2 * Non-physical true random number generator based on timing jitter --
3 * Jitter RNG standalone code.
5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
10 * See https://www.chronox.de/jent.html
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, and the entire permission notice in its entirety,
20 * including the disclaimer of warranties.
21 * 2. Redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution.
24 * 3. The name of the author may not be used to endorse or promote
25 * products derived from this software without specific prior
28 * ALTERNATIVELY, this product may be distributed under the terms of
29 * the GNU General Public License, in which case the provisions of the GPL2 are
30 * required INSTEAD OF the above restrictions. (This clause is
31 * necessary due to a potential bad interaction between the GPL and
32 * the restrictions contained in a BSD-style copyright.)
34 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
38 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
49 * This Jitterentropy RNG is based on the jitterentropy library
50 * version 3.4.0 provided at https://www.chronox.de/jent.html
54 #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
57 typedef unsigned long long __u64;
58 typedef long long __s64;
59 typedef unsigned int __u32;
60 typedef unsigned char u8;
61 #define NULL ((void *) 0)
63 /* The entropy pool */
65 /* SHA3-256 is used as conditioner */
66 #define DATA_SIZE_BITS 256
67 /* all data values that are vital to maintain the security
68 * of the RNG are marked as SENSITIVE. A user must not
69 * access that information while the RNG executes its loops to
70 * calculate the next random value. */
71 void *hash_state; /* SENSITIVE hash state entropy pool */
72 __u64 prev_time; /* SENSITIVE Previous time stamp */
73 __u64 last_delta; /* SENSITIVE stuck test */
74 __s64 last_delta2; /* SENSITIVE stuck test */
75 unsigned int osr; /* Oversample rate */
76 #define JENT_MEMORY_BLOCKS 64
77 #define JENT_MEMORY_BLOCKSIZE 32
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
80 unsigned char *mem; /* Memory access location with size of
81 * memblocks * memblocksize */
82 unsigned int memlocation; /* Pointer to byte in *mem */
83 unsigned int memblocks; /* Number of memory blocks in *mem */
84 unsigned int memblocksize; /* Size of one memory block in bytes */
85 unsigned int memaccessloops; /* Number of memory accesses per random
88 /* Repetition Count Test */
89 unsigned int rct_count; /* Number of stuck values */
91 /* Intermittent health test failure threshold of 2^-30 */
92 /* From an SP800-90B perspective, this RCT cutoff value is equal to 31. */
93 /* However, our RCT implementation starts at 1, so we subtract 1 here. */
94 #define JENT_RCT_CUTOFF (31 - 1) /* Taken from SP800-90B sec 4.4.1 */
95 #define JENT_APT_CUTOFF 325 /* Taken from SP800-90B sec 4.4.2 */
96 /* Permanent health test failure threshold of 2^-60 */
97 /* From an SP800-90B perspective, this RCT cutoff value is equal to 61. */
98 /* However, our RCT implementation starts at 1, so we subtract 1 here. */
99 #define JENT_RCT_CUTOFF_PERMANENT (61 - 1)
100 #define JENT_APT_CUTOFF_PERMANENT 355
101 #define JENT_APT_WINDOW_SIZE 512 /* Data window size */
102 /* LSB of time stamp to process */
103 #define JENT_APT_LSB 16
104 #define JENT_APT_WORD_MASK (JENT_APT_LSB - 1)
105 unsigned int apt_observations; /* Number of collected observations */
106 unsigned int apt_count; /* APT counter */
107 unsigned int apt_base; /* APT base reference */
108 unsigned int apt_base_set:1; /* APT base reference set? */
111 /* Flags that can be used to initialize the RNG */
112 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
113 * entropy, saves MEMORY_SIZE RAM for
114 * entropy collector */
116 /* -- error codes for init function -- */
117 #define JENT_ENOTIME 1 /* Timer service not available */
118 #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */
119 #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */
120 #define JENT_EVARVAR 5 /* Timer does not produce variations of
121 * variations (2nd derivation of time is
123 #define JENT_ESTUCK 8 /* Too many stuck results during init. */
124 #define JENT_EHEALTH 9 /* Health test failed during initialization */
127 * The output n bits can receive more than n bits of min entropy, of course,
128 * but the fixed output of the conditioning function can only asymptotically
129 * approach the output size bits of min entropy, not attain that bound. Random
130 * maps will tend to have output collisions, which reduces the creditable
131 * output entropy (that is what SP 800-90B Section 3.1.5.1.2 attempts to bound).
