rust: kernel: Mark rust_fmt_argument as extern "C"
[platform/kernel/linux-starfive.git] / crypto / crypto_engine.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Handle async block request by crypto hardware engine.
4  *
5  * Copyright (C) 2016 Linaro, Inc.
6  *
7  * Author: Baolin Wang <baolin.wang@linaro.org>
8  */
9
10 #include <linux/err.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <crypto/engine.h>
14 #include <uapi/linux/sched/types.h>
15 #include "internal.h"
16
17 #define CRYPTO_ENGINE_MAX_QLEN 10
18
19 /**
20  * crypto_finalize_request - finalize one request if the request is done
21  * @engine: the hardware engine
22  * @req: the request need to be finalized
23  * @err: error number
24  */
25 static void crypto_finalize_request(struct crypto_engine *engine,
26                                     struct crypto_async_request *req, int err)
27 {
28         unsigned long flags;
29         bool finalize_req = false;
30         int ret;
31         struct crypto_engine_ctx *enginectx;
32
33         /*
34          * If hardware cannot enqueue more requests
35          * and retry mechanism is not supported
36          * make sure we are completing the current request
37          */
38         if (!engine->retry_support) {
39                 spin_lock_irqsave(&engine->queue_lock, flags);
40                 if (engine->cur_req == req) {
41                         finalize_req = true;
42                         engine->cur_req = NULL;
43                 }
44                 spin_unlock_irqrestore(&engine->queue_lock, flags);
45         }
46
47         if (finalize_req || engine->retry_support) {
48                 enginectx = crypto_tfm_ctx(req->tfm);
49                 if (enginectx->op.prepare_request &&
50                     enginectx->op.unprepare_request) {
51                         ret = enginectx->op.unprepare_request(engine, req);
52                         if (ret)
53                                 dev_err(engine->dev, "failed to unprepare request\n");
54                 }
55         }
56         lockdep_assert_in_softirq();
57         req->complete(req, err);
58
59         kthread_queue_work(engine->kworker, &engine->pump_requests);
60 }
61
62 /**
63  * crypto_pump_requests - dequeue one request from engine queue to process
64  * @engine: the hardware engine
65  * @in_kthread: true if we are in the context of the request pump thread
66  *
67  * This function checks if there is any request in the engine queue that
68  * needs processing and if so call out to the driver to initialize hardware
69  * and handle each request.
70  */
71 static void crypto_pump_requests(struct crypto_engine *engine,
72                                  bool in_kthread)
73 {
74         struct crypto_async_request *async_req, *backlog;
75         unsigned long flags;
76         bool was_busy = false;
77         int ret;
78         struct crypto_engine_ctx *enginectx;
79
80         spin_lock_irqsave(&engine->queue_lock, flags);
81
82         /* Make sure we are not already running a request */
83         if (!engine->retry_support && engine->cur_req)
84                 goto out;
85
86         /* If another context is idling then defer */
87         if (engine->idling) {
88                 kthread_queue_work(engine->kworker, &engine->pump_requests);
89                 goto out;
90         }
91
92         /* Check if the engine queue is idle */
93         if (!crypto_queue_len(&engine->queue) || !engine->running) {
94                 if (!engine->busy)
95                         goto out;
96
97                 /* Only do teardown in the thread */
98                 if (!in_kthread) {
99                         kthread_queue_work(engine->kworker,
100                                            &engine->pump_requests);
101                         goto out;
102                 }
103
104                 engine->busy = false;
105                 engine->idling = true;
106                 spin_unlock_irqrestore(&engine->queue_lock, flags);
107
108                 if (engine->unprepare_crypt_hardware &&
109                     engine->unprepare_crypt_hardware(engine))
110                         dev_err(engine->dev, "failed to unprepare crypt hardware\n");
111
112                 spin_lock_irqsave(&engine->queue_lock, flags);
113                 engine->idling = false;
114                 goto out;
115         }
116
117 start_request:
118         /* Get the fist request from the engine queue to handle */
119         backlog = crypto_get_backlog(&engine->queue);
120         async_req = crypto_dequeue_request(&engine->queue);
121         if (!async_req)
122                 goto out;
123
124         /*
125          * If hardware doesn't support the retry mechanism,
126          * keep track of the request we are processing now.
127          * We'll need it on completion (crypto_finalize_request).
