Merge branch 'for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
[platform/kernel/linux-starfive.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26                                     struct crypto_async_request *req, int err)
27 {
28         unsigned long flags;
29         bool finalize_req = false;
30         int ret;
31         struct crypto_engine_ctx *enginectx;
32
33         /*
34          * If hardware cannot enqueue more requests
35          * and retry mechanism is not supported
36          * make sure we are completing the current request
37          */
38         if (!engine->retry_support) {
39                 spin_lock_irqsave(&engine->queue_lock, flags);
40                 if (engine->cur_req == req) {
41                         finalize_req = true;
42                         engine->cur_req = NULL;
43                 }
44                 spin_unlock_irqrestore(&engine->queue_lock, flags);
45         }
46
47         if (finalize_req || engine->retry_support) {
48                 enginectx = crypto_tfm_ctx(req->tfm);
49                 if (enginectx->op.prepare_request &&
50                     enginectx->op.unprepare_request) {
51                         ret = enginectx->op.unprepare_request(engine, req);
52                         if (ret)
53                                 dev_err(engine->dev, "failed to unprepare request\n");
54                 }
55         }
56         lockdep_assert_in_softirq();
57         req->complete(req, err);
58
59         kthread_queue_work(engine->kworker, &engine->pump_requests);
60 }
61
62 /**
63  * crypto_pump_requests - dequeue one request from engine queue to process
64  * @engine: the hardware engine
65  * @in_kthread: true if we are in the context of the request pump thread
66  *
67  * This function checks if there is any request in the engine queue that
68  * needs processing and if so call out to the driver to initialize hardware
69  * and handle each request.
70  */
71 static void crypto_pump_requests(struct crypto_engine *engine,
72                                  bool in_kthread)
73 {
74         struct crypto_async_request *async_req, *backlog;
75         unsigned long flags;
76         bool was_busy = false;
77         int ret;
78         struct crypto_engine_ctx *enginectx;
79
80         spin_lock_irqsave(&engine->queue_lock, flags);
81
82         /* Make sure we are not already running a request */
83         if (!engine->retry_support && engine->cur_req)
84                 goto out;
85
86         /* If another context is idling then defer */
87         if (engine->idling) {
88                 kthread_queue_work(engine->kworker, &engine->pump_requests);
89                 goto out;
90         }
91
92         /* Check if the engine queue is idle */
93         if (!crypto_queue_len(&engine->queue) || !engine->running) {
94                 if (!engine->busy)
95                         goto out;
96
97                 /* Only do teardown in the thread */
98                 if (!in_kthread) {
99                         kthread_queue_work(engine->kworker,
100                                            &engine->pump_requests);
101                         goto out;
102                 }
103
104                 engine->busy = false;
105                 engine->idling = true;
106                 spin_unlock_irqrestore(&engine->queue_lock, flags);
107
108                 if (engine->unprepare_crypt_hardware &&
109                     engine->unprepare_crypt_hardware(engine))
110                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
111
112                 spin_lock_irqsave(&engine->queue_lock, flags);
113                 engine->idling = false;
114                 goto out;
115         }
116
117 start_request:
118         /* Get the fist request from the engine queue to handle */
119         backlog = crypto_get_backlog(&engine->queue);
120         async_req = crypto_dequeue_request(&engine->queue);
121         if (!async_req)
122                 goto out;
123
124         /*
125          * If hardware doesn't support the retry mechanism,
126          * keep track of the request we are processing now.
127          * We'll need it on completion (crypto_finalize_request).
128          */
129         if (!engine->retry_support)
130                 engine->cur_req = async_req;
131
132         if (backlog)
133                 backlog->complete(backlog, -EINPROGRESS);
134
135         if (engine->busy)
136                 was_busy = true;
137         else
138                 engine->busy = true;
139
140         spin_unlock_irqrestore(&engine->queue_lock, flags);
141
142         /* Until here we get the request need to be encrypted successfully */
143         if (!was_busy && engine->prepare_crypt_hardware) {
144                 ret = engine->prepare_crypt_hardware(engine);
145                 if (ret) {
146                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
147                         goto req_err_2;
148                 }
149         }
150
151         enginectx = crypto_tfm_ctx(async_req->tfm);
152
153         if (enginectx->op.prepare_request) {
154                 ret = enginectx->op.prepare_request(engine, async_req);
155                 if (ret) {
156                         dev_err(engine->dev, "failed to prepare request: %d\n",
157                                 ret);
158                         goto req_err_2;
159                 }
160         }
161         if (!enginectx->op.do_one_request) {
162                 dev_err(engine->dev, "failed to do request\n");
163                 ret = -EINVAL;
164                 goto req_err_1;
165         }
166
167         ret = enginectx->op.do_one_request(engine, async_req);
168
169         /* Request unsuccessfully executed by hardware */
170         if (ret < 0) {
171                 /*
172                  * If hardware queue is full (-ENOSPC), requeue request
173                  * regardless of backlog flag.
