2 * Non-physical true random number generator based on timing jitter.
4 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
9 * See http://www.chronox.de/jent.html
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, and the entire permission notice in its entirety,
19 * including the disclaimer of warranties.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 * 3. The name of the author may not be used to endorse or promote
24 * products derived from this software without specific prior
27 * ALTERNATIVELY, this product may be distributed under the terms of
28 * the GNU General Public License, in which case the provisions of the GPL2 are
29 * required INSTEAD OF the above restrictions. (This clause is
30 * necessary due to a potential bad interaction between the GPL and
31 * the restrictions contained in a BSD-style copyright.)
33 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
34 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
35 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
36 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
37 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
38 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
39 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
40 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
41 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
42 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
43 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
48 * This Jitterentropy RNG is based on the jitterentropy library
49 * version 1.1.0 provided at http://www.chronox.de/jent.html
52 #include <linux/module.h>
53 #include <linux/slab.h>
54 #include <linux/module.h>
55 #include <linux/fips.h>
56 #include <linux/time.h>
57 #include <linux/crypto.h>
58 #include <crypto/internal/rng.h>
60 /* The entropy pool */
62 /* all data values that are vital to maintain the security
63 * of the RNG are marked as SENSITIVE. A user must not
64 * access that information while the RNG executes its loops to
65 * calculate the next random value. */
66 __u64 data; /* SENSITIVE Actual random number */
67 __u64 old_data; /* SENSITIVE Previous random number */
68 __u64 prev_time; /* SENSITIVE Previous time stamp */
69 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
70 __u64 last_delta; /* SENSITIVE stuck test */
71 __s64 last_delta2; /* SENSITIVE stuck test */
72 unsigned int stuck:1; /* Time measurement stuck */
73 unsigned int osr; /* Oversample rate */
74 unsigned int stir:1; /* Post-processing stirring */
75 unsigned int disable_unbias:1; /* Deactivate Von-Neuman unbias */
76 #define JENT_MEMORY_BLOCKS 64
77 #define JENT_MEMORY_BLOCKSIZE 32
78 #define JENT_MEMORY_ACCESSLOOPS 128
79 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
80 unsigned char *mem; /* Memory access location with size of
81 * memblocks * memblocksize */
82 unsigned int memlocation; /* Pointer to byte in *mem */
83 unsigned int memblocks; /* Number of memory blocks in *mem */
84 unsigned int memblocksize; /* Size of one memory block in bytes */
85 unsigned int memaccessloops; /* Number of memory accesses per random
89 /* Flags that can be used to initialize the RNG */
90 #define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
91 #define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
92 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
93 * entropy, saves MEMORY_SIZE RAM for
94 * entropy collector */
96 #define DRIVER_NAME "jitterentropy"
98 /* -- error codes for init function -- */
99 #define JENT_ENOTIME 1 /* Timer service not available */
100 #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */
101 #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */
102 #define JENT_EMINVARIATION 4 /* Timer variations too small for RNG */
103 #define JENT_EVARVAR 5 /* Timer does not produce variations of
104 * variations (2nd derivation of time is
106 #define JENT_EMINVARVAR 6 /* Timer variations of variations is tooi
109 /***************************************************************************
111 ***************************************************************************/
113 static inline void jent_get_nstime(__u64 *out)
118 tmp = random_get_entropy();
121 * If random_get_entropy does not return a value (which is possible on,
122 * for example, MIPS), invoke __getnstimeofday
123 * hoping that there are timers we can work with.
125 * The list of available timers can be obtained from
126 * /sys/devices/system/clocksource/clocksource0/available_clocksource
127 * and are registered with clocksource_register()
130 (0 == __getnstimeofday(&ts))) {
133 tmp = tmp | ts.tv_nsec;
141 * Update of the loop count used for the next round of
142 * an entropy collection.
