Merge tag 'powerpc-5.17-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-starfive.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26                                     struct crypto_async_request *req, int err)
27 {
28         unsigned long flags;
29         bool finalize_req = false;
30         int ret;
31         struct crypto_engine_ctx *enginectx;
32
33         /*
34          * If hardware cannot enqueue more requests
35          * and retry mechanism is not supported
36          * make sure we are completing the current request
37          */
38         if (!engine->retry_support) {
39                 spin_lock_irqsave(&engine->queue_lock, flags);
40                 if (engine->cur_req == req) {
41                         finalize_req = true;
42                         engine->cur_req = NULL;
43                 }
44                 spin_unlock_irqrestore(&engine->queue_lock, flags);
45         }
46
47         if (finalize_req || engine->retry_support) {
48                 enginectx = crypto_tfm_ctx(req->tfm);
49                 if (enginectx->op.prepare_request &&
50                     enginectx->op.unprepare_request) {
51                         ret = enginectx->op.unprepare_request(engine, req);
52                         if (ret)
53                                 dev_err(engine->dev, "failed to unprepare request\n");
54                 }
55         }
56         req->complete(req, err);
57
58         kthread_queue_work(engine->kworker, &engine->pump_requests);
59 }
60
61 /**
62  * crypto_pump_requests - dequeue one request from engine queue to process
63  * @engine: the hardware engine
64  * @in_kthread: true if we are in the context of the request pump thread
65  *
66  * This function checks if there is any request in the engine queue that
67  * needs processing and if so call out to the driver to initialize hardware
68  * and handle each request.
69  */
70 static void crypto_pump_requests(struct crypto_engine *engine,
71                                  bool in_kthread)
72 {
73         struct crypto_async_request *async_req, *backlog;
74         unsigned long flags;
75         bool was_busy = false;
76         int ret;
77         struct crypto_engine_ctx *enginectx;
78
79         spin_lock_irqsave(&engine->queue_lock, flags);
80
81         /* Make sure we are not already running a request */
82         if (!engine->retry_support && engine->cur_req)
83                 goto out;
84
85         /* If another context is idling then defer */
86         if (engine->idling) {
87                 kthread_queue_work(engine->kworker, &engine->pump_requests);
88                 goto out;
89         }
90
91         /* Check if the engine queue is idle */
92         if (!crypto_queue_len(&engine->queue) || !engine->running) {
93                 if (!engine->busy)
94                         goto out;
95
96                 /* Only do teardown in the thread */
97                 if (!in_kthread) {
98                         kthread_queue_work(engine->kworker,
99                                            &engine->pump_requests);
100                         goto out;
101                 }
102
103                 engine->busy = false;
104                 engine->idling = true;
105                 spin_unlock_irqrestore(&engine->queue_lock, flags);
106
107                 if (engine->unprepare_crypt_hardware &&
108                     engine->unprepare_crypt_hardware(engine))
109                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
110
111                 spin_lock_irqsave(&engine->queue_lock, flags);
112                 engine->idling = false;
113                 goto out;
114         }
115
116 start_request:
117         /* Get the fist request from the engine queue to handle */
118         backlog = crypto_get_backlog(&engine->queue);
119         async_req = crypto_dequeue_request(&engine->queue);
120         if (!async_req)
121                 goto out;
122
123         /*
124          * If hardware doesn't support the retry mechanism,
125          * keep track of the request we are processing now.
126          * We'll need it on completion (crypto_finalize_request).
127          */
128         if (!engine->retry_support)
129                 engine->cur_req = async_req;
130
131         if (backlog)
132                 backlog->complete(backlog, -EINPROGRESS);
133
134         if (engine->busy)
135                 was_busy = true;
136         else
137                 engine->busy = true;
138
139         spin_unlock_irqrestore(&engine->queue_lock, flags);
140
141         /* Until here we get the request need to be encrypted successfully */
142         if (!was_busy && engine->prepare_crypt_hardware) {
143                 ret = engine->prepare_crypt_hardware(engine);
144                 if (ret) {
145                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
146                         goto req_err_2;
147                 }
148         }
149
150         enginectx = crypto_tfm_ctx(async_req->tfm);
151
152         if (enginectx->op.prepare_request) {
153                 ret = enginectx->op.prepare_request(engine, async_req);
154                 if (ret) {
155                         dev_err(engine->dev, "failed to prepare request: %d\n",
156                                 ret);
157                         goto req_err_2;
158                 }
159         }
160         if (!enginectx->op.do_one_request) {
161                 dev_err(engine->dev, "failed to do request\n");
162                 ret = -EINVAL;
163                 goto req_err_1;
164         }
165
166         ret = enginectx->op.do_one_request(engine, async_req);
167
168         /* Request unsuccessfully executed by hardware */
169         if (ret < 0) {
170                 /*
171                  * If hardware queue is full (-ENOSPC), requeue request
172                  * regardless of backlog flag.
