io_uring: free io_buffer_list entries via RCU
[platform/kernel/linux-starfive.git] / crypto / hctr2.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HCTR2 length-preserving encryption mode
4  *
5  * Copyright 2021 Google LLC
6  */
7
8
9 /*
10  * HCTR2 is a length-preserving encryption mode that is efficient on
11  * processors with instructions to accelerate AES and carryless
12  * multiplication, e.g. x86 processors with AES-NI and CLMUL, and ARM
13  * processors with the ARMv8 crypto extensions.
14  *
15  * For more details, see the paper: "Length-preserving encryption with HCTR2"
16  * (https://eprint.iacr.org/2021/1441.pdf)
17  */
18
19 #include <crypto/internal/cipher.h>
20 #include <crypto/internal/hash.h>
21 #include <crypto/internal/skcipher.h>
22 #include <crypto/polyval.h>
23 #include <crypto/scatterwalk.h>
24 #include <linux/module.h>
25
26 #define BLOCKCIPHER_BLOCK_SIZE          16
27
28 /*
29  * The specification allows variable-length tweaks, but Linux's crypto API
30  * currently only allows algorithms to support a single length.  The "natural"
31  * tweak length for HCTR2 is 16, since that fits into one POLYVAL block for
32  * the best performance.  But longer tweaks are useful for fscrypt, to avoid
33  * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
34  */
35 #define TWEAK_SIZE              32
36
37 struct hctr2_instance_ctx {
38         struct crypto_cipher_spawn blockcipher_spawn;
39         struct crypto_skcipher_spawn xctr_spawn;
40         struct crypto_shash_spawn polyval_spawn;
41 };
42
43 struct hctr2_tfm_ctx {
44         struct crypto_cipher *blockcipher;
45         struct crypto_skcipher *xctr;
46         struct crypto_shash *polyval;
47         u8 L[BLOCKCIPHER_BLOCK_SIZE];
48         int hashed_tweak_offset;
49         /*
50          * This struct is allocated with extra space for two exported hash
51          * states.  Since the hash state size is not known at compile-time, we
52          * can't add these to the struct directly.
53          *
54          * hashed_tweaklen_divisible;
55          * hashed_tweaklen_remainder;
56          */
57 };
58
59 struct hctr2_request_ctx {
60         u8 first_block[BLOCKCIPHER_BLOCK_SIZE];
61         u8 xctr_iv[BLOCKCIPHER_BLOCK_SIZE];
62         struct scatterlist *bulk_part_dst;
63         struct scatterlist *bulk_part_src;
64         struct scatterlist sg_src[2];
65         struct scatterlist sg_dst[2];
66         /*
67          * Sub-request sizes are unknown at compile-time, so they need to go
68          * after the members with known sizes.
69          */
70         union {
71                 struct shash_desc hash_desc;
72                 struct skcipher_request xctr_req;
73         } u;
74         /*
75          * This struct is allocated with extra space for one exported hash
76          * state.  Since the hash state size is not known at compile-time, we
77          * can't add it to the struct directly.
78          *
79          * hashed_tweak;
80          */
81 };
82
83 static inline u8 *hctr2_hashed_tweaklen(const struct hctr2_tfm_ctx *tctx,
84                                         bool has_remainder)
85 {
86         u8 *p = (u8 *)tctx + sizeof(*tctx);
87
88         if (has_remainder) /* For messages not a multiple of block length */
89                 p += crypto_shash_statesize(tctx->polyval);
90         return p;
91 }
92
93 static inline u8 *hctr2_hashed_tweak(const struct hctr2_tfm_ctx *tctx,
94                                      struct hctr2_request_ctx *rctx)
95 {
96         return (u8 *)rctx + tctx->hashed_tweak_offset;
97 }
98
99 /*
100  * The input data for each HCTR2 hash step begins with a 16-byte block that
101  * contains the tweak length and a flag that indicates whether the input is evenly
102  * divisible into blocks.  Since this implementation only supports one tweak
103  * length, we precompute the two hash states resulting from hashing the two
104  * possible values of this initial block.  This reduces by one block the amount of
105  * data that needs to be hashed for each encryption/decryption
106  *
107  * These precomputed hashes are stored in hctr2_tfm_ctx.