145 * @ec entropy collector struct -- may be NULL
146 * @bits is the number of low bits of the timer to consider
147 * @min is the number of bits we shift the timer value to the right at
148 * the end to make sure we have a guaranteed minimum value
150 * @return Newly calculated loop counter
152 static __u64 jent_loop_shuffle(struct rand_data *ec,
153 unsigned int bits, unsigned int min)
158 unsigned int mask = (1<<bits) - 1;
160 jent_get_nstime(&time);
162 * mix the current state of the random number into the shuffle
163 * calculation to balance that shuffle a bit more
168 * we fold the time value as much as possible to ensure that as many
169 * bits of the time stamp are included as possible
171 for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) {
172 shuffle ^= time & mask;
177 * We add a lower boundary value to ensure we have a minimum
180 return (shuffle + (1<<min));
183 /***************************************************************************
185 ***************************************************************************/
188 * The disabling of the optimizations is performed as documented and assessed
189 * thoroughly in http://www.chronox.de/jent.html. However, instead of disabling
190 * the optimization of the entire C file, only the main functions the jitter is
191 * measured for are not optimized. These functions include the noise sources as
192 * well as the main functions triggering the noise sources. As the time
193 * measurement is done from one invocation of the jitter noise source to the
194 * next, even the execution jitter of the code invoking the noise sources
195 * contribute to the overall randomness as well. The behavior of the RNG and the
196 * statistical characteristics when only the mentioned functions are not
197 * optimized is almost equal to the a completely non-optimized RNG compilation
198 * as tested with the test tools provided at the initially mentioned web site.
202 * CPU Jitter noise source -- this is the noise source based on the CPU
203 * execution time jitter
205 * This function folds the time into one bit units by iterating
206 * through the DATA_SIZE_BITS bit time value as follows: assume our time value
208 * 1st loop, 1st shift generates 0xd000
209 * 1st loop, 2nd shift generates 0x000d
210 * 2nd loop, 1st shift generates 0xcd00
211 * 2nd loop, 2nd shift generates 0x000c
212 * 3rd loop, 1st shift generates 0xbcd0
213 * 3rd loop, 2nd shift generates 0x000b
214 * 4th loop, 1st shift generates 0xabcd
215 * 4th loop, 2nd shift generates 0x000a
216 * Now, the values at the end of the 2nd shifts are XORed together.
218 * The code is deliberately inefficient and shall stay that way. This function
219 * is the root cause why the code shall be compiled without optimization. This
220 * function not only acts as folding operation, but this function's execution
221 * is used to measure the CPU execution time jitter. Any change to the loop in
222 * this function implies that careful retesting must be done.
225 * @ec entropy collector struct -- may be NULL
226 * @time time stamp to be folded
227 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
228 * loops to perform the folding
231 * @folded result of folding operation
233 * @return Number of loops the folding operation is performed
235 #pragma GCC push_options
236 #pragma GCC optimize ("-O0")
237 static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
238 __u64 *folded, __u64 loop_cnt)
243 #define MAX_FOLD_LOOP_BIT 4
244 #define MIN_FOLD_LOOP_BIT 0
245 __u64 fold_loop_cnt =
246 jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
249 * testing purposes -- allow test app to set the counter, not
250 * needed during runtime
253 fold_loop_cnt = loop_cnt;
254 for (j = 0; j < fold_loop_cnt; j++) {
256 for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
257 __u64 tmp = time << (DATA_SIZE_BITS - i);
259 tmp = tmp >> (DATA_SIZE_BITS - 1);
264 return fold_loop_cnt;
266 #pragma GCC pop_options
269 * Memory Access noise source -- this is a noise source based on variations in
270 * memory access times
272 * This function performs memory accesses which will add to the timing
273 * variations due to an unknown amount of CPU wait states that need to be
274 * added when accessing memory. The memory size should be larger than the L1
275 * caches as outlined in the documentation and the associated testing.
277 * The L1 cache has a very high bandwidth, albeit its access rate is usually
278 * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
279 * variations as the CPU has hardly to wait. Starting with L2, significant
280 * variations are added because L2 typically does not belong to the CPU any more
281 * and therefore a wider range of CPU wait states is necessary for accesses.