173                  * Otherwise, unprepare and complete the request.
174                  */
175                 if (!engine->retry_support ||
176                     (ret != -ENOSPC)) {
177                         dev_err(engine->dev,
178                                 "Failed to do one request from queue: %d\n",
179                                 ret);
180                         goto req_err_1;
181                 }
182                 /*
183                  * If retry mechanism is supported,
184                  * unprepare current request and
185                  * enqueue it back into crypto-engine queue.
186                  */
187                 if (enginectx->op.unprepare_request) {
188                         ret = enginectx->op.unprepare_request(engine,
189                                                               async_req);
190                         if (ret)
191                                 dev_err(engine->dev,
192                                         "failed to unprepare request\n");
193                 }
194                 spin_lock_irqsave(&engine->queue_lock, flags);
195                 /*
196                  * If hardware was unable to execute request, enqueue it
197                  * back in front of crypto-engine queue, to keep the order
198                  * of requests.
199                  */
200                 crypto_enqueue_request_head(&engine->queue, async_req);
201
202                 kthread_queue_work(engine->kworker, &engine->pump_requests);
203                 goto out;
204         }
205
206         goto retry;
207
208 req_err_1:
209         if (enginectx->op.unprepare_request) {
210                 ret = enginectx->op.unprepare_request(engine, async_req);
211                 if (ret)
212                         dev_err(engine->dev, "failed to unprepare request\n");
213         }
214
215 req_err_2:
216         async_req->complete(async_req, ret);
217
218 retry:
219         /* If retry mechanism is supported, send new requests to engine */
220         if (engine->retry_support) {
221                 spin_lock_irqsave(&engine->queue_lock, flags);
222                 goto start_request;
223         }
224         return;
225
226 out:
227         spin_unlock_irqrestore(&engine->queue_lock, flags);
228
229         /*
230          * Batch requests is possible only if
231          * hardware can enqueue multiple requests
232          */
233         if (engine->do_batch_requests) {
234                 ret = engine->do_batch_requests(engine);
235                 if (ret)
236                         dev_err(engine->dev, "failed to do batch requests: %d\n",
237                                 ret);
238         }
239
240         return;
241 }
242
243 static void crypto_pump_work(struct kthread_work *work)
244 {
245         struct crypto_engine *engine =
246                 container_of(work, struct crypto_engine, pump_requests);
247
248         crypto_pump_requests(engine, true);
249 }
250
251 /**
252  * crypto_transfer_request - transfer the new request into the engine queue
253  * @engine: the hardware engine
254  * @req: the request need to be listed into the engine queue
255  */
256 static int crypto_transfer_request(struct crypto_engine *engine,
257                                    struct crypto_async_request *req,
258                                    bool need_pump)
259 {
260         unsigned long flags;
261         int ret;
262
263         spin_lock_irqsave(&engine->queue_lock, flags);
264
265         if (!engine->running) {
266                 spin_unlock_irqrestore(&engine->queue_lock, flags);
267                 return -ESHUTDOWN;
268         }
269
270         ret = crypto_enqueue_request(&engine->queue, req);
271
272         if (!engine->busy && need_pump)
273                 kthread_queue_work(engine->kworker, &engine->pump_requests);
274
275         spin_unlock_irqrestore(&engine->queue_lock, flags);
276         return ret;
277 }
278
279 /**
280  * crypto_transfer_request_to_engine - transfer one request to list
281  * into the engine queue
282  * @engine: the hardware engine
283  * @req: the request need to be listed into the engine queue
284  */
285 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
286                                              struct crypto_async_request *req)
287 {
288         return crypto_transfer_request(engine, req, true);
289 }
290
291 /**
292  * crypto_transfer_aead_request_to_engine - transfer one aead_request
293  * to list into the engine queue
294  * @engine: the hardware engine
295  * @req: the request need to be listed into the engine queue
296  */
297 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
298                                            struct aead_request *req)
299 {
300         return crypto_transfer_request_to_engine(engine, &req->base);
301 }
302 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
303
304 /**
305  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
306  * to list into the engine queue
307  * @engine: the hardware engine
308  * @req: the request need to be listed into the engine queue
309  */
310 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
