1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Handle async block request by crypto hardware engine.
5 * Copyright (C) 2016 Linaro, Inc.
7 * Author: Baolin Wang <baolin.wang@linaro.org>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/akcipher.h>
12 #include <crypto/internal/engine.h>
13 #include <crypto/internal/hash.h>
14 #include <crypto/internal/kpp.h>
15 #include <crypto/internal/skcipher.h>
16 #include <linux/err.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <uapi/linux/sched/types.h>
24 #define CRYPTO_ENGINE_MAX_QLEN 10
26 /* Temporary algorithm flag used to indicate an updated driver. */
27 #define CRYPTO_ALG_ENGINE 0x200
29 struct crypto_engine_alg {
30 struct crypto_alg base;
31 struct crypto_engine_op op;
35 * crypto_finalize_request - finalize one request if the request is done
36 * @engine: the hardware engine
37 * @req: the request need to be finalized
40 static void crypto_finalize_request(struct crypto_engine *engine,
41 struct crypto_async_request *req, int err)
46 * If hardware cannot enqueue more requests
47 * and retry mechanism is not supported
48 * make sure we are completing the current request
50 if (!engine->retry_support) {
51 spin_lock_irqsave(&engine->queue_lock, flags);
52 if (engine->cur_req == req) {
53 engine->cur_req = NULL;
55 spin_unlock_irqrestore(&engine->queue_lock, flags);
58 lockdep_assert_in_softirq();
59 crypto_request_complete(req, err);
61 kthread_queue_work(engine->kworker, &engine->pump_requests);
65 * crypto_pump_requests - dequeue one request from engine queue to process
66 * @engine: the hardware engine
67 * @in_kthread: true if we are in the context of the request pump thread
69 * This function checks if there is any request in the engine queue that
70 * needs processing and if so call out to the driver to initialize hardware
71 * and handle each request.
73 static void crypto_pump_requests(struct crypto_engine *engine,
76 struct crypto_async_request *async_req, *backlog;
77 struct crypto_engine_alg *alg;
78 struct crypto_engine_op *op;
80 bool was_busy = false;
83 spin_lock_irqsave(&engine->queue_lock, flags);
85 /* Make sure we are not already running a request */
86 if (!engine->retry_support && engine->cur_req)
89 /* If another context is idling then defer */
91 kthread_queue_work(engine->kworker, &engine->pump_requests);
95 /* Check if the engine queue is idle */
96 if (!crypto_queue_len(&engine->queue) || !engine->running) {
100 /* Only do teardown in the thread */
102 kthread_queue_work(engine->kworker,
103 &engine->pump_requests);
107 engine->busy = false;
108 engine->idling = true;
109 spin_unlock_irqrestore(&engine->queue_lock, flags);
111 if (engine->unprepare_crypt_hardware &&
112 engine->unprepare_crypt_hardware(engine))
113 dev_err(engine->dev, "failed to unprepare crypt hardware\n");
115 spin_lock_irqsave(&engine->queue_lock, flags);
116 engine->idling = false;
121 /* Get the fist request from the engine queue to handle */
122 backlog = crypto_get_backlog(&engine->queue);
123 async_req = crypto_dequeue_request(&engine->queue);
128 * If hardware doesn't support the retry mechanism,
129 * keep track of the request we are processing now.
130 * We'll need it on completion (crypto_finalize_request).
132 if (!engine->retry_support)
133 engine->cur_req = async_req;
140 spin_unlock_irqrestore(&engine->queue_lock, flags);
142 /* Until here we get the request need to be encrypted successfully */
143 if (!was_busy && engine->prepare_crypt_hardware) {
144 ret = engine->prepare_crypt_hardware(engine);
146 dev_err(engine->dev, "failed to prepare crypt hardware\n");
151 if (async_req->tfm->__crt_alg->cra_flags & CRYPTO_ALG_ENGINE) {
152 alg = container_of(async_req->tfm->__crt_alg,
153 struct crypto_engine_alg, base);
156 dev_err(engine->dev, "failed to do request\n");
161 ret = op->do_one_request(engine, async_req);
163 /* Request unsuccessfully executed by hardware */
166 * If hardware queue is full (-ENOSPC), requeue request
167 * regardless of backlog flag.
168 * Otherwise, unprepare and complete the request.