282 * L3 and real memory accesses have even a wider range of wait states. However,
283 * to reliably access either L3 or memory, the ec->mem memory must be quite
284 * large which is usually not desirable.
287 * @ec Reference to the entropy collector with the memory access data -- if
288 * the reference to the memory block to be accessed is NULL, this noise
290 * @loop_cnt if a value not equal to 0 is set, use the given value as number of
291 * loops to perform the folding
293 * @return Number of memory access operations
295 #pragma GCC push_options
296 #pragma GCC optimize ("-O0")
297 static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
299 unsigned char *tmpval = NULL;
300 unsigned int wrap = 0;
302 #define MAX_ACC_LOOP_BIT 7
303 #define MIN_ACC_LOOP_BIT 0
305 jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
307 if (NULL == ec || NULL == ec->mem)
309 wrap = ec->memblocksize * ec->memblocks;
312 * testing purposes -- allow test app to set the counter, not
313 * needed during runtime
316 acc_loop_cnt = loop_cnt;
318 for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
319 tmpval = ec->mem + ec->memlocation;
321 * memory access: just add 1 to one byte,
322 * wrap at 255 -- memory access implies read
323 * from and write to memory location
325 *tmpval = (*tmpval + 1) & 0xff;
327 * Addition of memblocksize - 1 to pointer
328 * with wrap around logic to ensure that every
329 * memory location is hit evenly
331 ec->memlocation = ec->memlocation + ec->memblocksize - 1;
332 ec->memlocation = ec->memlocation % wrap;
336 #pragma GCC pop_options
338 /***************************************************************************
339 * Start of entropy processing logic
340 ***************************************************************************/
343 * Stuck test by checking the:
344 * 1st derivation of the jitter measurement (time delta)
345 * 2nd derivation of the jitter measurement (delta of time deltas)
346 * 3rd derivation of the jitter measurement (delta of delta of time deltas)
348 * All values must always be non-zero.
351 * @ec Reference to entropy collector
352 * @current_delta Jitter time delta
355 * 0 jitter measurement not stuck (good bit)
356 * 1 jitter measurement stuck (reject bit)
358 static void jent_stuck(struct rand_data *ec, __u64 current_delta)
360 __s64 delta2 = ec->last_delta - current_delta;
361 __s64 delta3 = delta2 - ec->last_delta2;
363 ec->last_delta = current_delta;
364 ec->last_delta2 = delta2;
366 if (!current_delta || !delta2 || !delta3)
371 * This is the heart of the entropy generation: calculate time deltas and
372 * use the CPU jitter in the time deltas. The jitter is folded into one
373 * bit. You can call this function the "random bit generator" as it
374 * produces one random bit per invocation.
376 * WARNING: ensure that ->prev_time is primed before using the output
377 * of this function! This can be done by calling this function
378 * and not using its result.
381 * @entropy_collector Reference to entropy collector
383 * @return One random bit
385 #pragma GCC push_options
386 #pragma GCC optimize ("-O0")
387 static __u64 jent_measure_jitter(struct rand_data *ec)
391 __u64 current_delta = 0;
393 /* Invoke one noise source before time measurement to add variations */
394 jent_memaccess(ec, 0);
397 * Get time stamp and calculate time delta to previous
398 * invocation to measure the timing variations
400 jent_get_nstime(&time);
401 current_delta = time - ec->prev_time;
402 ec->prev_time = time;
404 /* Now call the next noise sources which also folds the data */
405 jent_fold_time(ec, current_delta, &data, 0);
408 * Check whether we have a stuck measurement. The enforcement
409 * is performed after the stuck value has been mixed into the
412 jent_stuck(ec, current_delta);
416 #pragma GCC pop_options
419 * Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
420 * documentation of that RNG, the bits from jent_measure_jitter are considered
421 * independent which implies that the Von Neuman unbias operation is applicable.
