1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * RSA padding templates.
5 * Copyright (c) 2015 Intel Corporation
8 #include <crypto/algapi.h>
9 #include <crypto/akcipher.h>
10 #include <crypto/internal/akcipher.h>
11 #include <crypto/internal/rsa.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/random.h>
19 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
21 static const u8 rsa_digest_info_md5[] = {
22 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
23 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
24 0x05, 0x00, 0x04, 0x10
27 static const u8 rsa_digest_info_sha1[] = {
28 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
29 0x2b, 0x0e, 0x03, 0x02, 0x1a,
30 0x05, 0x00, 0x04, 0x14
33 static const u8 rsa_digest_info_rmd160[] = {
34 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
35 0x2b, 0x24, 0x03, 0x02, 0x01,
36 0x05, 0x00, 0x04, 0x14
39 static const u8 rsa_digest_info_sha224[] = {
40 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
41 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
42 0x05, 0x00, 0x04, 0x1c
45 static const u8 rsa_digest_info_sha256[] = {
46 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
47 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
48 0x05, 0x00, 0x04, 0x20
51 static const u8 rsa_digest_info_sha384[] = {
52 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
53 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
54 0x05, 0x00, 0x04, 0x30
57 static const u8 rsa_digest_info_sha512[] = {
58 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
59 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
60 0x05, 0x00, 0x04, 0x40
63 static const struct rsa_asn1_template {
67 } rsa_asn1_templates[] = {
68 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
80 static const struct rsa_asn1_template *rsa_lookup_asn1(const char *name)
82 const struct rsa_asn1_template *p;
84 for (p = rsa_asn1_templates; p->name; p++)
85 if (strcmp(name, p->name) == 0)
91 struct crypto_akcipher *child;
92 unsigned int key_size;
95 struct pkcs1pad_inst_ctx {
96 struct crypto_akcipher_spawn spawn;
97 const struct rsa_asn1_template *digest_info;
100 struct pkcs1pad_request {
101 struct scatterlist in_sg[2], out_sg[1];
102 uint8_t *in_buf, *out_buf;
103 struct akcipher_request child_req;
106 static int pkcs1pad_set_pub_key(struct crypto_akcipher *tfm, const void *key,
109 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
114 err = crypto_akcipher_set_pub_key(ctx->child, key, keylen);
118 /* Find out new modulus size from rsa implementation */
119 err = crypto_akcipher_maxsize(ctx->child);
127 static int pkcs1pad_set_priv_key(struct crypto_akcipher *tfm, const void *key,
130 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
135 err = crypto_akcipher_set_priv_key(ctx->child, key, keylen);
139 /* Find out new modulus size from rsa implementation */
140 err = crypto_akcipher_maxsize(ctx->child);
148 static unsigned int pkcs1pad_get_max_size(struct crypto_akcipher *tfm)
150 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
153 * The maximum destination buffer size for the encrypt/sign operations
154 * will be the same as for RSA, even though it's smaller for
158 return ctx->key_size;
161 static void pkcs1pad_sg_set_buf(struct scatterlist *sg, void *buf, size_t len,
162 struct scatterlist *next)
164 int nsegs = next ? 2 : 1;
166 sg_init_table(sg, nsegs);
167 sg_set_buf(sg, buf, len);
170 sg_chain(sg, nsegs, next);
173 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request *req, int err)
175 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
176 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
177 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
178 unsigned int pad_len;
185 len = req_ctx->child_req.dst_len;
186 pad_len = ctx->key_size - len;
188 /* Four billion to one */
189 if (likely(!pad_len))
192 out_buf = kzalloc(ctx->key_size, GFP_KERNEL);
197 sg_copy_to_buffer(req->dst, sg_nents_for_len(req->dst, len),