133 * The value "64" is justified in Appendix A.4 of the current 90C draft,
134 * and aligns with NIST's in "epsilon" definition in this document, which is
135 * that a string can be considered "full entropy" if you can bound the min
136 * entropy in each bit of output to at least 1-epsilon, where epsilon is
137 * required to be <= 2^(-32).
139 #define JENT_ENTROPY_SAFETY_FACTOR 64
141 #include <linux/fips.h>
142 #include "jitterentropy.h"
144 /***************************************************************************
145 * Adaptive Proportion Test
147 * This test complies with SP800-90B section 4.4.2.
148 ***************************************************************************/
151 * Reset the APT counter
153 * @ec [in] Reference to entropy collector
155 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
157 /* Reset APT counter */
159 ec->apt_base = delta_masked;
160 ec->apt_observations = 0;
164 * Insert a new entropy event into APT
166 * @ec [in] Reference to entropy collector
167 * @delta_masked [in] Masked time delta to process
169 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
171 /* Initialize the base reference */
172 if (!ec->apt_base_set) {
173 ec->apt_base = delta_masked;
174 ec->apt_base_set = 1;
178 if (delta_masked == ec->apt_base)
181 ec->apt_observations++;
183 if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
184 jent_apt_reset(ec, delta_masked);
187 /* APT health test failure detection */
188 static int jent_apt_permanent_failure(struct rand_data *ec)
190 return (ec->apt_count >= JENT_APT_CUTOFF_PERMANENT) ? 1 : 0;
193 static int jent_apt_failure(struct rand_data *ec)
195 return (ec->apt_count >= JENT_APT_CUTOFF) ? 1 : 0;
198 /***************************************************************************
199 * Stuck Test and its use as Repetition Count Test
201 * The Jitter RNG uses an enhanced version of the Repetition Count Test
202 * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
203 * back-to-back values, the input to the RCT is the counting of the stuck
204 * values during the generation of one Jitter RNG output block.
206 * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
208 * During the counting operation, the Jitter RNG always calculates the RCT
209 * cut-off value of C. If that value exceeds the allowed cut-off value,
210 * the Jitter RNG output block will be calculated completely but discarded at
211 * the end. The caller of the Jitter RNG is informed with an error code.
212 ***************************************************************************/
215 * Repetition Count Test as defined in SP800-90B section 4.4.1
217 * @ec [in] Reference to entropy collector
218 * @stuck [in] Indicator whether the value is stuck
220 static void jent_rct_insert(struct rand_data *ec, int stuck)
230 static inline __u64 jent_delta(__u64 prev, __u64 next)
232 #define JENT_UINT64_MAX (__u64)(~((__u64) 0))
233 return (prev < next) ? (next - prev) :
234 (JENT_UINT64_MAX - prev + 1 + next);
238 * Stuck test by checking the:
239 * 1st derivative of the jitter measurement (time delta)
240 * 2nd derivative of the jitter measurement (delta of time deltas)
241 * 3rd derivative of the jitter measurement (delta of delta of time deltas)
243 * All values must always be non-zero.
