2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
36 struct mcryptd_flush_list {
37 struct list_head list;
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
43 struct hashd_instance_ctx {
44 struct crypto_ahash_spawn spawn;
45 struct mcryptd_queue *queue;
48 static void mcryptd_queue_worker(struct work_struct *work);
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
52 struct mcryptd_flush_list *flist;
54 if (!cstate->flusher_engaged) {
55 /* put the flusher on the flush list */
56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 mutex_lock(&flist->lock);
58 list_add_tail(&cstate->flush_list, &flist->list);
59 cstate->flusher_engaged = true;
60 cstate->next_flush = jiffies + delay;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 &cstate->flush, delay);
63 mutex_unlock(&flist->lock);
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 unsigned int max_cpu_qlen)
72 struct mcryptd_cpu_queue *cpu_queue;
74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 if (!queue->cpu_queue)
78 for_each_possible_cpu(cpu) {
79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 spin_lock_init(&cpu_queue->q_lock);
88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
91 struct mcryptd_cpu_queue *cpu_queue;
93 for_each_possible_cpu(cpu) {
94 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
95 BUG_ON(cpu_queue->queue.qlen);
97 free_percpu(queue->cpu_queue);
100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101 struct crypto_async_request *request,
102 struct mcryptd_hash_request_ctx *rctx)
105 struct mcryptd_cpu_queue *cpu_queue;
107 cpu_queue = raw_cpu_ptr(queue->cpu_queue);
108 spin_lock(&cpu_queue->q_lock);
109 cpu = smp_processor_id();
110 rctx->tag.cpu = smp_processor_id();
112 err = crypto_enqueue_request(&cpu_queue->queue, request);
113 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114 cpu, cpu_queue, request);
115 spin_unlock(&cpu_queue->q_lock);
116 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
122 * Try to opportunisticlly flush the partially completed jobs if
123 * crypto daemon is the only task running.
125 static void mcryptd_opportunistic_flush(void)
127 struct mcryptd_flush_list *flist;
128 struct mcryptd_alg_cstate *cstate;
130 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
131 while (single_task_running()) {
132 mutex_lock(&flist->lock);
133 cstate = list_first_entry_or_null(&flist->list,
134 struct mcryptd_alg_cstate, flush_list);
135 if (!cstate || !cstate->flusher_engaged) {
136 mutex_unlock(&flist->lock);
139 list_del(&cstate->flush_list);
140 cstate->flusher_engaged = false;
141 mutex_unlock(&flist->lock);
142 cstate->alg_state->flusher(cstate);
147 * Called in workqueue context, do one real cryption work (via
148 * req->complete) and reschedule itself if there are more work to
151 static void mcryptd_queue_worker(struct work_struct *work)
153 struct mcryptd_cpu_queue *cpu_queue;
154 struct crypto_async_request *req, *backlog;
158 * Need to loop through more than once for multi-buffer to
162 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
164 while (i < MCRYPTD_BATCH || single_task_running()) {
166 spin_lock_bh(&cpu_queue->q_lock);
167 backlog = crypto_get_backlog(&cpu_queue->queue);
168 req = crypto_dequeue_request(&cpu_queue->queue);
169 spin_unlock_bh(&cpu_queue->q_lock);
172 mcryptd_opportunistic_flush();
177 backlog->complete(backlog, -EINPROGRESS);
178 req->complete(req, 0);
179 if (!cpu_queue->queue.qlen)
183 if (cpu_queue->queue.qlen)
184 queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
187 void mcryptd_flusher(struct work_struct *__work)
189 struct mcryptd_alg_cstate *alg_cpu_state;
190 struct mcryptd_alg_state *alg_state;
191 struct mcryptd_flush_list *flist;
194 cpu = smp_processor_id();
195 alg_cpu_state = container_of(to_delayed_work(__work),
196 struct mcryptd_alg_cstate, flush);
197 alg_state = alg_cpu_state->alg_state;
198 if (alg_cpu_state->cpu != cpu)
199 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
200 cpu, alg_cpu_state->cpu);
202 if (alg_cpu_state->flusher_engaged) {
203 flist = per_cpu_ptr(mcryptd_flist, cpu);
204 mutex_lock(&flist->lock);
205 list_del(&alg_cpu_state->flush_list);
206 alg_cpu_state->flusher_engaged = false;
207 mutex_unlock(&flist->lock);
208 alg_state->flusher(alg_cpu_state);
211 EXPORT_SYMBOL_GPL(mcryptd_flusher);
213 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
215 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
216 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
221 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
225 struct crypto_instance *inst;
228 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
230 return ERR_PTR(-ENOMEM);
232 inst = (void *)(p + head);
235 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
236 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