174                  * Otherwise, unprepare and complete the request.
175                  */
176                 if (!engine->retry_support ||
177                     (ret != -ENOSPC)) {
178                         dev_err(engine->dev,
179                                 "Failed to do one request from queue: %d\n",
180                                 ret);
181                         goto req_err_1;
182                 }
183                 /*
184                  * If retry mechanism is supported,
185                  * unprepare current request and
186                  * enqueue it back into crypto-engine queue.
187                  */
188                 if (enginectx->op.unprepare_request) {
189                         ret = enginectx->op.unprepare_request(engine,
190                                                               async_req);
191                         if (ret)
192                                 dev_err(engine->dev,
193                                         "failed to unprepare request\n");
194                 }
195                 spin_lock_irqsave(&engine->queue_lock, flags);
196                 /*
197                  * If hardware was unable to execute request, enqueue it
198                  * back in front of crypto-engine queue, to keep the order
199                  * of requests.
200                  */
201                 crypto_enqueue_request_head(&engine->queue, async_req);
202
203                 kthread_queue_work(engine->kworker, &engine->pump_requests);
204                 goto out;
205         }
206
207         goto retry;
208
209 req_err_1:
210         if (enginectx->op.unprepare_request) {
211                 ret = enginectx->op.unprepare_request(engine, async_req);
212                 if (ret)
213                         dev_err(engine->dev, "failed to unprepare request\n");
214         }
215
216 req_err_2:
217         async_req->complete(async_req, ret);
218
219 retry:
220         /* If retry mechanism is supported, send new requests to engine */
221         if (engine->retry_support) {
222                 spin_lock_irqsave(&engine->queue_lock, flags);
223                 goto start_request;
224         }
225         return;
226
227 out:
228         spin_unlock_irqrestore(&engine->queue_lock, flags);
229
230         /*
231          * Batch requests is possible only if
232          * hardware can enqueue multiple requests
233          */
234         if (engine->do_batch_requests) {
235                 ret = engine->do_batch_requests(engine);
236                 if (ret)
237                         dev_err(engine->dev, "failed to do batch requests: %d\n",
238                                 ret);
239         }
240
241         return;
242 }
243
244 static void crypto_pump_work(struct kthread_work *work)
245 {
246         struct crypto_engine *engine =
247                 container_of(work, struct crypto_engine, pump_requests);
248
249         crypto_pump_requests(engine, true);
250 }
251
252 /**
253  * crypto_transfer_request - transfer the new request into the engine queue
254  * @engine: the hardware engine
255  * @req: the request need to be listed into the engine queue
256  */
257 static int crypto_transfer_request(struct crypto_engine *engine,
258                                    struct crypto_async_request *req,
259                                    bool need_pump)
260 {
261         unsigned long flags;
262         int ret;
263
264         spin_lock_irqsave(&engine->queue_lock, flags);
265
266         if (!engine->running) {
267                 spin_unlock_irqrestore(&engine->queue_lock, flags);
268                 return -ESHUTDOWN;
269         }
270
271         ret = crypto_enqueue_request(&engine->queue, req);
272
273         if (!engine->busy && need_pump)
274                 kthread_queue_work(engine->kworker, &engine->pump_requests);
275
276         spin_unlock_irqrestore(&engine->queue_lock, flags);
277         return ret;
278 }
279
280 /**
281  * crypto_transfer_request_to_engine - transfer one request to list
282  * into the engine queue
283  * @engine: the hardware engine
284  * @req: the request need to be listed into the engine queue
285  */
286 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
287                                              struct crypto_async_request *req)
288 {
289         return crypto_transfer_request(engine, req, true);
290 }
291
292 /**
293  * crypto_transfer_aead_request_to_engine - transfer one aead_request
294  * to list into the engine queue
295  * @engine: the hardware engine
296  * @req: the request need to be listed into the engine queue
297  */
298 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
299                                            struct aead_request *req)
300 {
301         return crypto_transfer_request_to_engine(engine, &req->base);
302 }
303 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
304
305 /**
306  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
307  * to list into the engine queue
308  * @engine: the hardware engine
309  * @req: the request need to be listed into the engine queue
310  */
311 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