108  */
109 static int hctr2_hash_tweaklen(struct hctr2_tfm_ctx *tctx, bool has_remainder)
110 {
111         SHASH_DESC_ON_STACK(shash, tfm->polyval);
112         __le64 tweak_length_block[2];
113         int err;
114
115         shash->tfm = tctx->polyval;
116         memset(tweak_length_block, 0, sizeof(tweak_length_block));
117
118         tweak_length_block[0] = cpu_to_le64(TWEAK_SIZE * 8 * 2 + 2 + has_remainder);
119         err = crypto_shash_init(shash);
120         if (err)
121                 return err;
122         err = crypto_shash_update(shash, (u8 *)tweak_length_block,
123                                   POLYVAL_BLOCK_SIZE);
124         if (err)
125                 return err;
126         return crypto_shash_export(shash, hctr2_hashed_tweaklen(tctx, has_remainder));
127 }
128
129 static int hctr2_setkey(struct crypto_skcipher *tfm, const u8 *key,
130                         unsigned int keylen)
131 {
132         struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
133         u8 hbar[BLOCKCIPHER_BLOCK_SIZE];
134         int err;
135
136         crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
137         crypto_cipher_set_flags(tctx->blockcipher,
138                                 crypto_skcipher_get_flags(tfm) &
139                                 CRYPTO_TFM_REQ_MASK);
140         err = crypto_cipher_setkey(tctx->blockcipher, key, keylen);
141         if (err)
142                 return err;
143
144         crypto_skcipher_clear_flags(tctx->xctr, CRYPTO_TFM_REQ_MASK);
145         crypto_skcipher_set_flags(tctx->xctr,
146                                   crypto_skcipher_get_flags(tfm) &
147                                   CRYPTO_TFM_REQ_MASK);
148         err = crypto_skcipher_setkey(tctx->xctr, key, keylen);
149         if (err)
150                 return err;
151
152         memset(hbar, 0, sizeof(hbar));
153         crypto_cipher_encrypt_one(tctx->blockcipher, hbar, hbar);
154
155         memset(tctx->L, 0, sizeof(tctx->L));
156         tctx->L[0] = 0x01;
157         crypto_cipher_encrypt_one(tctx->blockcipher, tctx->L, tctx->L);
158
159         crypto_shash_clear_flags(tctx->polyval, CRYPTO_TFM_REQ_MASK);
160         crypto_shash_set_flags(tctx->polyval, crypto_skcipher_get_flags(tfm) &
161                                CRYPTO_TFM_REQ_MASK);
162         err = crypto_shash_setkey(tctx->polyval, hbar, BLOCKCIPHER_BLOCK_SIZE);
163         if (err)
164                 return err;
165         memzero_explicit(hbar, sizeof(hbar));
166
167         return hctr2_hash_tweaklen(tctx, true) ?: hctr2_hash_tweaklen(tctx, false);
168 }
169
170 static int hctr2_hash_tweak(struct skcipher_request *req)
171 {
172         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
173         const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
174         struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
175         struct shash_desc *hash_desc = &rctx->u.hash_desc;
176         int err;
177         bool has_remainder = req->cryptlen % POLYVAL_BLOCK_SIZE;
178
179         hash_desc->tfm = tctx->polyval;
180         err = crypto_shash_import(hash_desc, hctr2_hashed_tweaklen(tctx, has_remainder));
181         if (err)
182                 return err;
183         err = crypto_shash_update(hash_desc, req->iv, TWEAK_SIZE);
184         if (err)
185                 return err;
186
187         // Store the hashed tweak, since we need it when computing both
188         // H(T || N) and H(T || V).