128          */
129         if (!engine->retry_support)
130                 engine->cur_req = async_req;
131
132         if (backlog)
133                 backlog->complete(backlog, -EINPROGRESS);
134
135         if (engine->busy)
136                 was_busy = true;
137         else
138                 engine->busy = true;
139
140         spin_unlock_irqrestore(&engine->queue_lock, flags);
141
142         /* Until here we get the request need to be encrypted successfully */
143         if (!was_busy && engine->prepare_crypt_hardware) {
144                 ret = engine->prepare_crypt_hardware(engine);
145                 if (ret) {
146                         dev_err(engine->dev, "failed to prepare crypt hardware\n");
147                         goto req_err_2;
148                 }
149         }
150
151         enginectx = crypto_tfm_ctx(async_req->tfm);
152
153         if (enginectx->op.prepare_request) {
154                 ret = enginectx->op.prepare_request(engine, async_req);
155                 if (ret) {
156                         dev_err(engine->dev, "failed to prepare request: %d\n",
157                                 ret);
158                         goto req_err_2;
159                 }
160         }
161         if (!enginectx->op.do_one_request) {
162                 dev_err(engine->dev, "failed to do request\n");
163                 ret = -EINVAL;
164                 goto req_err_1;
165         }
166
167         ret = enginectx->op.do_one_request(engine, async_req);
168
169         /* Request unsuccessfully executed by hardware */
170         if (ret < 0) {
171                 /*
172                  * If hardware queue is full (-ENOSPC), requeue request
173                  * regardless of backlog flag.
174                  * Otherwise, unprepare and complete the request.
175                  */
176                 if (!engine->retry_support ||
177                     (ret != -ENOSPC)) {
178                         dev_err(engine->dev,
179                                 "Failed to do one request from queue: %d\n",
180                                 ret);
181                         goto req_err_1;
182                 }
183                 /*
184                  * If retry mechanism is supported,
185                  * unprepare current request and
186                  * enqueue it back into crypto-engine queue.
187                  */
188                 if (enginectx->op.unprepare_request) {
189                         ret = enginectx->op.unprepare_request(engine,
190                                                               async_req);
191                         if (ret)
192                                 dev_err(engine->dev,
193                                         "failed to unprepare request\n");
194                 }
195                 spin_lock_irqsave(&engine->queue_lock, flags);
196                 /*
197                  * If hardware was unable to execute request, enqueue it
198                  * back in front of crypto-engine queue, to keep the order
199                  * of requests.
200                  */
201                 crypto_enqueue_request_head(&engine->queue, async_req);
202
203                 kthread_queue_work(engine->kworker, &engine->pump_requests);
204                 goto out;
205         }
206
207         goto retry;
208
209 req_err_1:
210         if (enginectx->op.unprepare_request) {
211                 ret = enginectx->op.unprepare_request(engine, async_req);
212                 if (ret)
213                         dev_err(engine->dev, "failed to unprepare request\n");
214         }
215
216 req_err_2:
217         async_req->complete(async_req, ret);
218
219 retry:
220         /* If retry mechanism is supported, send new requests to engine */
221         if (engine->retry_support) {
222                 spin_lock_irqsave(&engine->queue_lock, flags);
223                 goto start_request;
224         }
225         return;
226
227 out:
228         spin_unlock_irqrestore(&engine->queue_lock, flags);
229
230         /*
231          * Batch requests is possible only if
232          * hardware can enqueue multiple requests
233          */
234         if (engine->do_batch_requests) {
235                 ret = engine->do_batch_requests(engine);
236                 if (ret)
237                         dev_err(engine->dev, "failed to do batch requests: %d\n",
238                                 ret);
239         }
240
241         return;
242 }
243
244 static void crypto_pump_work(struct kthread_work *work)
245 {
246         struct crypto_engine *engine =
247                 container_of(work, struct crypto_engine, pump_requests);
248
249         crypto_pump_requests(engine, true);
250 }
251
252 /**
253  * crypto_transfer_request - transfer the new request into the engine queue
254  * @engine: the hardware engine
255  * @req: the request need to be listed into the engine queue
256  * @need_pump: indicates whether queue the pump of request to kthread_work
257  */
258 static int crypto_transfer_request(struct crypto_engine *engine,
259                                    struct crypto_async_request *req,
260                                    bool need_pump)
261 {
262         unsigned long flags;
263         int ret;
264
265         spin_lock_irqsave(&engine->queue_lock, flags);
266
267         if (!engine->running) {
268                 spin_unlock_irqrestore(&engine->queue_lock, flags);
269                 return -ESHUTDOWN;
270         }
271
272         ret = crypto_enqueue_request(&engine->queue, req);
273
274         if (!engine->busy && need_pump)
275                 kthread_queue_work(engine->kworker, &engine->pump_requests);
276
277         spin_unlock_irqrestore(&engine->queue_lock, flags);
278         return ret;
279 }
280
281 /**
282  * crypto_transfer_request_to_engine - transfer one request to list
283  * into the engine queue
284  * @engine: the hardware engine
285  * @req: the request need to be listed into the engine queue
286  */
287 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