312                                                struct akcipher_request *req)
313 {
314         return crypto_transfer_request_to_engine(engine, &req->base);
315 }
316 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
317
318 /**
319  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
320  * to list into the engine queue
321  * @engine: the hardware engine
322  * @req: the request need to be listed into the engine queue
323  */
324 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
325                                            struct ahash_request *req)
326 {
327         return crypto_transfer_request_to_engine(engine, &req->base);
328 }
329 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
330
331 /**
332  * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
333  * into the engine queue
334  * @engine: the hardware engine
335  * @req: the request need to be listed into the engine queue
336  */
337 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
338                                           struct kpp_request *req)
339 {
340         return crypto_transfer_request_to_engine(engine, &req->base);
341 }
342 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
343
344 /**
345  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
346  * to list into the engine queue
347  * @engine: the hardware engine
348  * @req: the request need to be listed into the engine queue
349  */
350 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
351                                                struct skcipher_request *req)
352 {
353         return crypto_transfer_request_to_engine(engine, &req->base);
354 }
355 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
356
357 /**
358  * crypto_finalize_aead_request - finalize one aead_request if
359  * the request is done
360  * @engine: the hardware engine
361  * @req: the request need to be finalized
362  * @err: error number
363  */
364 void crypto_finalize_aead_request(struct crypto_engine *engine,
365                                   struct aead_request *req, int err)
366 {
367         return crypto_finalize_request(engine, &req->base, err);
368 }
369 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
370
371 /**
372  * crypto_finalize_akcipher_request - finalize one akcipher_request if
373  * the request is done
374  * @engine: the hardware engine
375  * @req: the request need to be finalized
376  * @err: error number
377  */
378 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
379                                       struct akcipher_request *req, int err)
380 {
381         return crypto_finalize_request(engine, &req->base, err);
382 }
383 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
384
385 /**
386  * crypto_finalize_hash_request - finalize one ahash_request if
387  * the request is done
388  * @engine: the hardware engine
389  * @req: the request need to be finalized
390  * @err: error number
391  */
392 void crypto_finalize_hash_request(struct crypto_engine *engine,
393                                   struct ahash_request *req, int err)
394 {
395         return crypto_finalize_request(engine, &req->base, err);
396 }
397 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
398
399 /**
400  * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
401  * @engine: the hardware engine
402  * @req: the request need to be finalized
403  * @err: error number
404  */
405 void crypto_finalize_kpp_request(struct crypto_engine *engine,
406                                  struct kpp_request *req, int err)
407 {
408         return crypto_finalize_request(engine, &req->base, err);
409 }
410 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
411
412 /**
413  * crypto_finalize_skcipher_request - finalize one skcipher_request if
414  * the request is done
415  * @engine: the hardware engine
416  * @req: the request need to be finalized
417  * @err: error number
418  */
419 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
420                                       struct skcipher_request *req, int err)
421 {
422         return crypto_finalize_request(engine, &req->base, err);
423 }
424 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
425
426 /**
427  * crypto_engine_start - start the hardware engine
428  * @engine: the hardware engine need to be started
429  *
430  * Return 0 on success, else on fail.
431  */
432 int crypto_engine_start(struct crypto_engine *engine)
433 {
434         unsigned long flags;
435
436         spin_lock_irqsave(&engine->queue_lock, flags);
437
438         if (engine->running || engine->busy) {
439                 spin_unlock_irqrestore(&engine->queue_lock, flags);
440                 return -EBUSY;
441         }
442
443         engine->running = true;
444         spin_unlock_irqrestore(&engine->queue_lock, flags);
445
446         kthread_queue_work(engine->kworker, &engine->pump_requests);
447
448         return 0;
449 }
450 EXPORT_SYMBOL_GPL(crypto_engine_start);
451
452 /**
453  * crypto_engine_stop - stop the hardware engine
454  * @engine: the hardware engine need to be stopped
455  *
456  * Return 0 on success, else on fail.