189         return crypto_shash_export(hash_desc, hctr2_hashed_tweak(tctx, rctx));
190 }
191
192 static int hctr2_hash_message(struct skcipher_request *req,
193                               struct scatterlist *sgl,
194                               u8 digest[POLYVAL_DIGEST_SIZE])
195 {
196         static const u8 padding[BLOCKCIPHER_BLOCK_SIZE] = { 0x1 };
197         struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
198         struct shash_desc *hash_desc = &rctx->u.hash_desc;
199         const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
200         struct sg_mapping_iter miter;
201         unsigned int remainder = bulk_len % BLOCKCIPHER_BLOCK_SIZE;
202         int i;
203         int err = 0;
204         int n = 0;
205
206         sg_miter_start(&miter, sgl, sg_nents(sgl),
207                        SG_MITER_FROM_SG | SG_MITER_ATOMIC);
208         for (i = 0; i < bulk_len; i += n) {
209                 sg_miter_next(&miter);
210                 n = min_t(unsigned int, miter.length, bulk_len - i);
211                 err = crypto_shash_update(hash_desc, miter.addr, n);
212                 if (err)
213                         break;
214         }
215         sg_miter_stop(&miter);
216
217         if (err)
218                 return err;
219
220         if (remainder) {
221                 err = crypto_shash_update(hash_desc, padding,
222                                           BLOCKCIPHER_BLOCK_SIZE - remainder);
223                 if (err)
224                         return err;
225         }
226         return crypto_shash_final(hash_desc, digest);
227 }
228
229 static int hctr2_finish(struct skcipher_request *req)
230 {
231         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
232         const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
233         struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
234         u8 digest[POLYVAL_DIGEST_SIZE];
235         struct shash_desc *hash_desc = &rctx->u.hash_desc;
236         int err;
237
238         // U = UU ^ H(T || V)
239         // or M = MM ^ H(T || N)
240         hash_desc->tfm = tctx->polyval;
241         err = crypto_shash_import(hash_desc, hctr2_hashed_tweak(tctx, rctx));
242         if (err)
243                 return err;
244         err = hctr2_hash_message(req, rctx->bulk_part_dst, digest);
245         if (err)
246                 return err;
247         crypto_xor(rctx->first_block, digest, BLOCKCIPHER_BLOCK_SIZE);
248
249         // Copy U (or M) into dst scatterlist
250         scatterwalk_map_and_copy(rctx->first_block, req->dst,
251                                  0, BLOCKCIPHER_BLOCK_SIZE, 1);
252         return 0;
253 }
254
255 static void hctr2_xctr_done(void *data, int err)
256 {
257         struct skcipher_request *req = data;
258
259         if (!err)
260                 err = hctr2_finish(req);
261
262         skcipher_request_complete(req, err);
263 }
264
265 static int hctr2_crypt(struct skcipher_request *req, bool enc)
266 {
267         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
268         const struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
269         struct hctr2_request_ctx *rctx = skcipher_request_ctx(req);
270         u8 digest[POLYVAL_DIGEST_SIZE];
271         int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
272         int err;
273
274         // Requests must be at least one block
275         if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
276                 return -EINVAL;
277
278         // Copy M (or U) into a temporary buffer
279         scatterwalk_map_and_copy(rctx->first_block, req->src,
280                                  0, BLOCKCIPHER_BLOCK_SIZE, 0);
281
282         // Create scatterlists for N and V
283         rctx->bulk_part_src = scatterwalk_ffwd(rctx->sg_src, req->src,
284                                                BLOCKCIPHER_BLOCK_SIZE);
285         rctx->bulk_part_dst = scatterwalk_ffwd(rctx->sg_dst, req->dst,
286                                                BLOCKCIPHER_BLOCK_SIZE);
287
288         // MM = M ^ H(T || N)
289         // or UU = U ^ H(T || V)
290         err = hctr2_hash_tweak(req);
291         if (err)
292                 return err;
293         err = hctr2_hash_message(req, rctx->bulk_part_src, digest);
294         if (err)
295                 return err;
296         crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);
297
298         // UU = E(MM)
299         // or MM = D(UU)
300         if (enc)
301                 crypto_cipher_encrypt_one(tctx->blockcipher, rctx->first_block,
302                                           digest);
303         else
304                 crypto_cipher_decrypt_one(tctx->blockcipher, rctx->first_block,
305                                           digest);
306
307         // S = MM ^ UU ^ L
308         crypto_xor(digest, rctx->first_block, BLOCKCIPHER_BLOCK_SIZE);
309         crypto_xor_cpy(rctx->xctr_iv, digest, tctx->L, BLOCKCIPHER_BLOCK_SIZE);
310
311         // V = XCTR(S, N)
312         // or N = XCTR(S, V)
313         skcipher_request_set_tfm(&rctx->u.xctr_req, tctx->xctr);
314         skcipher_request_set_crypt(&rctx->u.xctr_req, rctx->bulk_part_src,
315                                    rctx->bulk_part_dst, bulk_len,
316                                    rctx->xctr_iv);
317         skcipher_request_set_callback(&rctx->u.xctr_req,
318                                       req->base.flags,
319                                       hctr2_xctr_done, req);
320         return crypto_skcipher_encrypt(&rctx->u.xctr_req) ?:
321                 hctr2_finish(req);
322 }
323
324 static int hctr2_encrypt(struct skcipher_request *req)
325 {
326         return hctr2_crypt(req, true);
327 }
328
329 static int hctr2_decrypt(struct skcipher_request *req)
330 {
331         return hctr2_crypt(req, false);
332 }
333
334 static int hctr2_init_tfm(struct crypto_skcipher *tfm)
335 {
336         struct skcipher_instance *inst = skcipher_alg_instance(tfm);
337         struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);
338         struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
339         struct crypto_skcipher *xctr;
340         struct crypto_cipher *blockcipher;