170 if (!engine->retry_support ||
173 "Failed to do one request from queue: %d\n",
177 spin_lock_irqsave(&engine->queue_lock, flags);
179 * If hardware was unable to execute request, enqueue it
180 * back in front of crypto-engine queue, to keep the order
183 crypto_enqueue_request_head(&engine->queue, async_req);
185 kthread_queue_work(engine->kworker, &engine->pump_requests);
192 crypto_request_complete(async_req, ret);
196 crypto_request_complete(backlog, -EINPROGRESS);
198 /* If retry mechanism is supported, send new requests to engine */
199 if (engine->retry_support) {
200 spin_lock_irqsave(&engine->queue_lock, flags);
206 spin_unlock_irqrestore(&engine->queue_lock, flags);
209 * Batch requests is possible only if
210 * hardware can enqueue multiple requests
212 if (engine->do_batch_requests) {
213 ret = engine->do_batch_requests(engine);
215 dev_err(engine->dev, "failed to do batch requests: %d\n",
222 static void crypto_pump_work(struct kthread_work *work)
224 struct crypto_engine *engine =
225 container_of(work, struct crypto_engine, pump_requests);
227 crypto_pump_requests(engine, true);
231 * crypto_transfer_request - transfer the new request into the engine queue
232 * @engine: the hardware engine
233 * @req: the request need to be listed into the engine queue
234 * @need_pump: indicates whether queue the pump of request to kthread_work
236 static int crypto_transfer_request(struct crypto_engine *engine,
237 struct crypto_async_request *req,
243 spin_lock_irqsave(&engine->queue_lock, flags);
245 if (!engine->running) {
246 spin_unlock_irqrestore(&engine->queue_lock, flags);
250 ret = crypto_enqueue_request(&engine->queue, req);
252 if (!engine->busy && need_pump)
253 kthread_queue_work(engine->kworker, &engine->pump_requests);
255 spin_unlock_irqrestore(&engine->queue_lock, flags);
260 * crypto_transfer_request_to_engine - transfer one request to list
261 * into the engine queue
262 * @engine: the hardware engine
263 * @req: the request need to be listed into the engine queue
265 static int crypto_transfer_request_to_engine(struct crypto_engine *engine,
266 struct crypto_async_request *req)
268 return crypto_transfer_request(engine, req, true);
272 * crypto_transfer_aead_request_to_engine - transfer one aead_request
273 * to list into the engine queue
274 * @engine: the hardware engine
275 * @req: the request need to be listed into the engine queue
277 int crypto_transfer_aead_request_to_engine(struct crypto_engine *engine,
278 struct aead_request *req)
280 return crypto_transfer_request_to_engine(engine, &req->base);
282 EXPORT_SYMBOL_GPL(crypto_transfer_aead_request_to_engine);
285 * crypto_transfer_akcipher_request_to_engine - transfer one akcipher_request
286 * to list into the engine queue
287 * @engine: the hardware engine
288 * @req: the request need to be listed into the engine queue
290 int crypto_transfer_akcipher_request_to_engine(struct crypto_engine *engine,
291 struct akcipher_request *req)
293 return crypto_transfer_request_to_engine(engine, &req->base);
295 EXPORT_SYMBOL_GPL(crypto_transfer_akcipher_request_to_engine);
298 * crypto_transfer_hash_request_to_engine - transfer one ahash_request
299 * to list into the engine queue
300 * @engine: the hardware engine
301 * @req: the request need to be listed into the engine queue
303 int crypto_transfer_hash_request_to_engine(struct crypto_engine *engine,
304 struct ahash_request *req)
306 return crypto_transfer_request_to_engine(engine, &req->base);
308 EXPORT_SYMBOL_GPL(crypto_transfer_hash_request_to_engine);
311 * crypto_transfer_kpp_request_to_engine - transfer one kpp_request to list
312 * into the engine queue
313 * @engine: the hardware engine
314 * @req: the request need to be listed into the engine queue
316 int crypto_transfer_kpp_request_to_engine(struct crypto_engine *engine,
317 struct kpp_request *req)
319 return crypto_transfer_request_to_engine(engine, &req->base);
321 EXPORT_SYMBOL_GPL(crypto_transfer_kpp_request_to_engine);
324 * crypto_transfer_skcipher_request_to_engine - transfer one skcipher_request
325 * to list into the engine queue
326 * @engine: the hardware engine
327 * @req: the request need to be listed into the engine queue
329 int crypto_transfer_skcipher_request_to_engine(struct crypto_engine *engine,
330 struct skcipher_request *req)
332 return crypto_transfer_request_to_engine(engine, &req->base);
334 EXPORT_SYMBOL_GPL(crypto_transfer_skcipher_request_to_engine);
337 * crypto_finalize_aead_request - finalize one aead_request if
338 * the request is done
339 * @engine: the hardware engine
340 * @req: the request need to be finalized
343 void crypto_finalize_aead_request(struct crypto_engine *engine,
344 struct aead_request *req, int err)
346 return crypto_finalize_request(engine, &req->base, err);
348 EXPORT_SYMBOL_GPL(crypto_finalize_aead_request);
351 * crypto_finalize_akcipher_request - finalize one akcipher_request if
352 * the request is done
353 * @engine: the hardware engine