288                                              struct crypto_async_request *req)
289 {
290         return crypto_transfer_request(engine, req, true);
291 }
292
293 /**
294  * crypto_transfer_aead_request_to_engine - transfer one aead_request
295  * to list into the engine queue
296  * @engine: the hardware engine
297  * @req: the request need to be listed into the engine queue
298  */
299 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
300                                            struct aead_request *req)
301 {
302         return crypto_transfer_request_to_engine(engine, &req->base);
303 }
304 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
305
306 /**
307  * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
308  * to list into the engine queue
309  * @engine: the hardware engine
310  * @req: the request need to be listed into the engine queue
311  */
312 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
313                                                struct akcipher_request *req)
314 {
315         return crypto_transfer_request_to_engine(engine, &req->base);
316 }
317 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
318
319 /**
320  * crypto_transfer_hash_request_to_engine - transfer one ahash_request
321  * to list into the engine queue
322  * @engine: the hardware engine
323  * @req: the request need to be listed into the engine queue
324  */
325 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
326                                            struct ahash_request *req)
327 {
328         return crypto_transfer_request_to_engine(engine, &req->base);
329 }
330 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
331
332 /**
333  * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
334  * into the engine queue
335  * @engine: the hardware engine
336  * @req: the request need to be listed into the engine queue
337  */
338 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
339                                           struct kpp_request *req)
340 {
341         return crypto_transfer_request_to_engine(engine, &req->base);
342 }
343 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
344
345 /**
346  * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
347  * to list into the engine queue
348  * @engine: the hardware engine
349  * @req: the request need to be listed into the engine queue
350  */
351 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
352                                                struct skcipher_request *req)
353 {
354         return crypto_transfer_request_to_engine(engine, &req->base);
355 }
356 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
357
358 /**
359  * crypto_finalize_aead_request - finalize one aead_request if
360  * the request is done
361  * @engine: the hardware engine
362  * @req: the request need to be finalized
363  * @err: error number
364  */
365 void crypto_finalize_aead_request(struct crypto_engine *engine,
366                                   struct aead_request *req, int err)
367 {
368         return crypto_finalize_request(engine, &req->base, err);
369 }
370 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
371
372 /**
373  * crypto_finalize_akcipher_request - finalize one akcipher_request if
374  * the request is done
375  * @engine: the hardware engine
376  * @req: the request need to be finalized
377  * @err: error number
378  */
379 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
380                                       struct akcipher_request *req, int err)
381 {
382         return crypto_finalize_request(engine, &req->base, err);
383 }
384 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
385
386 /**
387  * crypto_finalize_hash_request - finalize one ahash_request if
388  * the request is done
389  * @engine: the hardware engine
390  * @req: the request need to be finalized
391  * @err: error number
392  */
393 void crypto_finalize_hash_request(struct crypto_engine *engine,
394                                   struct ahash_request *req, int err)
395 {
396         return crypto_finalize_request(engine, &req->base, err);
397 }
398 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
399
400 /**
401  * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
402  * @engine: the hardware engine
403  * @req: the request need to be finalized
404  * @err: error number
405  */
406 void crypto_finalize_kpp_request(struct crypto_engine *engine,
407                                  struct kpp_request *req, int err)
408 {
409         return crypto_finalize_request(engine, &req->base, err);
410 }
411 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
412
413 /**
414  * crypto_finalize_skcipher_request - finalize one skcipher_request if
415  * the request is done
416  * @engine: the hardware engine
417  * @req: the request need to be finalized
418  * @err: error number
419  */
420 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
421                                       struct skcipher_request *req, int err)
422 {
423         return crypto_finalize_request(engine, &req->base, err);
424 }
425 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
426
427 /**
428  * crypto_engine_start - start the hardware engine
429  * @engine: the hardware engine need to be started
430  *
431  * Return 0 on success, else on fail.
432  */
433 int crypto_engine_start(struct crypto_engine *engine)
434 {
435         unsigned long flags;
436
437         spin_lock_irqsave(&engine->queue_lock, flags);
438
439         if (engine->running || engine->busy) {
440                 spin_unlock_irqrestore(&engine->queue_lock, flags);
441                 return -EBUSY;
442         }
443
444         engine->running = true;
445         spin_unlock_irqrestore(&engine->queue_lock, flags);
446
447         kthread_queue_work(engine->kworker, &engine->pump_requests);
448
449         return 0;
450 }
451 EXPORT_SYMBOL_GPL(crypto_engine_start);
452
453 /**
454  * crypto_engine_stop - stop the hardware engine
455  * @engine: the hardware engine need to be stopped
456  *
457  * Return 0 on success, else on fail.