341         struct crypto_shash *polyval;
342         unsigned int subreq_size;
343         int err;
344
345         xctr = crypto_spawn_skcipher(&ictx->xctr_spawn);
346         if (IS_ERR(xctr))
347                 return PTR_ERR(xctr);
348
349         blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
350         if (IS_ERR(blockcipher)) {
351                 err = PTR_ERR(blockcipher);
352                 goto err_free_xctr;
353         }
354
355         polyval = crypto_spawn_shash(&ictx->polyval_spawn);
356         if (IS_ERR(polyval)) {
357                 err = PTR_ERR(polyval);
358                 goto err_free_blockcipher;
359         }
360
361         tctx->xctr = xctr;
362         tctx->blockcipher = blockcipher;
363         tctx->polyval = polyval;
364
365         BUILD_BUG_ON(offsetofend(struct hctr2_request_ctx, u) !=
366                                  sizeof(struct hctr2_request_ctx));
367         subreq_size = max(sizeof_field(struct hctr2_request_ctx, u.hash_desc) +
368                           crypto_shash_descsize(polyval),
369                           sizeof_field(struct hctr2_request_ctx, u.xctr_req) +
370                           crypto_skcipher_reqsize(xctr));
371
372         tctx->hashed_tweak_offset = offsetof(struct hctr2_request_ctx, u) +
373                                     subreq_size;
374         crypto_skcipher_set_reqsize(tfm, tctx->hashed_tweak_offset +
375                                     crypto_shash_statesize(polyval));
376         return 0;
377
378 err_free_blockcipher:
379         crypto_free_cipher(blockcipher);
380 err_free_xctr:
381         crypto_free_skcipher(xctr);
382         return err;
383 }
384
385 static void hctr2_exit_tfm(struct crypto_skcipher *tfm)
386 {
387         struct hctr2_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
388
389         crypto_free_cipher(tctx->blockcipher);
390         crypto_free_skcipher(tctx->xctr);
391         crypto_free_shash(tctx->polyval);
392 }
393
394 static void hctr2_free_instance(struct skcipher_instance *inst)
395 {
396         struct hctr2_instance_ctx *ictx = skcipher_instance_ctx(inst);
397
398         crypto_drop_cipher(&ictx->blockcipher_spawn);
399         crypto_drop_skcipher(&ictx->xctr_spawn);
400         crypto_drop_shash(&ictx->polyval_spawn);
401         kfree(inst);
402 }
403
404 static int hctr2_create_common(struct crypto_template *tmpl,
405                                struct rtattr **tb,
406                                const char *xctr_name,
407                                const char *polyval_name)
408 {
409         u32 mask;
410         struct skcipher_instance *inst;
411         struct hctr2_instance_ctx *ictx;
412         struct skcipher_alg *xctr_alg;
413         struct crypto_alg *blockcipher_alg;
414         struct shash_alg *polyval_alg;
415         char blockcipher_name[CRYPTO_MAX_ALG_NAME];
416         int len;
417         int err;
418
419         err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
420         if (err)
421                 return err;
422
423         inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
424         if (!inst)
425                 return -ENOMEM;
426         ictx = skcipher_instance_ctx(inst);
427
428         /* Stream cipher, xctr(block_cipher) */
429         err = crypto_grab_skcipher(&ictx->xctr_spawn,
430                                    skcipher_crypto_instance(inst),
431                                    xctr_name, 0, mask);
432         if (err)
433                 goto err_free_inst;
434         xctr_alg = crypto_spawn_skcipher_alg(&ictx->xctr_spawn);
435
436         err = -EINVAL;
437         if (strncmp(xctr_alg->base.cra_name, "xctr(", 5))
438                 goto err_free_inst;
439         len = strscpy(blockcipher_name, xctr_alg->base.cra_name + 5,
440                       sizeof(blockcipher_name));
441         if (len < 1)
442                 goto err_free_inst;
443         if (blockcipher_name[len - 1] != ')')
444                 goto err_free_inst;
445         blockcipher_name[len - 1] = 0;
446
447         /* Block cipher, e.g. "aes" */
448         err = crypto_grab_cipher(&ictx->blockcipher_spawn,
449                                  skcipher_crypto_instance(inst),
450                                  blockcipher_name, 0, mask);
451         if (err)
452                 goto err_free_inst;
453         blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
454
455         /* Require blocksize of 16 bytes */
456         err = -EINVAL;
457         if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
458                 goto err_free_inst;
459
460         /* Polyval ε-∆U hash function */
461         err = crypto_grab_shash(&ictx->polyval_spawn,
462                                 skcipher_crypto_instance(inst),
463                                 polyval_name, 0, mask);
464         if (err)
465                 goto err_free_inst;
466         polyval_alg = crypto_spawn_shash_alg(&ictx->polyval_spawn);
467
468         /* Ensure Polyval is being used */
469         err = -EINVAL;
470         if (strcmp(polyval_alg->base.cra_name, "polyval") != 0)
471                 goto err_free_inst;
472
473         /* Instance fields */
474
475         err = -ENAMETOOLONG;
476         if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "hctr2(%s)",
477                      blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
478                 goto err_free_inst;
479         if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
480                      "hctr2_base(%s,%s)",
481                      xctr_alg->base.cra_driver_name,
482                      polyval_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
483                 goto err_free_inst;
484
485         inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
486         inst->alg.base.cra_ctxsize = sizeof(struct hctr2_tfm_ctx) +
487                                      polyval_alg->statesize * 2;
488         inst->alg.base.cra_alignmask = xctr_alg->base.cra_alignmask |
489                                        polyval_alg->base.cra_alignmask;
490         /*
491          * The hash function is called twice, so it is weighted higher than the
492          * xctr and blockcipher.