422 * A proof of the Von-Neumann unbias operation to remove skews is given in the
423 * document "A proposal for: Functionality classes for random number
424 * generators", version 2.0 by Werner Schindler, section 5.4.1.
427 * @entropy_collector Reference to entropy collector
429 * @return One random bit
431 static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
434 __u64 a = jent_measure_jitter(entropy_collector);
435 __u64 b = jent_measure_jitter(entropy_collector);
447 * Shuffle the pool a bit by mixing some value with a bijective function (XOR)
450 * The function generates a mixer value that depends on the bits set and the
451 * location of the set bits in the random number generated by the entropy
452 * source. Therefore, based on the generated random number, this mixer value
453 * can have 2**64 different values. That mixer value is initialized with the
454 * first two SHA-1 constants. After obtaining the mixer value, it is XORed into
457 * The mixer value is not assumed to contain any entropy. But due to the XOR
458 * operation, it can also not destroy any entropy present in the entropy pool.
461 * @entropy_collector Reference to entropy collector
463 static void jent_stir_pool(struct rand_data *entropy_collector)
466 * to shut up GCC on 32 bit, we have to initialize the 64 variable
467 * with two 32 bit variables
474 * This constant is derived from the first two 32 bit initialization
475 * vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
479 * The start value of the mixer variable is derived from the third
480 * and fourth 32 bit initialization vector of SHA-1 as defined in
481 * FIPS 180-4 section 5.3.1
487 * Store the SHA-1 constants in reverse order to make up the 64 bit
488 * value -- this applies to a little endian system, on a big endian
489 * system, it reverses as expected. But this really does not matter
490 * as we do not rely on the specific numbers. We just pick the SHA-1
491 * constants as they have a good mix of bit set and unset.
493 constant.u32[1] = 0x67452301;
494 constant.u32[0] = 0xefcdab89;
495 mixer.u32[1] = 0x98badcfe;
496 mixer.u32[0] = 0x10325476;
498 for (i = 0; i < DATA_SIZE_BITS; i++) {
500 * get the i-th bit of the input random number and only XOR
501 * the constant into the mixer value when that bit is set
503 if ((entropy_collector->data >> i) & 1)
504 mixer.u64 ^= constant.u64;
505 mixer.u64 = rol64(mixer.u64, 1);
507 entropy_collector->data ^= mixer.u64;
511 * Generator of one 64 bit random number
512 * Function fills rand_data->data
515 * @ec Reference to entropy collector
517 #pragma GCC push_options
518 #pragma GCC optimize ("-O0")
519 static void jent_gen_entropy(struct rand_data *ec)
523 /* priming of the ->prev_time value */
524 jent_measure_jitter(ec);
529 if (ec->disable_unbias == 1)
530 data = jent_measure_jitter(ec);
532 data = jent_unbiased_bit(ec);
534 /* enforcement of the jent_stuck test */
537 * We only mix in the bit considered not appropriate
538 * without the LSFR. The reason is that if we apply
539 * the LSFR and we do not rotate, the 2nd bit with LSFR
540 * will cancel out the first LSFR application on the
543 * And we do not rotate as we apply the next bit to the
544 * current bit location again.
552 * Fibonacci LSFR with polynom of
553 * x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
554 * primitive according to
555 * http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
556 * (the shift values are the polynom values minus one
557 * due to counting bits from 0 to 63). As the current
558 * position is always the LSB, the polynom only needs
559 * to shift data in from the left without wrap.
562 ec->data ^= ((ec->data >> 63) & 1);
563 ec->data ^= ((ec->data >> 60) & 1);
564 ec->data ^= ((ec->data >> 55) & 1);
565 ec->data ^= ((ec->data >> 30) & 1);
566 ec->data ^= ((ec->data >> 27) & 1);
567 ec->data ^= ((ec->data >> 22) & 1);
568 ec->data = rol64(ec->data, 1);
571 * We multiply the loop value with ->osr to obtain the
572 * oversampling rate requested by the caller
574 if (++k >= (DATA_SIZE_BITS * ec->osr))
580 #pragma GCC pop_options
583 * The continuous test required by FIPS 140-2 -- the function automatically
584 * primes the test if needed.
