Merge tag 'for-5.18/block-2022-04-01' of git://git.kernel.dk/linux-block
[platform/kernel/linux-starfive.git] / crypto / lrw.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* LRW: as defined by Cyril Guyot in
3  *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
4  *
5  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
6  *
7  * Based on ecb.c
8  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
9  */
10 /* This implementation is checked against the test vectors in the above
11  * document and by a test vector provided by Ken Buchanan at
12  * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
13  *
14  * The test vectors are included in the testing module tcrypt.[ch] */
15
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24
25 #include <crypto/b128ops.h>
26 #include <crypto/gf128mul.h>
27
28 #define LRW_BLOCK_SIZE 16
29
30 struct lrw_tfm_ctx {
31         struct crypto_skcipher *child;
32
33         /*
34          * optimizes multiplying a random (non incrementing, as at the
35          * start of a new sector) value with key2, we could also have
36          * used 4k optimization tables or no optimization at all. In the
37          * latter case we would have to store key2 here
38          */
39         struct gf128mul_64k *table;
40
41         /*
42          * stores:
43          *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
44          *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
45          *  key2*{ 0,0,...1,1,1,1,1 }, etc
46          * needed for optimized multiplication of incrementing values
47          * with key2
48          */
49         be128 mulinc[128];
50 };
51
52 struct lrw_request_ctx {
53         be128 t;
54         struct skcipher_request subreq;
55 };
56
57 static inline void lrw_setbit128_bbe(void *b, int bit)
58 {
59         __set_bit(bit ^ (0x80 -
60 #ifdef __BIG_ENDIAN
61                          BITS_PER_LONG
62 #else
63                          BITS_PER_BYTE
64 #endif
65                         ), b);
66 }
67
68 static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
69                       unsigned int keylen)
70 {
71         struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
72         struct crypto_skcipher *child = ctx->child;
73         int err, bsize = LRW_BLOCK_SIZE;
74         const u8 *tweak = key + keylen - bsize;
75         be128 tmp = { 0 };
76         int i;
77
78         crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
79         crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
80                                          CRYPTO_TFM_REQ_MASK);
81         err = crypto_skcipher_setkey(child, key, keylen - bsize);
82         if (err)
83                 return err;
84
85         if (ctx->table)
86                 gf128mul_free_64k(ctx->table);
87
88         /* initialize multiplication table for Key2 */
89         ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
90         if (!ctx->table)
91                 return -ENOMEM;
92
93         /* initialize optimization table */
94         for (i = 0; i < 128; i++) {
95                 lrw_setbit128_bbe(&tmp, i);
96                 ctx->mulinc[i] = tmp;
97                 gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
98         }
99
100         return 0;
101 }
102
103 /*
104  * Returns the number of trailing '1' bits in the words of the counter, which is
105  * represented by 4 32-bit words, arranged from least to most significant.
106  * At the same time, increments the counter by one.
107  *
108  * For example:
109  *
110  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
111  * int i = lrw_next_index(&counter);
112  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
113  */
114 static int lrw_next_index(u32 *counter)
115 {
116         int i, res = 0;
117
118         for (i = 0; i < 4; i++) {
119                 if (counter[i] + 1 != 0)
120                         return res + ffz(counter[i]++);
121
122                 counter[i] = 0;
123                 res += 32;
124         }
125
126         /*
127          * If we get here, then x == 128 and we are incrementing the counter
128          * from all ones to all zeros. This means we must return index 127, i.e.
129          * the one corresponding to key2*{ 1,...,1 }.
130          */
131         return 127;
132 }
133
134 /*
135  * We compute the tweak masks twice (both before and after the ECB encryption or
136  * decryption) to avoid having to allocate a temporary buffer and/or make
137  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
138  * just doing the lrw_next_index() calls again.