198 out_buf + pad_len, len);
199 sg_copy_from_buffer(req->dst,
200 sg_nents_for_len(req->dst, ctx->key_size),
201 out_buf, ctx->key_size);
202 kfree_sensitive(out_buf);
205 req->dst_len = ctx->key_size;
207 kfree(req_ctx->in_buf);
212 static void pkcs1pad_encrypt_sign_complete_cb(
213 struct crypto_async_request *child_async_req, int err)
215 struct akcipher_request *req = child_async_req->data;
216 struct crypto_async_request async_req;
218 if (err == -EINPROGRESS)
221 async_req.data = req->base.data;
222 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
223 async_req.flags = child_async_req->flags;
224 req->base.complete(&async_req,
225 pkcs1pad_encrypt_sign_complete(req, err));
228 static int pkcs1pad_encrypt(struct akcipher_request *req)
230 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
231 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
232 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
234 unsigned int i, ps_end;
239 if (req->src_len > ctx->key_size - 11)
242 if (req->dst_len < ctx->key_size) {
243 req->dst_len = ctx->key_size;
247 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
249 if (!req_ctx->in_buf)
252 ps_end = ctx->key_size - req->src_len - 2;
253 req_ctx->in_buf[0] = 0x02;
254 for (i = 1; i < ps_end; i++)
255 req_ctx->in_buf[i] = 1 + prandom_u32_max(255);
256 req_ctx->in_buf[ps_end] = 0x00;
258 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
259 ctx->key_size - 1 - req->src_len, req->src);
261 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
262 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
263 pkcs1pad_encrypt_sign_complete_cb, req);
265 /* Reuse output buffer */
266 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
267 req->dst, ctx->key_size - 1, req->dst_len);
269 err = crypto_akcipher_encrypt(&req_ctx->child_req);
270 if (err != -EINPROGRESS && err != -EBUSY)
271 return pkcs1pad_encrypt_sign_complete(req, err);
276 static int pkcs1pad_decrypt_complete(struct akcipher_request *req, int err)
278 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
279 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
280 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
281 unsigned int dst_len;
289 dst_len = req_ctx->child_req.dst_len;
290 if (dst_len < ctx->key_size - 1)
293 out_buf = req_ctx->out_buf;
294 if (dst_len == ctx->key_size) {
295 if (out_buf[0] != 0x00)
296 /* Decrypted value had no leading 0 byte */
303 if (out_buf[0] != 0x02)
306 for (pos = 1; pos < dst_len; pos++)
307 if (out_buf[pos] == 0x00)
309 if (pos < 9 || pos == dst_len)
315 if (req->dst_len < dst_len - pos)
317 req->dst_len = dst_len - pos;
320 sg_copy_from_buffer(req->dst,
321 sg_nents_for_len(req->dst, req->dst_len),
322 out_buf + pos, req->dst_len);
325 kfree_sensitive(req_ctx->out_buf);
330 static void pkcs1pad_decrypt_complete_cb(
331 struct crypto_async_request *child_async_req, int err)
333 struct akcipher_request *req = child_async_req->data;
334 struct crypto_async_request async_req;
336 if (err == -EINPROGRESS)
339 async_req.data = req->base.data;
340 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
341 async_req.flags = child_async_req->flags;
342 req->base.complete(&async_req, pkcs1pad_decrypt_complete(req, err));
345 static int pkcs1pad_decrypt(struct akcipher_request *req)
347 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
348 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
349 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
352 if (!ctx->key_size || req->src_len != ctx->key_size)
355 req_ctx->out_buf = kmalloc(ctx->key_size, GFP_KERNEL);
356 if (!req_ctx->out_buf)
359 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
360 ctx->key_size, NULL);
362 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
363 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
364 pkcs1pad_decrypt_complete_cb, req);
366 /* Reuse input buffer, output to a new buffer */
367 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