245 * @ec [in] Reference to entropy collector
246 * @current_delta [in] Jitter time delta
249 * 0 jitter measurement not stuck (good bit)
250 * 1 jitter measurement stuck (reject bit)
252 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
254 __u64 delta2 = jent_delta(ec->last_delta, current_delta);
255 __u64 delta3 = jent_delta(ec->last_delta2, delta2);
257 ec->last_delta = current_delta;
258 ec->last_delta2 = delta2;
261 * Insert the result of the comparison of two back-to-back time
264 jent_apt_insert(ec, current_delta);
266 if (!current_delta || !delta2 || !delta3) {
267 /* RCT with a stuck bit */
268 jent_rct_insert(ec, 1);
272 /* RCT with a non-stuck bit */
273 jent_rct_insert(ec, 0);
278 /* RCT health test failure detection */
279 static int jent_rct_permanent_failure(struct rand_data *ec)
281 return (ec->rct_count >= JENT_RCT_CUTOFF_PERMANENT) ? 1 : 0;
284 static int jent_rct_failure(struct rand_data *ec)
286 return (ec->rct_count >= JENT_RCT_CUTOFF) ? 1 : 0;
289 /* Report of health test failures */
290 static int jent_health_failure(struct rand_data *ec)
292 return jent_rct_failure(ec) | jent_apt_failure(ec);
295 static int jent_permanent_health_failure(struct rand_data *ec)
297 return jent_rct_permanent_failure(ec) | jent_apt_permanent_failure(ec);
300 /***************************************************************************
302 ***************************************************************************/
305 * Update of the loop count used for the next round of
306 * an entropy collection.
309 * @bits is the number of low bits of the timer to consider
310 * @min is the number of bits we shift the timer value to the right at
311 * the end to make sure we have a guaranteed minimum value
313 * @return Newly calculated loop counter
315 static __u64 jent_loop_shuffle(unsigned int bits, unsigned int min)
320 unsigned int mask = (1<<bits) - 1;
322 jent_get_nstime(&time);
325 * We fold the time value as much as possible to ensure that as many
326 * bits of the time stamp are included as possible.
328 for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
329 shuffle ^= time & mask;
334 * We add a lower boundary value to ensure we have a minimum
337 return (shuffle + (1<<min));
341 * CPU Jitter noise source -- this is the noise source based on the CPU
342 * execution time jitter
344 * This function injects the individual bits of the time value into the
345 * entropy pool using a hash.
347 * ec [in] entropy collector
348 * time [in] time stamp to be injected
349 * stuck [in] Is the time stamp identified as stuck?
352 * updated hash context in the entropy collector or error code
354 static int jent_condition_data(struct rand_data *ec, __u64 time, int stuck)
356 #define SHA3_HASH_LOOP (1<<3)
359 unsigned int apt_observations;
360 unsigned int apt_count;
361 unsigned int apt_base;
364 ec->apt_observations,
369 return jent_hash_time(ec->hash_state, time, (u8 *)&addtl, sizeof(addtl),
370 SHA3_HASH_LOOP, stuck);
374 * Memory Access noise source -- this is a noise source based on variations in
375 * memory access times
377 * This function performs memory accesses which will add to the timing
378 * variations due to an unknown amount of CPU wait states that need to be
379 * added when accessing memory. The memory size should be larger than the L1
380 * caches as outlined in the documentation and the associated testing.
382 * The L1 cache has a very high bandwidth, albeit its access rate is usually
383 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
384 * variations as the CPU has hardly to wait. Starting with L2, significant
385 * variations are added because L2 typically does not belong to the CPU any more
386 * and therefore a wider range of CPU wait states is necessary for accesses.
387 * L3 and real memory accesses have even a wider range of wait states. However,
388 * to reliably access either L3 or memory, the ec->mem memory must be quite
389 * large which is usually not desirable.