587 * 0 if FIPS test passed
588 * < 0 if FIPS test failed
590 static void jent_fips_test(struct rand_data *ec)
595 /* prime the FIPS test */
597 ec->old_data = ec->data;
598 jent_gen_entropy(ec);
601 if (ec->data == ec->old_data)
602 panic(DRIVER_NAME ": Duplicate output detected\n");
604 ec->old_data = ec->data;
609 * Entry function: Obtain entropy for the caller.
611 * This function invokes the entropy gathering logic as often to generate
612 * as many bytes as requested by the caller. The entropy gathering logic
613 * creates 64 bit per invocation.
615 * This function truncates the last 64 bit entropy value output to the exact
616 * size specified by the caller.
619 * @ec Reference to entropy collector
620 * @data pointer to buffer for storing random data -- buffer must already
622 * @len size of the buffer, specifying also the requested number of random
625 * @return 0 when request is fulfilled or an error
627 * The following error codes can occur:
628 * -1 entropy_collector is NULL
630 static ssize_t jent_read_entropy(struct rand_data *ec, u8 *data, size_t len)
640 jent_gen_entropy(ec);
642 if ((DATA_SIZE_BITS / 8) < len)
643 tocopy = (DATA_SIZE_BITS / 8);
646 memcpy(p, &ec->data, tocopy);
655 /***************************************************************************
656 * Initialization logic
657 ***************************************************************************/
659 static struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
662 struct rand_data *entropy_collector;
664 entropy_collector = kzalloc(sizeof(struct rand_data), GFP_KERNEL);
665 if (!entropy_collector)
668 if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
669 /* Allocate memory for adding variations based on memory
672 entropy_collector->mem = kzalloc(JENT_MEMORY_SIZE, GFP_KERNEL);
673 if (!entropy_collector->mem) {
674 kfree(entropy_collector);
677 entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
678 entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
679 entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
682 /* verify and set the oversampling rate */
684 osr = 1; /* minimum sampling rate is 1 */
685 entropy_collector->osr = osr;
687 entropy_collector->stir = 1;
688 if (flags & JENT_DISABLE_STIR)
689 entropy_collector->stir = 0;
690 if (flags & JENT_DISABLE_UNBIAS)
691 entropy_collector->disable_unbias = 1;
693 /* fill the data pad with non-zero values */
694 jent_gen_entropy(entropy_collector);
696 return entropy_collector;
699 static void jent_entropy_collector_free(struct rand_data *entropy_collector)
701 if (entropy_collector->mem)
702 kzfree(entropy_collector->mem);
703 entropy_collector->mem = NULL;
704 if (entropy_collector)
705 kzfree(entropy_collector);
706 entropy_collector = NULL;
709 static int jent_entropy_init(void)
714 int time_backwards = 0;
718 /* We could perform statistical tests here, but the problem is
719 * that we only have a few loop counts to do testing. These
720 * loop counts may show some slight skew and we produce
723 * Moreover, only old systems show potentially problematic
724 * jitter entropy that could potentially be caught here. But
725 * the RNG is intended for hardware that is available or widely
726 * used, but not old systems that are long out of favor. Thus,
727 * no statistical tests.
731 * We could add a check for system capabilities such as clock_getres or
732 * check for CONFIG_X86_TSC, but it does not make much sense as the
733 * following sanity checks verify that we have a high-resolution
737 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
738 * definitely too little.