368 req_ctx->out_sg, req->src_len,
371 err = crypto_akcipher_decrypt(&req_ctx->child_req);
372 if (err != -EINPROGRESS && err != -EBUSY)
373 return pkcs1pad_decrypt_complete(req, err);
378 static int pkcs1pad_sign(struct akcipher_request *req)
380 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
381 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
382 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
383 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
384 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
385 const struct rsa_asn1_template *digest_info = ictx->digest_info;
387 unsigned int ps_end, digest_size = 0;
393 digest_size = digest_info->size;
395 if (req->src_len + digest_size > ctx->key_size - 11)
398 if (req->dst_len < ctx->key_size) {
399 req->dst_len = ctx->key_size;
403 req_ctx->in_buf = kmalloc(ctx->key_size - 1 - req->src_len,
405 if (!req_ctx->in_buf)
408 ps_end = ctx->key_size - digest_size - req->src_len - 2;
409 req_ctx->in_buf[0] = 0x01;
410 memset(req_ctx->in_buf + 1, 0xff, ps_end - 1);
411 req_ctx->in_buf[ps_end] = 0x00;
414 memcpy(req_ctx->in_buf + ps_end + 1, digest_info->data,
417 pkcs1pad_sg_set_buf(req_ctx->in_sg, req_ctx->in_buf,
418 ctx->key_size - 1 - req->src_len, req->src);
420 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
421 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
422 pkcs1pad_encrypt_sign_complete_cb, req);
424 /* Reuse output buffer */
425 akcipher_request_set_crypt(&req_ctx->child_req, req_ctx->in_sg,
426 req->dst, ctx->key_size - 1, req->dst_len);
428 err = crypto_akcipher_decrypt(&req_ctx->child_req);
429 if (err != -EINPROGRESS && err != -EBUSY)
430 return pkcs1pad_encrypt_sign_complete(req, err);
435 static int pkcs1pad_verify_complete(struct akcipher_request *req, int err)
437 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
438 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
439 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
440 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
441 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
442 const struct rsa_asn1_template *digest_info = ictx->digest_info;
443 unsigned int dst_len;
451 dst_len = req_ctx->child_req.dst_len;
452 if (dst_len < ctx->key_size - 1)
455 out_buf = req_ctx->out_buf;
456 if (dst_len == ctx->key_size) {
457 if (out_buf[0] != 0x00)
458 /* Decrypted value had no leading 0 byte */
466 if (out_buf[0] != 0x01)
469 for (pos = 1; pos < dst_len; pos++)
470 if (out_buf[pos] != 0xff)
473 if (pos < 9 || pos == dst_len || out_buf[pos] != 0x00)
478 if (crypto_memneq(out_buf + pos, digest_info->data,
482 pos += digest_info->size;
487 if (req->dst_len != dst_len - pos) {
489 req->dst_len = dst_len - pos;
492 /* Extract appended digest. */
493 sg_pcopy_to_buffer(req->src,
494 sg_nents_for_len(req->src,
495 req->src_len + req->dst_len),
496 req_ctx->out_buf + ctx->key_size,
497 req->dst_len, ctx->key_size);
498 /* Do the actual verification step. */
499 if (memcmp(req_ctx->out_buf + ctx->key_size, out_buf + pos,
503 kfree_sensitive(req_ctx->out_buf);
508 static void pkcs1pad_verify_complete_cb(
509 struct crypto_async_request *child_async_req, int err)
511 struct akcipher_request *req = child_async_req->data;
512 struct crypto_async_request async_req;
514 if (err == -EINPROGRESS)
517 async_req.data = req->base.data;
518 async_req.tfm = crypto_akcipher_tfm(crypto_akcipher_reqtfm(req));
519 async_req.flags = child_async_req->flags;
520 req->base.complete(&async_req, pkcs1pad_verify_complete(req, err));
524 * The verify operation is here for completeness similar to the verification
525 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
526 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
527 * retrieve the DigestInfo from a signature, instead the user is expected
528 * to call the sign operation to generate the expected signature and compare
529 * signatures instead of the message-digests.
