struct simd_aead_alg *salg;
364         struct aead_alg *alg;
365         unsigned reqsize;
366
367         alg = crypto_aead_alg(tfm);
368         salg = container_of(alg, struct simd_aead_alg, alg);
369
370         cryptd_tfm = cryptd_alloc_aead(salg->ialg_name, CRYPTO_ALG_INTERNAL,
371                                        CRYPTO_ALG_INTERNAL);
372         if (IS_ERR(cryptd_tfm))
373                 return PTR_ERR(cryptd_tfm);
374
375         ctx->cryptd_tfm = cryptd_tfm;
376
377         reqsize = crypto_aead_reqsize(cryptd_aead_child(cryptd_tfm));
378         reqsize = max(reqsize, crypto_aead_reqsize(&cryptd_tfm->base));
379         reqsize += sizeof(struct aead_request);
380
381         crypto_aead_set_reqsize(tfm, reqsize);
382
383         return 0;
384 }
385
386 struct simd_aead_alg *simd_aead_create_compat(const char *algname,
387                                               const char *drvname,
388                                               const char *basename)
389 {
390         struct simd_aead_alg *salg;
391         struct crypto_aead *tfm;
392         struct aead_alg *ialg;
393         struct aead_alg *alg;
394         int err;
395
396         tfm = crypto_alloc_aead(basename, CRYPTO_ALG_INTERNAL,
397                                 CRYPTO_ALG_INTERNAL | CRYPTO_ALG_ASYNC);
398         if (IS_ERR(tfm))
399                 return ERR_CAST(tfm);
400
401         ialg = crypto_aead_alg(tfm);
402
403         salg = kzalloc(sizeof(*salg), GFP_KERNEL);
404         if (!salg) {
405                 salg = ERR_PTR(-ENOMEM);
406                 goto out_put_tfm;
407         }
408
409         salg->ialg_name = basename;
410         alg = &salg->alg;
411
412         err = -ENAMETOOLONG;
413         if (snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", algname) >=
414             CRYPTO_MAX_ALG_NAME)
415                 goto out_free_salg;
416
417         if (snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
418                      drvname) >= CRYPTO_MAX_ALG_NAME)
419                 goto out_free_salg;
420
421         alg->base.cra_flags = CRYPTO_ALG_ASYNC |
422                 (ialg->base.cra_flags & CRYPTO_ALG_INHERITED_FLAGS);
423         alg->base.cra_priority = ialg->base.cra_priority;
424         alg->base.cra_blocksize = ialg->base.cra_blocksize;
425         alg->base.cra_alignmask = ialg->base.cra_alignmask;
426         alg->base.cra_module = ialg->base.cra_module;
427         alg->base.cra_ctxsize = sizeof(struct simd_aead_ctx);
428
429         alg->ivsize = ialg->ivsize;
430         alg->maxauthsize = ialg->maxauthsize;
431         alg->chunksize = ialg->chunksize;
432
433         alg->init = simd_aead_init;
434         alg->exit = simd_aead_exit;
435
436         alg->setkey = simd_aead_setkey;
437         alg->setauthsize = simd_aead_setauthsize;
438         alg->encrypt = simd_aead_encrypt;
439         alg->decrypt = simd_aead_decrypt;
440
441         err = crypto_register_aead(alg);
442         if (err)
443                 goto out_free_salg;
444
445 out_put_tfm:
446         crypto_free_aead(tfm);
447         return salg;
448
449 out_free_salg:
450         kfree(salg);
451         salg = ERR_PTR(err);
452         goto out_put_tfm;
453 }
454 EXPORT_SYMBOL_GPL(simd_aead_create_compat);
455
456 struct simd_aead_alg *simd_aead_create(const char *algname,
457                                        const char *basename)
458 {
459         char drvname[CRYPTO_MAX_ALG_NAME];
460
461         if (snprintf(drvname, CRYPTO_MAX_ALG_NAME, "simd-%s", basename) >=
462             CRYPTO_MAX_ALG_NAME)
463                 return ERR_PTR(-ENAMETOOLONG);
464
465         return simd_aead_create_compat(algname, drvname, basename);
466 }
467 EXPORT_SYMBOL_GPL(simd_aead_create);
468
469 void simd_aead_free(struct simd_aead_alg *salg)
470 {
471         crypto_unregister_aead(&salg->alg);
472         kfree(salg);
473 }
474 EXPORT_SYMBOL_GPL(simd_aead_free);
475
476 int simd_register_aeads_compat(struct aead_alg *algs, int count,
477                                struct simd_aead_alg **simd_algs)
478 {
479         int err;
480         int i;
481         const char *algname;
482         const char *drvname;
483         const char *basename;
484         struct simd_aead_alg *simd;
485
486         err = crypto_register_aeads(algs, count);
487         if (err)
488                 return err;
489
490         for (i = 0; i < count; i++) {
491                 WARN_ON(strncmp(algs[i].base.cra_name, "__", 2));
492                 WARN_ON(strncmp(algs[i].base.cra_driver_name, "__", 2));
493                 algname = algs[i].base.cra_name + 2;
494                 drvname = algs[i].base.cra_driver_name + 2;
495                 basename = algs[i].base.cra_driver_name;
496                 simd = simd_aead_create_compat(algname, drvname, basename);
497                 err = PTR_ERR(simd);
498                 if (IS_ERR(simd))
499                         goto err_unregister;
500                 simd_algs[i] = simd;
501         }
502         return 0;
503
504 err_unregister:
505         simd_unregister_aeads(algs, count, simd_algs);
506         return err;
507 }
508 EXPORT_SYMBOL_GPL(simd_register_aeads_compat);
509
510 void simd_unregister_aeads(struct aead_alg *algs, int count,
511                            struct simd_aead_alg **simd_algs)
512 {
513         int i;
514
515         crypto_unregister_aeads(algs, count);
516
517         for (i = 0; i < count; i++) {
518                 if (simd_algs[i]) {
519                         simd_aead_free(simd_algs[i]);
520                         simd_algs[i] = NULL;
521                 }
522         }
523 }
524 EXPORT_SYMBOL_GPL(simd_unregister_aeads);
525
526 MODULE_LICENSE("GPL");