239 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
241 inst->alg.cra_priority = alg->cra_priority + 50;
242 inst->alg.cra_blocksize = alg->cra_blocksize;
243 inst->alg.cra_alignmask = alg->cra_alignmask;
254 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
257 struct crypto_attr_type *algt;
259 algt = crypto_get_attr_type(tb);
263 *type |= algt->type & CRYPTO_ALG_INTERNAL;
264 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
266 if (*type & *mask & CRYPTO_ALG_INTERNAL)
272 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
274 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
275 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
276 struct crypto_ahash_spawn *spawn = &ictx->spawn;
277 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
278 struct crypto_ahash *hash;
280 hash = crypto_spawn_ahash(spawn);
282 return PTR_ERR(hash);
285 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
286 sizeof(struct mcryptd_hash_request_ctx) +
287 crypto_ahash_reqsize(hash));
291 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
293 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
295 crypto_free_ahash(ctx->child);
298 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
299 const u8 *key, unsigned int keylen)
301 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
302 struct crypto_ahash *child = ctx->child;
305 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
306 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
307 CRYPTO_TFM_REQ_MASK);
308 err = crypto_ahash_setkey(child, key, keylen);
309 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
310 CRYPTO_TFM_RES_MASK);
314 static int mcryptd_hash_enqueue(struct ahash_request *req,
315 crypto_completion_t complete)
319 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
320 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
321 struct mcryptd_queue *queue =
322 mcryptd_get_queue(crypto_ahash_tfm(tfm));
324 rctx->complete = req->base.complete;
325 req->base.complete = complete;
327 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
332 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
334 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
335 struct crypto_ahash *child = ctx->child;
336 struct ahash_request *req = ahash_request_cast(req_async);
337 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
338 struct ahash_request *desc = &rctx->areq;
340 if (unlikely(err == -EINPROGRESS))
343 ahash_request_set_tfm(desc, child);
344 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
345 rctx->complete, req_async);
347 rctx->out = req->result;
348 err = crypto_ahash_init(desc);
352 rctx->complete(&req->base, err);
356 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
358 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
361 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
363 struct ahash_request *req = ahash_request_cast(req_async);
364 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
366 if (unlikely(err == -EINPROGRESS))
369 rctx->out = req->result;
370 err = crypto_ahash_update(&rctx->areq);
372 req->base.complete = rctx->complete;
379 rctx->complete(&req->base, err);
383 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
385 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
388 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
390 struct ahash_request *req = ahash_request_cast(req_async);
391 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
393 if (unlikely(err == -EINPROGRESS))
396 rctx->out = req->result;
397 err = crypto_ahash_final(&rctx->areq);
399 req->base.complete = rctx->complete;
406 rctx->complete(&req->base, err);
410 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
412 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
415 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
417 struct ahash_request *req = ahash_request_cast(req_async);
418 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
420 if (unlikely(err == -EINPROGRESS))
422 rctx->out = req->result;
423 err = crypto_ahash_finup(&rctx->areq);
426 req->base.complete = rctx->complete;
433 rctx->complete(&req->base, err);
437 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
439 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
442 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
444 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
445 struct crypto_ahash *child = ctx->child;
446 struct ahash_request *req = ahash_request_cast(req_async);
447 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
448 struct ahash_request *desc = &rctx->areq;
450 if (unlikely(err == -EINPROGRESS))
453 ahash_request_set_tfm(desc, child);
454 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
455 rctx->complete, req_async);
457 rctx->out = req->result;