457  */
458 int crypto_engine_stop(struct crypto_engine *engine)
459 {
460         unsigned long flags;
461         unsigned int limit = 500;
462         int ret = 0;
463
464         spin_lock_irqsave(&engine->queue_lock, flags);
465
466         /*
467          * If the engine queue is not empty or the engine is on busy state,
468          * we need to wait for a while to pump the requests of engine queue.
469          */
470         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
471                 spin_unlock_irqrestore(&engine->queue_lock, flags);
472                 msleep(20);
473                 spin_lock_irqsave(&engine->queue_lock, flags);
474         }
475
476         if (crypto_queue_len(&engine->queue) || engine->busy)
477                 ret = -EBUSY;
478         else
479                 engine->running = false;
480
481         spin_unlock_irqrestore(&engine->queue_lock, flags);
482
483         if (ret)
484                 dev_warn(engine->dev, "could not stop engine\n");
485
486         return ret;
487 }
488 EXPORT_SYMBOL_GPL(crypto_engine_stop);
489
490 /**
491  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
492  * and initialize it by setting the maximum number of entries in the software
493  * crypto-engine queue.
494  * @dev: the device attached with one hardware engine
495  * @retry_support: whether hardware has support for retry mechanism
496  * @cbk_do_batch: pointer to a callback function to be invoked when executing
497  *                a batch of requests.
498  *                This has the form:
499  *                callback(struct crypto_engine *engine)
500  *                where:
501  *                @engine: the crypto engine structure.
502  * @rt: whether this queue is set to run as a realtime task
503  * @qlen: maximum size of the crypto-engine queue
504  *
505  * This must be called from context that can sleep.
506  * Return: the crypto engine structure on success, else NULL.
507  */
508 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
509                                                        bool retry_support,
510                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
511                                                        bool rt, int qlen)
512 {
513         struct crypto_engine *engine;
514
515         if (!dev)
516                 return NULL;
517
518         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
519         if (!engine)
520                 return NULL;
521
522         engine->dev = dev;
523         engine->rt = rt;
524         engine->running = false;
525         engine->busy = false;
526         engine->idling = false;
527         engine->retry_support = retry_support;
528         engine->priv_data = dev;
529         /*
530          * Batch requests is possible only if
531          * hardware has support for retry mechanism.
532          */
533         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
534
535         snprintf(engine->name, sizeof(engine->name),
536                  "%s-engine", dev_name(dev));
537
538         crypto_init_queue(&engine->queue, qlen);
539         spin_lock_init(&engine->queue_lock);
540
541         engine->kworker = kthread_create_worker(0, "%s", engine->name);
542         if (IS_ERR(engine->kworker)) {
543                 dev_err(dev, "failed to create crypto request pump task\n");
544                 return NULL;
545         }
546         kthread_init_work(&engine->pump_requests, crypto_pump_work);
547
548         if (engine->rt) {
549                 dev_info(dev, "will run requests pump with realtime priority\n");
550                 sched_set_fifo(engine->kworker->task);
551         }
552
553         return engine;
554 }
555 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
556
557 /**
558  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
559  * initialize it.
560  * @dev: the device attached with one hardware engine
561  * @rt: whether this queue is set to run as a realtime task
562  *
563  * This must be called from context that can sleep.
564  * Return: the crypto engine structure on success, else NULL.
565  */
566 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
567 {
568         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
569                                                 CRYPTO_ENGINE_MAX_QLEN);
570 }
571 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
572
573 /**
574  * crypto_engine_exit - free the resources of hardware engine when exit
575  * @engine: the hardware engine need to be freed
576  *
577  * Return 0 for success.
578  */
579 int crypto_engine_exit(struct crypto_engine *engine)
580 {
581         int ret;
582
583         ret = crypto_engine_stop(engine);
584         if (ret)
585                 return ret;
586
587         kthread_destroy_worker(engine->kworker);
588
589         return 0;
590 }
591 EXPORT_SYMBOL_GPL(crypto_engine_exit);
592
593 MODULE_LICENSE("GPL");
594 MODULE_DESCRIPTION("Crypto hardware engine framework");