740 #define TESTLOOPCOUNT 300
741 #define CLEARCACHE 100
742 for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
747 unsigned int lowdelta = 0;
749 jent_get_nstime(&time);
750 jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT);
751 jent_get_nstime(&time2);
753 /* test whether timer works */
756 delta = time2 - time;
758 * test whether timer is fine grained enough to provide
759 * delta even when called shortly after each other -- this
760 * implies that we also have a high resolution timer
763 return JENT_ECOARSETIME;
766 * up to here we did not modify any variable that will be
767 * evaluated later, but we already performed some work. Thus we
768 * already have had an impact on the caches, branch prediction,
769 * etc. with the goal to clear it to get the worst case
775 /* test whether we have an increasing timer */
780 * Avoid modulo of 64 bit integer to allow code to compile
781 * on 32 bit architectures.
783 lowdelta = time2 - time;
784 if (!(lowdelta % 100))
788 * ensure that we have a varying delta timer which is necessary
789 * for the calculation of entropy -- perform this check
790 * only after the first loop is executed as we need to prime
794 if (delta != old_delta)
796 if (delta > old_delta)
797 delta_sum += (delta - old_delta);
799 delta_sum += (old_delta - delta);
805 * we allow up to three times the time running backwards.
806 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
807 * if such an operation just happens to interfere with our test, it
808 * should not fail. The value of 3 should cover the NTP case being
809 * performed during our test run.
811 if (3 < time_backwards)
812 return JENT_ENOMONOTONIC;
813 /* Error if the time variances are always identical */
818 * Variations of deltas of time must on average be larger
819 * than 1 to ensure the entropy estimation
820 * implied with 1 is preserved
823 return JENT_EMINVARVAR;
826 * Ensure that we have variations in the time stamp below 10 for at
827 * least 10% of all checks -- on some platforms, the counter
828 * increments in multiples of 100, but not always
830 if ((TESTLOOPCOUNT/10 * 9) < count_mod)
831 return JENT_ECOARSETIME;
836 /***************************************************************************
837 * Kernel crypto API interface
838 ***************************************************************************/
840 struct jitterentropy {
841 spinlock_t jent_lock;
842 struct rand_data *entropy_collector;
845 static int jent_kcapi_init(struct crypto_tfm *tfm)
847 struct jitterentropy *rng = crypto_tfm_ctx(tfm);
850 rng->entropy_collector = jent_entropy_collector_alloc(1, 0);
851 if (!rng->entropy_collector)
854 spin_lock_init(&rng->jent_lock);
858 static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
860 struct jitterentropy *rng = crypto_tfm_ctx(tfm);
862 spin_lock(&rng->jent_lock);
863 if (rng->entropy_collector)
864 jent_entropy_collector_free(rng->entropy_collector);
865 rng->entropy_collector = NULL;
866 spin_unlock(&rng->jent_lock);
869 static int jent_kcapi_random(struct crypto_rng *tfm,
870 const u8 *src, unsigned int slen,
871 u8 *rdata, unsigned int dlen)
873 struct jitterentropy *rng = crypto_rng_ctx(tfm);
876 spin_lock(&rng->jent_lock);
877 ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
878 spin_unlock(&rng->jent_lock);
883 static int jent_kcapi_reset(struct crypto_rng *tfm,
884 const u8 *seed, unsigned int slen)
889 static struct rng_alg jent_alg = {
890 .generate = jent_kcapi_random,
891 .seed = jent_kcapi_reset,
894 .cra_name = "jitterentropy_rng",
895 .cra_driver_name = "jitterentropy_rng",
897 .cra_ctxsize = sizeof(struct jitterentropy),
898 .cra_module = THIS_MODULE,
899 .cra_init = jent_kcapi_init,
900 .cra_exit = jent_kcapi_cleanup,
905 static int __init jent_mod_init(void)
909 ret = jent_entropy_init();
911 pr_info(DRIVER_NAME ": Initialization failed with host not compliant with requirements: %d\n", ret);
914 return crypto_register_rng(&jent_alg);
917 static void __exit jent_mod_exit(void)
919 crypto_unregister_rng(&jent_alg);
922 module_init(jent_mod_init);
923 module_exit(jent_mod_exit);
925 MODULE_LICENSE("Dual BSD/GPL");
926 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
927 MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
928 MODULE_ALIAS_CRYPTO("jitterentropy_rng");