391 * @ec [in] Reference to the entropy collector with the memory access data -- if
392 * the reference to the memory block to be accessed is NULL, this noise
394 * @loop_cnt [in] if a value not equal to 0 is set, use the given value
395 * number of loops to perform the LFSR
397 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
399 unsigned int wrap = 0;
401 #define MAX_ACC_LOOP_BIT 7
402 #define MIN_ACC_LOOP_BIT 0
404 jent_loop_shuffle(MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
406 if (NULL == ec || NULL == ec->mem)
408 wrap = ec->memblocksize * ec->memblocks;
411 * testing purposes -- allow test app to set the counter, not
412 * needed during runtime
415 acc_loop_cnt = loop_cnt;
417 for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
418 unsigned char *tmpval = ec->mem + ec->memlocation;
420 * memory access: just add 1 to one byte,
421 * wrap at 255 -- memory access implies read
422 * from and write to memory location
424 *tmpval = (*tmpval + 1) & 0xff;
426 * Addition of memblocksize - 1 to pointer
427 * with wrap around logic to ensure that every
428 * memory location is hit evenly
430 ec->memlocation = ec->memlocation + ec->memblocksize - 1;
431 ec->memlocation = ec->memlocation % wrap;
435 /***************************************************************************
436 * Start of entropy processing logic
437 ***************************************************************************/
439 * This is the heart of the entropy generation: calculate time deltas and
440 * use the CPU jitter in the time deltas. The jitter is injected into the
443 * WARNING: ensure that ->prev_time is primed before using the output
444 * of this function! This can be done by calling this function
445 * and not using its result.
447 * @ec [in] Reference to entropy collector
449 * @return result of stuck test
451 static int jent_measure_jitter(struct rand_data *ec)
454 __u64 current_delta = 0;
457 /* Invoke one noise source before time measurement to add variations */
458 jent_memaccess(ec, 0);
461 * Get time stamp and calculate time delta to previous
462 * invocation to measure the timing variations
464 jent_get_nstime(&time);
465 current_delta = jent_delta(ec->prev_time, time);
466 ec->prev_time = time;
468 /* Check whether we have a stuck measurement. */
469 stuck = jent_stuck(ec, current_delta);
471 /* Now call the next noise sources which also injects the data */
472 if (jent_condition_data(ec, current_delta, stuck))
479 * Generator of one 64 bit random number
480 * Function fills rand_data->hash_state
482 * @ec [in] Reference to entropy collector
484 static void jent_gen_entropy(struct rand_data *ec)
486 unsigned int k = 0, safety_factor = 0;
489 safety_factor = JENT_ENTROPY_SAFETY_FACTOR;
491 /* priming of the ->prev_time value */
492 jent_measure_jitter(ec);
494 while (!jent_health_failure(ec)) {
495 /* If a stuck measurement is received, repeat measurement */
496 if (jent_measure_jitter(ec))
500 * We multiply the loop value with ->osr to obtain the
501 * oversampling rate requested by the caller
503 if (++k >= ((DATA_SIZE_BITS + safety_factor) * ec->osr))
509 * Entry function: Obtain entropy for the caller.
511 * This function invokes the entropy gathering logic as often to generate
512 * as many bytes as requested by the caller. The entropy gathering logic
513 * creates 64 bit per invocation.
515 * This function truncates the last 64 bit entropy value output to the exact
516 * size specified by the caller.
518 * @ec [in] Reference to entropy collector
519 * @data [in] pointer to buffer for storing random data -- buffer must already
521 * @len [in] size of the buffer, specifying also the requested number of random
524 * @return 0 when request is fulfilled or an error
526 * The following error codes can occur:
527 * -1 entropy_collector is NULL or the generation failed
528 * -2 Intermittent health failure
529 * -3 Permanent health failure
531 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
534 unsigned char *p = data;
542 jent_gen_entropy(ec);
544 if (jent_permanent_health_failure(ec)) {
546 * At this point, the Jitter RNG instance is considered
547 * as a failed instance. There is no rerun of the
548 * startup test any more, because the caller
549 * is assumed to not further use this instance.