311                                                struct akcipher_request *req)
312 {
313         return crypto_transfer_request_to_engine(engine, &req->base);
314 }
315 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
316
317 /**
318  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
319  * to list into the engine queue
320  * @engine: the hardware engine
321  * @req: the request need to be listed into the engine queue
322  */
323 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
324                                            struct ahash_request *req)
325 {
326         return crypto_transfer_request_to_engine(engine, &req->base);
327 }
328 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
329
330 /**
331  * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
332  * into the engine queue
333  * @engine: the hardware engine
334  * @req: the request need to be listed into the engine queue
335  */
336 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
337                                           struct kpp_request *req)
338 {
339         return crypto_transfer_request_to_engine(engine, &req->base);
340 }
341 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
342
343 /**
344  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
345  * to list into the engine queue
346  * @engine: the hardware engine
347  * @req: the request need to be listed into the engine queue
348  */
349 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
350                                                struct skcipher_request *req)
351 {
352         return crypto_transfer_request_to_engine(engine, &req->base);
353 }
354 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
355
356 /**
357  * crypto_finalize_aead_request - finalize one aead_request if
358  * the request is done
359  * @engine: the hardware engine
360  * @req: the request need to be finalized
361  * @err: error number
362  */
363 void crypto_finalize_aead_request(struct crypto_engine *engine,
364                                   struct aead_request *req, int err)
365 {
366         return crypto_finalize_request(engine, &req->base, err);
367 }
368 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
369
370 /**
371  * crypto_finalize_akcipher_request - finalize one akcipher_request if
372  * the request is done
373  * @engine: the hardware engine
374  * @req: the request need to be finalized
375  * @err: error number
376  */
377 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
378                                       struct akcipher_request *req, int err)
379 {
380         return crypto_finalize_request(engine, &req->base, err);
381 }
382 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
383
384 /**
385  * crypto_finalize_hash_request - finalize one ahash_request if
386  * the request is done
387  * @engine: the hardware engine
388  * @req: the request need to be finalized
389  * @err: error number
390  */
391 void crypto_finalize_hash_request(struct crypto_engine *engine,
392                                   struct ahash_request *req, int err)
393 {
394         return crypto_finalize_request(engine, &req->base, err);
395 }
396 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
397
398 /**
399  * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
400  * @engine: the hardware engine
401  * @req: the request need to be finalized
402  * @err: error number
403  */
404 void crypto_finalize_kpp_request(struct crypto_engine *engine,
405                                  struct kpp_request *req, int err)
406 {
407         return crypto_finalize_request(engine, &req->base, err);
408 }
409 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
410
411 /**
412  * crypto_finalize_skcipher_request - finalize one skcipher_request if
413  * the request is done
414  * @engine: the hardware engine
415  * @req: the request need to be finalized
416  * @err: error number
417  */
418 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
419                                       struct skcipher_request *req, int err)
420 {
421         return crypto_finalize_request(engine, &req->base, err);
422 }
423 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
424
425 /**
426  * crypto_engine_start - start the hardware engine
427  * @engine: the hardware engine need to be started
428  *
429  * Return 0 on success, else on fail.
430  */
431 int crypto_engine_start(struct crypto_engine *engine)
432 {
433         unsigned long flags;
434
435         spin_lock_irqsave(&engine->queue_lock, flags);
436
437         if (engine->running || engine->busy) {
438                 spin_unlock_irqrestore(&engine->queue_lock, flags);
439                 return -EBUSY;
440         }
441
442         engine->running = true;
443         spin_unlock_irqrestore(&engine->queue_lock, flags);
444
445         kthread_queue_work(engine->kworker, &engine->pump_requests);
446
447         return 0;
448 }
449 EXPORT_SYMBOL_GPL(crypto_engine_start);
450
451 /**
452  * crypto_engine_stop - stop the hardware engine
453  * @engine: the hardware engine need to be stopped
454  *
455  * Return 0 on success, else on fail.