493          */
494         inst->alg.base.cra_priority = (2 * xctr_alg->base.cra_priority +
495                                        4 * polyval_alg->base.cra_priority +
496                                        blockcipher_alg->cra_priority) / 7;
497
498         inst->alg.setkey = hctr2_setkey;
499         inst->alg.encrypt = hctr2_encrypt;
500         inst->alg.decrypt = hctr2_decrypt;
501         inst->alg.init = hctr2_init_tfm;
502         inst->alg.exit = hctr2_exit_tfm;
503         inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(xctr_alg);
504         inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(xctr_alg);
505         inst->alg.ivsize = TWEAK_SIZE;
506
507         inst->free = hctr2_free_instance;
508
509         err = skcipher_register_instance(tmpl, inst);
510         if (err) {
511 err_free_inst:
512                 hctr2_free_instance(inst);
513         }
514         return err;
515 }
516
517 static int hctr2_create_base(struct crypto_template *tmpl, struct rtattr **tb)
518 {
519         const char *xctr_name;
520         const char *polyval_name;
521
522         xctr_name = crypto_attr_alg_name(tb[1]);
523         if (IS_ERR(xctr_name))
524                 return PTR_ERR(xctr_name);
525
526         polyval_name = crypto_attr_alg_name(tb[2]);
527         if (IS_ERR(polyval_name))
528                 return PTR_ERR(polyval_name);
529
530         return hctr2_create_common(tmpl, tb, xctr_name, polyval_name);
531 }
532
533 static int hctr2_create(struct crypto_template *tmpl, struct rtattr **tb)
534 {
535         const char *blockcipher_name;
536         char xctr_name[CRYPTO_MAX_ALG_NAME];
537
538         blockcipher_name = crypto_attr_alg_name(tb[1]);
539         if (IS_ERR(blockcipher_name))
540                 return PTR_ERR(blockcipher_name);
541
542         if (snprintf(xctr_name, CRYPTO_MAX_ALG_NAME, "xctr(%s)",
543                     blockcipher_name) >= CRYPTO_MAX_ALG_NAME)
544                 return -ENAMETOOLONG;
545
546         return hctr2_create_common(tmpl, tb, xctr_name, "polyval");
547 }
548
549 static struct crypto_template hctr2_tmpls[] = {
550         {
551                 /* hctr2_base(xctr_name, polyval_name) */
552                 .name = "hctr2_base",
553                 .create = hctr2_create_base,
554                 .module = THIS_MODULE,
555         }, {
556                 /* hctr2(blockcipher_name) */
557                 .name = "hctr2",
558                 .create = hctr2_create,
559                 .module = THIS_MODULE,
560         }
561 };
562
563 static int __init hctr2_module_init(void)
564 {
565         return crypto_register_templates(hctr2_tmpls, ARRAY_SIZE(hctr2_tmpls));
566 }
567
568 static void __exit hctr2_module_exit(void)
569 {
570         return crypto_unregister_templates(hctr2_tmpls,
571                                            ARRAY_SIZE(hctr2_tmpls));
572 }
573
574 subsys_initcall(hctr2_module_init);
575 module_exit(hctr2_module_exit);
576
577 MODULE_DESCRIPTION("HCTR2 length-preserving encryption mode");
578 MODULE_LICENSE("GPL v2");
579 MODULE_ALIAS_CRYPTO("hctr2");
580 MODULE_IMPORT_NS(CRYPTO_INTERNAL);