552 } else if (jent_health_failure(ec)) {
554 * Perform startup health tests and return permanent
557 if (jent_entropy_init(ec->hash_state))
563 if ((DATA_SIZE_BITS / 8) < len)
564 tocopy = (DATA_SIZE_BITS / 8);
567 if (jent_read_random_block(ec->hash_state, p, tocopy))
577 /***************************************************************************
578 * Initialization logic
579 ***************************************************************************/
581 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
585 struct rand_data *entropy_collector;
587 entropy_collector = jent_zalloc(sizeof(struct rand_data));
588 if (!entropy_collector)
591 if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
592 /* Allocate memory for adding variations based on memory
595 entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
596 if (!entropy_collector->mem) {
597 jent_zfree(entropy_collector);
600 entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
601 entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
602 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
605 /* verify and set the oversampling rate */
607 osr = 1; /* minimum sampling rate is 1 */
608 entropy_collector->osr = osr;
610 entropy_collector->hash_state = hash_state;
612 /* fill the data pad with non-zero values */
613 jent_gen_entropy(entropy_collector);
615 return entropy_collector;
618 void jent_entropy_collector_free(struct rand_data *entropy_collector)
620 jent_zfree(entropy_collector->mem);
621 entropy_collector->mem = NULL;
622 jent_zfree(entropy_collector);
625 int jent_entropy_init(void *hash_state)
630 unsigned int nonstuck = 0;
631 int time_backwards = 0;
634 struct rand_data ec = { 0 };
636 /* Required for RCT */
638 ec.hash_state = hash_state;
640 /* We could perform statistical tests here, but the problem is
641 * that we only have a few loop counts to do testing. These
642 * loop counts may show some slight skew and we produce
645 * Moreover, only old systems show potentially problematic
646 * jitter entropy that could potentially be caught here. But
647 * the RNG is intended for hardware that is available or widely
648 * used, but not old systems that are long out of favor. Thus,
649 * no statistical tests.
653 * We could add a check for system capabilities such as clock_getres or
654 * check for CONFIG_X86_TSC, but it does not make much sense as the
655 * following sanity checks verify that we have a high-resolution
659 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
660 * definitely too little.
662 * SP800-90B requires at least 1024 initial test cycles.
664 #define TESTLOOPCOUNT 1024
665 #define CLEARCACHE 100
666 for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
670 unsigned int lowdelta = 0;
673 /* Invoke core entropy collection logic */
674 jent_get_nstime(&time);
676 jent_condition_data(&ec, time, 0);
677 jent_get_nstime(&time2);
679 /* test whether timer works */
682 delta = jent_delta(time, time2);
684 * test whether timer is fine grained enough to provide
685 * delta even when called shortly after each other -- this
686 * implies that we also have a high resolution timer
689 return JENT_ECOARSETIME;
691 stuck = jent_stuck(&ec, delta);
694 * up to here we did not modify any variable that will be
695 * evaluated later, but we already performed some work. Thus we
696 * already have had an impact on the caches, branch prediction,
697 * etc. with the goal to clear it to get the worst case
709 * Ensure that the APT succeeded.
711 * With the check below that count_stuck must be less
712 * than 10% of the overall generated raw entropy values
713 * it is guaranteed that the APT is invoked at
714 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
716 if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
718 delta & JENT_APT_WORD_MASK);
722 /* Validate health test result */
723 if (jent_health_failure(&ec))
726 /* test whether we have an increasing timer */
730 /* use 32 bit value to ensure compilation on 32 bit arches */
731 lowdelta = time2 - time;
732 if (!(lowdelta % 100))
736 * ensure that we have a varying delta timer which is necessary
737 * for the calculation of entropy -- perform this check
738 * only after the first loop is executed as we need to prime
741 if (delta > old_delta)
742 delta_sum += (delta - old_delta);
744 delta_sum += (old_delta - delta);
749 * we allow up to three times the time running backwards.
750 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
751 * if such an operation just happens to interfere with our test, it
752 * should not fail. The value of 3 should cover the NTP case being
753 * performed during our test run.
755 if (time_backwards > 3)
756 return JENT_ENOMONOTONIC;
759 * Variations of deltas of time must on average be larger
760 * than 1 to ensure the entropy estimation
761 * implied with 1 is preserved
763 if ((delta_sum) <= 1)
767 * Ensure that we have variations in the time stamp below 10 for at
768 * least 10% of all checks -- on some platforms, the counter increments
769 * in multiples of 100, but not always
771 if ((TESTLOOPCOUNT/10 * 9) < count_mod)
772 return JENT_ECOARSETIME;
775 * If we have more than 90% stuck results, then this Jitter RNG is
776 * likely to not work well.
778 if ((TESTLOOPCOUNT/10 * 9) < count_stuck)