456  */
457 int crypto_engine_stop(struct crypto_engine *engine)
458 {
459         unsigned long flags;
460         unsigned int limit = 500;
461         int ret = 0;
462
463         spin_lock_irqsave(&engine->queue_lock, flags);
464
465         /*
466          * If the engine queue is not empty or the engine is on busy state,
467          * we need to wait for a while to pump the requests of engine queue.
468          */
469         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
470                 spin_unlock_irqrestore(&engine->queue_lock, flags);
471                 msleep(20);
472                 spin_lock_irqsave(&engine->queue_lock, flags);
473         }
474
475         if (crypto_queue_len(&engine->queue) || engine->busy)
476                 ret = -EBUSY;
477         else
478                 engine->running = false;
479
480         spin_unlock_irqrestore(&engine->queue_lock, flags);
481
482         if (ret)
483                 dev_warn(engine->dev, "could not stop engine\n");
484
485         return ret;
486 }
487 EXPORT_SYMBOL_GPL(crypto_engine_stop);
488
489 /**
490  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
491  * and initialize it by setting the maximum number of entries in the software
492  * crypto-engine queue.
493  * @dev: the device attached with one hardware engine
494  * @retry_support: whether hardware has support for retry mechanism
495  * @cbk_do_batch: pointer to a callback function to be invoked when executing
496  *                a batch of requests.
497  *                This has the form:
498  *                callback(struct crypto_engine *engine)
499  *                where:
500  *                @engine: the crypto engine structure.
501  * @rt: whether this queue is set to run as a realtime task
502  * @qlen: maximum size of the crypto-engine queue
503  *
504  * This must be called from context that can sleep.
505  * Return: the crypto engine structure on success, else NULL.
506  */
507 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
508                                                        bool retry_support,
509                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
510                                                        bool rt, int qlen)
511 {
512         struct crypto_engine *engine;
513
514         if (!dev)
515                 return NULL;
516
517         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
518         if (!engine)
519                 return NULL;
520
521         engine->dev = dev;
522         engine->rt = rt;
523         engine->running = false;
524         engine->busy = false;
525         engine->idling = false;
526         engine->retry_support = retry_support;
527         engine->priv_data = dev;
528         /*
529          * Batch requests is possible only if
530          * hardware has support for retry mechanism.
531          */
532         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
533
534         snprintf(engine->name, sizeof(engine->name),
535                  "%s-engine", dev_name(dev));
536
537         crypto_init_queue(&engine->queue, qlen);
538         spin_lock_init(&engine->queue_lock);
539
540         engine->kworker = kthread_create_worker(0, "%s", engine->name);
541         if (IS_ERR(engine->kworker)) {
542                 dev_err(dev, "failed to create crypto request pump task\n");
543                 return NULL;
544         }
545         kthread_init_work(&engine->pump_requests, crypto_pump_work);
546
547         if (engine->rt) {
548                 dev_info(dev, "will run requests pump with realtime priority\n");
549                 sched_set_fifo(engine->kworker->task);
550         }
551
552         return engine;
553 }
554 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
555
556 /**
557  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
558  * initialize it.
559  * @dev: the device attached with one hardware engine
560  * @rt: whether this queue is set to run as a realtime task
561  *
562  * This must be called from context that can sleep.
563  * Return: the crypto engine structure on success, else NULL.
564  */
565 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
566 {
567         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
568                                                 CRYPTO_ENGINE_MAX_QLEN);
569 }
570 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
571
572 /**
573  * crypto_engine_exit - free the resources of hardware engine when exit
574  * @engine: the hardware engine need to be freed
575  *
576  * Return 0 for success.
577  */
578 int crypto_engine_exit(struct crypto_engine *engine)
579 {
580         int ret;
581
582         ret = crypto_engine_stop(engine);
583         if (ret)
584                 return ret;
585
586         kthread_destroy_worker(engine->kworker);
587
588         return 0;
589 }
590 EXPORT_SYMBOL_GPL(crypto_engine_exit);
591
592 MODULE_LICENSE("GPL");
593 MODULE_DESCRIPTION("Crypto hardware engine framework");