458  */
459 int crypto_engine_stop(struct crypto_engine *engine)
460 {
461         unsigned long flags;
462         unsigned int limit = 500;
463         int ret = 0;
464
465         spin_lock_irqsave(&engine->queue_lock, flags);
466
467         /*
468          * If the engine queue is not empty or the engine is on busy state,
469          * we need to wait for a while to pump the requests of engine queue.
470          */
471         while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
472                 spin_unlock_irqrestore(&engine->queue_lock, flags);
473                 msleep(20);
474                 spin_lock_irqsave(&engine->queue_lock, flags);
475         }
476
477         if (crypto_queue_len(&engine->queue) || engine->busy)
478                 ret = -EBUSY;
479         else
480                 engine->running = false;
481
482         spin_unlock_irqrestore(&engine->queue_lock, flags);
483
484         if (ret)
485                 dev_warn(engine->dev, "could not stop engine\n");
486
487         return ret;
488 }
489 EXPORT_SYMBOL_GPL(crypto_engine_stop);
490
491 /**
492  * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
493  * and initialize it by setting the maximum number of entries in the software
494  * crypto-engine queue.
495  * @dev: the device attached with one hardware engine
496  * @retry_support: whether hardware has support for retry mechanism
497  * @cbk_do_batch: pointer to a callback function to be invoked when executing
498  *                a batch of requests.
499  *                This has the form:
500  *                callback(struct crypto_engine *engine)
501  *                where:
502  *                @engine: the crypto engine structure.
503  * @rt: whether this queue is set to run as a realtime task
504  * @qlen: maximum size of the crypto-engine queue
505  *
506  * This must be called from context that can sleep.
507  * Return: the crypto engine structure on success, else NULL.
508  */
509 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
510                                                        bool retry_support,
511                                                        int (*cbk_do_batch)(struct crypto_engine *engine),
512                                                        bool rt, int qlen)
513 {
514         struct crypto_engine *engine;
515
516         if (!dev)
517                 return NULL;
518
519         engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
520         if (!engine)
521                 return NULL;
522
523         engine->dev = dev;
524         engine->rt = rt;
525         engine->running = false;
526         engine->busy = false;
527         engine->idling = false;
528         engine->retry_support = retry_support;
529         engine->priv_data = dev;
530         /*
531          * Batch requests is possible only if
532          * hardware has support for retry mechanism.
533          */
534         engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
535
536         snprintf(engine->name, sizeof(engine->name),
537                  "%s-engine", dev_name(dev));
538
539         crypto_init_queue(&engine->queue, qlen);
540         spin_lock_init(&engine->queue_lock);
541
542         engine->kworker = kthread_create_worker(0, "%s", engine->name);
543         if (IS_ERR(engine->kworker)) {
544                 dev_err(dev, "failed to create crypto request pump task\n");
545                 return NULL;
546         }
547         kthread_init_work(&engine->pump_requests, crypto_pump_work);
548
549         if (engine->rt) {
550                 dev_info(dev, "will run requests pump with realtime priority\n");
551                 sched_set_fifo(engine->kworker->task);
552         }
553
554         return engine;
555 }
556 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
557
558 /**
559  * crypto_engine_alloc_init - allocate crypto hardware engine structure and
560  * initialize it.
561  * @dev: the device attached with one hardware engine
562  * @rt: whether this queue is set to run as a realtime task
563  *
564  * This must be called from context that can sleep.
565  * Return: the crypto engine structure on success, else NULL.
566  */
567 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
568 {
569         return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
570                                                 CRYPTO_ENGINE_MAX_QLEN);
571 }
572 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
573
574 /**
575  * crypto_engine_exit - free the resources of hardware engine when exit
576  * @engine: the hardware engine need to be freed
577  *
578  * Return 0 for success.
579  */
580 int crypto_engine_exit(struct crypto_engine *engine)
581 {
582         int ret;
583
584         ret = crypto_engine_stop(engine);
585         if (ret)
586                 return ret;
587
588         kthread_destroy_worker(engine->kworker);
589
590         return 0;
591 }
592 EXPORT_SYMBOL_GPL(crypto_engine_exit);
593
594 MODULE_LICENSE("GPL");
595 MODULE_DESCRIPTION("Crypto hardware engine framework");