139  */
140 static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
141 {
142         const int bs = LRW_BLOCK_SIZE;
143         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
144         const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
145         struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
146         be128 t = rctx->t;
147         struct skcipher_walk w;
148         __be32 *iv;
149         u32 counter[4];
150         int err;
151
152         if (second_pass) {
153                 req = &rctx->subreq;
154                 /* set to our TFM to enforce correct alignment: */
155                 skcipher_request_set_tfm(req, tfm);
156         }
157
158         err = skcipher_walk_virt(&w, req, false);
159         if (err)
160                 return err;
161
162         iv = (__be32 *)w.iv;
163         counter[0] = be32_to_cpu(iv[3]);
164         counter[1] = be32_to_cpu(iv[2]);
165         counter[2] = be32_to_cpu(iv[1]);
166         counter[3] = be32_to_cpu(iv[0]);
167
168         while (w.nbytes) {
169                 unsigned int avail = w.nbytes;
170                 be128 *wsrc;
171                 be128 *wdst;
172
173                 wsrc = w.src.virt.addr;
174                 wdst = w.dst.virt.addr;
175
176                 do {
177                         be128_xor(wdst++, &t, wsrc++);
178
179                         /* T <- I*Key2, using the optimization
180                          * discussed in the specification */
181                         be128_xor(&t, &t,
182                                   &ctx->mulinc[lrw_next_index(counter)]);
183                 } while ((avail -= bs) >= bs);
184
185                 if (second_pass && w.nbytes == w.total) {
186                         iv[0] = cpu_to_be32(counter[3]);
187                         iv[1] = cpu_to_be32(counter[2]);
188                         iv[2] = cpu_to_be32(counter[1]);
189                         iv[3] = cpu_to_be32(counter[0]);
190                 }
191
192                 err = skcipher_walk_done(&w, avail);
193         }
194
195         return err;
196 }
197
198 static int lrw_xor_tweak_pre(struct skcipher_request *req)
199 {
200         return lrw_xor_tweak(req, false);
201 }
202
203 static int lrw_xor_tweak_post(struct skcipher_request *req)
204 {
205         return lrw_xor_tweak(req, true);
206 }
207
208 static void lrw_crypt_done(struct crypto_async_request *areq, int err)
209 {
210         struct skcipher_request *req = areq->data;
211
212         if (!err) {
213                 struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
214
215                 rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
216                 err = lrw_xor_tweak_post(req);
217         }
218
219         skcipher_request_complete(req, err);
220 }
221
222 static void lrw_init_crypt(struct skcipher_request *req)
223 {
224         const struct lrw_tfm_ctx *ctx =
225                 crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
226         struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
227         struct skcipher_request *subreq = &rctx->subreq;
228
229         skcipher_request_set_tfm(subreq, ctx->child);
230         skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
231                                       req);
232         /* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
233         skcipher_request_set_crypt(subreq, req->dst, req->dst,
234                                    req->cryptlen, req->iv);
235
236         /* calculate first value of T */
237         memcpy(&rctx->t, req->iv, sizeof(rctx->t));
238
239         /* T <- I*Key2 */
240         gf128mul_64k_bbe(&rctx->t, ctx->table);
241 }
242
243 static int lrw_encrypt(struct skcipher_request *req)
244 {
245         struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
246         struct skcipher_request *subreq = &rctx->subreq;
247
248         lrw_init_crypt(req);
249         return lrw_xor_tweak_pre(req) ?:
250                 crypto_skcipher_encrypt(subreq) ?:
251                 lrw_xor_tweak_post(req);
252 }
253
254 static int lrw_decrypt(struct skcipher_request *req)
255 {
256         struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
257         struct skcipher_request *subreq = &rctx->subreq;
258
259         lrw_init_crypt(req);
260         return lrw_xor_tweak_pre(req) ?:
261                 crypto_skcipher_decrypt(subreq) ?:
262                 lrw_xor_tweak_post(req);
263 }
264
265 static int lrw_init_tfm(struct crypto_skcipher *tfm)
266 {
267         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
268         struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
269         struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
270         struct crypto_skcipher *cipher;
271
272         cipher = crypto_spawn_skcipher(spawn);
273         if (IS_ERR(cipher))
274                 return PTR_ERR(cipher);
275
276         ctx->child = cipher;
277
278         crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
279                                          sizeof(struct lrw_request_ctx));