458 err = crypto_ahash_init(desc) ?: crypto_ahash_finup(desc);
462 rctx->complete(&req->base, err);
466 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
468 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
471 static int mcryptd_hash_export(struct ahash_request *req, void *out)
473 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
475 return crypto_ahash_export(&rctx->areq, out);
478 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
480 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
482 return crypto_ahash_import(&rctx->areq, in);
485 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
486 struct mcryptd_queue *queue)
488 struct hashd_instance_ctx *ctx;
489 struct ahash_instance *inst;
490 struct hash_alg_common *halg;
491 struct crypto_alg *alg;
496 if (!mcryptd_check_internal(tb, &type, &mask))
499 halg = ahash_attr_alg(tb[1], type, mask);
501 return PTR_ERR(halg);
504 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
505 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
511 ctx = ahash_instance_ctx(inst);
514 err = crypto_init_ahash_spawn(&ctx->spawn, halg,
515 ahash_crypto_instance(inst));
519 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
520 (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
521 CRYPTO_ALG_OPTIONAL_KEY));
523 inst->alg.halg.digestsize = halg->digestsize;
524 inst->alg.halg.statesize = halg->statesize;
525 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
527 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
528 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
530 inst->alg.init = mcryptd_hash_init_enqueue;
531 inst->alg.update = mcryptd_hash_update_enqueue;
532 inst->alg.final = mcryptd_hash_final_enqueue;
533 inst->alg.finup = mcryptd_hash_finup_enqueue;
534 inst->alg.export = mcryptd_hash_export;
535 inst->alg.import = mcryptd_hash_import;
536 if (crypto_hash_alg_has_setkey(halg))
537 inst->alg.setkey = mcryptd_hash_setkey;
538 inst->alg.digest = mcryptd_hash_digest_enqueue;
540 err = ahash_register_instance(tmpl, inst);
542 crypto_drop_ahash(&ctx->spawn);
552 static struct mcryptd_queue mqueue;
554 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
556 struct crypto_attr_type *algt;
558 algt = crypto_get_attr_type(tb);
560 return PTR_ERR(algt);
562 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
563 case CRYPTO_ALG_TYPE_DIGEST:
564 return mcryptd_create_hash(tmpl, tb, &mqueue);
571 static void mcryptd_free(struct crypto_instance *inst)
573 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
574 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
576 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
577 case CRYPTO_ALG_TYPE_AHASH:
578 crypto_drop_ahash(&hctx->spawn);
579 kfree(ahash_instance(inst));
582 crypto_drop_spawn(&ctx->spawn);
587 static struct crypto_template mcryptd_tmpl = {
589 .create = mcryptd_create,
590 .free = mcryptd_free,
591 .module = THIS_MODULE,
594 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
597 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
598 struct crypto_ahash *tfm;
600 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
601 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
602 return ERR_PTR(-EINVAL);
603 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
605 return ERR_CAST(tfm);
606 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
607 crypto_free_ahash(tfm);
608 return ERR_PTR(-EINVAL);
611 return __mcryptd_ahash_cast(tfm);
613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
615 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
617 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
621 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
623 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
625 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
628 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
630 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
632 crypto_free_ahash(&tfm->base);
634 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
636 static int __init mcryptd_init(void)
639 struct mcryptd_flush_list *flist;
641 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
642 for_each_possible_cpu(cpu) {
643 flist = per_cpu_ptr(mcryptd_flist, cpu);
644 INIT_LIST_HEAD(&flist->list);
645 mutex_init(&flist->lock);
648 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
650 free_percpu(mcryptd_flist);
654 err = crypto_register_template(&mcryptd_tmpl);
656 mcryptd_fini_queue(&mqueue);
657 free_percpu(mcryptd_flist);
663 static void __exit mcryptd_exit(void)
665 mcryptd_fini_queue(&mqueue);
666 crypto_unregister_template(&mcryptd_tmpl);
667 free_percpu(mcryptd_flist);
670 subsys_initcall(mcryptd_init);
671 module_exit(mcryptd_exit);
673 MODULE_LICENSE("GPL");
674 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
675 MODULE_ALIAS_CRYPTO("mcryptd");