531 static int pkcs1pad_verify(struct akcipher_request *req)
533 struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
534 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
535 struct pkcs1pad_request *req_ctx = akcipher_request_ctx(req);
538 if (WARN_ON(req->dst) ||
539 WARN_ON(!req->dst_len) ||
540 !ctx->key_size || req->src_len < ctx->key_size)
543 req_ctx->out_buf = kmalloc(ctx->key_size + req->dst_len, GFP_KERNEL);
544 if (!req_ctx->out_buf)
547 pkcs1pad_sg_set_buf(req_ctx->out_sg, req_ctx->out_buf,
548 ctx->key_size, NULL);
550 akcipher_request_set_tfm(&req_ctx->child_req, ctx->child);
551 akcipher_request_set_callback(&req_ctx->child_req, req->base.flags,
552 pkcs1pad_verify_complete_cb, req);
554 /* Reuse input buffer, output to a new buffer */
555 akcipher_request_set_crypt(&req_ctx->child_req, req->src,
556 req_ctx->out_sg, req->src_len,
559 err = crypto_akcipher_encrypt(&req_ctx->child_req);
560 if (err != -EINPROGRESS && err != -EBUSY)
561 return pkcs1pad_verify_complete(req, err);
566 static int pkcs1pad_init_tfm(struct crypto_akcipher *tfm)
568 struct akcipher_instance *inst = akcipher_alg_instance(tfm);
569 struct pkcs1pad_inst_ctx *ictx = akcipher_instance_ctx(inst);
570 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
571 struct crypto_akcipher *child_tfm;
573 child_tfm = crypto_spawn_akcipher(&ictx->spawn);
574 if (IS_ERR(child_tfm))
575 return PTR_ERR(child_tfm);
577 ctx->child = child_tfm;
581 static void pkcs1pad_exit_tfm(struct crypto_akcipher *tfm)
583 struct pkcs1pad_ctx *ctx = akcipher_tfm_ctx(tfm);
585 crypto_free_akcipher(ctx->child);
588 static void pkcs1pad_free(struct akcipher_instance *inst)
590 struct pkcs1pad_inst_ctx *ctx = akcipher_instance_ctx(inst);
591 struct crypto_akcipher_spawn *spawn = &ctx->spawn;
593 crypto_drop_akcipher(spawn);
597 static int pkcs1pad_create(struct crypto_template *tmpl, struct rtattr **tb)
600 struct akcipher_instance *inst;
601 struct pkcs1pad_inst_ctx *ctx;
602 struct akcipher_alg *rsa_alg;
603 const char *hash_name;
606 err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_AKCIPHER, &mask);
610 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
614 ctx = akcipher_instance_ctx(inst);
616 err = crypto_grab_akcipher(&ctx->spawn, akcipher_crypto_instance(inst),
617 crypto_attr_alg_name(tb[1]), 0, mask);
621 rsa_alg = crypto_spawn_akcipher_alg(&ctx->spawn);
624 hash_name = crypto_attr_alg_name(tb[2]);
625 if (IS_ERR(hash_name)) {
626 if (snprintf(inst->alg.base.cra_name,
627 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
628 rsa_alg->base.cra_name) >= CRYPTO_MAX_ALG_NAME)
631 if (snprintf(inst->alg.base.cra_driver_name,
632 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s)",
633 rsa_alg->base.cra_driver_name) >=
637 ctx->digest_info = rsa_lookup_asn1(hash_name);
638 if (!ctx->digest_info) {
643 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
644 "pkcs1pad(%s,%s)", rsa_alg->base.cra_name,
645 hash_name) >= CRYPTO_MAX_ALG_NAME)
648 if (snprintf(inst->alg.base.cra_driver_name,
649 CRYPTO_MAX_ALG_NAME, "pkcs1pad(%s,%s)",
650 rsa_alg->base.cra_driver_name,
651 hash_name) >= CRYPTO_MAX_ALG_NAME)
655 inst->alg.base.cra_priority = rsa_alg->base.cra_priority;
656 inst->alg.base.cra_ctxsize = sizeof(struct pkcs1pad_ctx);
658 inst->alg.init = pkcs1pad_init_tfm;
659 inst->alg.exit = pkcs1pad_exit_tfm;
661 inst->alg.encrypt = pkcs1pad_encrypt;
662 inst->alg.decrypt = pkcs1pad_decrypt;
663 inst->alg.sign = pkcs1pad_sign;
664 inst->alg.verify = pkcs1pad_verify;
665 inst->alg.set_pub_key = pkcs1pad_set_pub_key;
666 inst->alg.set_priv_key = pkcs1pad_set_priv_key;
667 inst->alg.max_size = pkcs1pad_get_max_size;
668 inst->alg.reqsize = sizeof(struct pkcs1pad_request) + rsa_alg->reqsize;
670 inst->free = pkcs1pad_free;
672 err = akcipher_register_instance(tmpl, inst);
680 struct crypto_template rsa_pkcs1pad_tmpl = {
682 .create = pkcs1pad_create,
683 .module = THIS_MODULE,