280
281         return 0;
282 }
283
284 static void lrw_exit_tfm(struct crypto_skcipher *tfm)
285 {
286         struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
287
288         if (ctx->table)
289                 gf128mul_free_64k(ctx->table);
290         crypto_free_skcipher(ctx->child);
291 }
292
293 static void lrw_free_instance(struct skcipher_instance *inst)
294 {
295         crypto_drop_skcipher(skcipher_instance_ctx(inst));
296         kfree(inst);
297 }
298
299 static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
300 {
301         struct crypto_skcipher_spawn *spawn;
302         struct skcipher_instance *inst;
303         struct skcipher_alg *alg;
304         const char *cipher_name;
305         char ecb_name[CRYPTO_MAX_ALG_NAME];
306         u32 mask;
307         int err;
308
309         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
310         if (err)
311                 return err;
312
313         cipher_name = crypto_attr_alg_name(tb[1]);
314         if (IS_ERR(cipher_name))
315                 return PTR_ERR(cipher_name);
316
317         inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
318         if (!inst)
319                 return -ENOMEM;
320
321         spawn = skcipher_instance_ctx(inst);
322
323         err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
324                                    cipher_name, 0, mask);
325         if (err == -ENOENT) {
326                 err = -ENAMETOOLONG;
327                 if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
328                              cipher_name) >= CRYPTO_MAX_ALG_NAME)
329                         goto err_free_inst;
330
331                 err = crypto_grab_skcipher(spawn,
332                                            skcipher_crypto_instance(inst),
333                                            ecb_name, 0, mask);
334         }
335
336         if (err)
337                 goto err_free_inst;
338
339         alg = crypto_skcipher_spawn_alg(spawn);
340
341         err = -EINVAL;
342         if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
343                 goto err_free_inst;
344
345         if (crypto_skcipher_alg_ivsize(alg))
346                 goto err_free_inst;
347
348         err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
349                                   &alg->base);
350         if (err)
351                 goto err_free_inst;
352
353         err = -EINVAL;
354         cipher_name = alg->base.cra_name;
355
356         /* Alas we screwed up the naming so we have to mangle the
357          * cipher name.
358          */
359         if (!strncmp(cipher_name, "ecb(", 4)) {
360                 unsigned len;
361
362                 len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
363                 if (len < 2 || len >= sizeof(ecb_name))
364                         goto err_free_inst;
365
366                 if (ecb_name[len - 1] != ')')
367                         goto err_free_inst;
368
369                 ecb_name[len - 1] = 0;
370
371                 if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
372                              "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
373                         err = -ENAMETOOLONG;
374                         goto err_free_inst;
375                 }
376         } else
377                 goto err_free_inst;
378
379         inst->alg.base.cra_priority = alg->base.cra_priority;
380         inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
381         inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
382                                        (__alignof__(be128) - 1);
383
384         inst->alg.ivsize = LRW_BLOCK_SIZE;
385         inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
386                                 LRW_BLOCK_SIZE;
387         inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
388                                 LRW_BLOCK_SIZE;
389
390         inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
391
392         inst->alg.init = lrw_init_tfm;
393         inst->alg.exit = lrw_exit_tfm;
394
395         inst->alg.setkey = lrw_setkey;
396         inst->alg.encrypt = lrw_encrypt;
397         inst->alg.decrypt = lrw_decrypt;
398
399         inst->free = lrw_free_instance;
400
401         err = skcipher_register_instance(tmpl, inst);
402         if (err) {
403 err_free_inst:
404                 lrw_free_instance(inst);
405         }
406         return err;
407 }
408
409 static struct crypto_template lrw_tmpl = {
410         .name = "lrw",
411         .create = lrw_create,
412         .module = THIS_MODULE,
413 };
414
415 static int __init lrw_module_init(void)
416 {
417         return crypto_register_template(&lrw_tmpl);
418 }
419
420 static void __exit lrw_module_exit(void)
421 {
422         crypto_unregister_template(&lrw_tmpl);
423 }
424
425 subsys_initcall(lrw_module_init);
426 module_exit(lrw_module_exit);
427
428 MODULE_LICENSE("GPL");
429 MODULE_DESCRIPTION("LRW block cipher mode");
430 MODULE_ALIAS_CRYPTO("lrw");
431 MODULE_SOFTDEP("pre: ecb");