354 * @req: the request need to be finalized
357 void crypto_finalize_akcipher_request(struct crypto_engine *engine,
358 struct akcipher_request *req, int err)
360 return crypto_finalize_request(engine, &req->base, err);
362 EXPORT_SYMBOL_GPL(crypto_finalize_akcipher_request);
365 * crypto_finalize_hash_request - finalize one ahash_request if
366 * the request is done
367 * @engine: the hardware engine
368 * @req: the request need to be finalized
371 void crypto_finalize_hash_request(struct crypto_engine *engine,
372 struct ahash_request *req, int err)
374 return crypto_finalize_request(engine, &req->base, err);
376 EXPORT_SYMBOL_GPL(crypto_finalize_hash_request);
379 * crypto_finalize_kpp_request - finalize one kpp_request if the request is done
380 * @engine: the hardware engine
381 * @req: the request need to be finalized
384 void crypto_finalize_kpp_request(struct crypto_engine *engine,
385 struct kpp_request *req, int err)
387 return crypto_finalize_request(engine, &req->base, err);
389 EXPORT_SYMBOL_GPL(crypto_finalize_kpp_request);
392 * crypto_finalize_skcipher_request - finalize one skcipher_request if
393 * the request is done
394 * @engine: the hardware engine
395 * @req: the request need to be finalized
398 void crypto_finalize_skcipher_request(struct crypto_engine *engine,
399 struct skcipher_request *req, int err)
401 return crypto_finalize_request(engine, &req->base, err);
403 EXPORT_SYMBOL_GPL(crypto_finalize_skcipher_request);
406 * crypto_engine_start - start the hardware engine
407 * @engine: the hardware engine need to be started
409 * Return 0 on success, else on fail.
411 int crypto_engine_start(struct crypto_engine *engine)
415 spin_lock_irqsave(&engine->queue_lock, flags);
417 if (engine->running || engine->busy) {
418 spin_unlock_irqrestore(&engine->queue_lock, flags);
422 engine->running = true;
423 spin_unlock_irqrestore(&engine->queue_lock, flags);
425 kthread_queue_work(engine->kworker, &engine->pump_requests);
429 EXPORT_SYMBOL_GPL(crypto_engine_start);
432 * crypto_engine_stop - stop the hardware engine
433 * @engine: the hardware engine need to be stopped
435 * Return 0 on success, else on fail.
437 int crypto_engine_stop(struct crypto_engine *engine)
440 unsigned int limit = 500;
443 spin_lock_irqsave(&engine->queue_lock, flags);
446 * If the engine queue is not empty or the engine is on busy state,
447 * we need to wait for a while to pump the requests of engine queue.
449 while ((crypto_queue_len(&engine->queue) || engine->busy) && limit--) {
450 spin_unlock_irqrestore(&engine->queue_lock, flags);
452 spin_lock_irqsave(&engine->queue_lock, flags);
455 if (crypto_queue_len(&engine->queue) || engine->busy)
458 engine->running = false;
460 spin_unlock_irqrestore(&engine->queue_lock, flags);
463 dev_warn(engine->dev, "could not stop engine\n");
467 EXPORT_SYMBOL_GPL(crypto_engine_stop);
470 * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure
471 * and initialize it by setting the maximum number of entries in the software
472 * crypto-engine queue.
473 * @dev: the device attached with one hardware engine
474 * @retry_support: whether hardware has support for retry mechanism
475 * @cbk_do_batch: pointer to a callback function to be invoked when executing
476 * a batch of requests.
478 * callback(struct crypto_engine *engine)
480 * engine: the crypto engine structure.
481 * @rt: whether this queue is set to run as a realtime task
482 * @qlen: maximum size of the crypto-engine queue
484 * This must be called from context that can sleep.
485 * Return: the crypto engine structure on success, else NULL.
487 struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev,
489 int (*cbk_do_batch)(struct crypto_engine *engine),
492 struct crypto_engine *engine;
497 engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
503 engine->running = false;
504 engine->busy = false;
505 engine->idling = false;
506 engine->retry_support = retry_support;
507 engine->priv_data = dev;
509 * Batch requests is possible only if
510 * hardware has support for retry mechanism.
512 engine->do_batch_requests = retry_support ? cbk_do_batch : NULL;
514 snprintf(engine->name, sizeof(engine->name),
515 "%s-engine", dev_name(dev));
517 crypto_init_queue(&engine->queue, qlen);
518 spin_lock_init(&engine->queue_lock);
520 engine->kworker = kthread_create_worker(0, "%s", engine->name);
521 if (IS_ERR(engine->kworker)) {
522 dev_err(dev, "failed to create crypto request pump task\n");
525 kthread_init_work(&engine->pump_requests, crypto_pump_work);
528 dev_info(dev, "will run requests pump with realtime priority\n");
529 sched_set_fifo(engine->kworker->task);
534 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set);
537 * crypto_engine_alloc_init - allocate crypto hardware engine structure and
539 * @dev: the device attached with one hardware engine
540 * @rt: whether this queue is set to run as a realtime task
542 * This must be called from context that can sleep.
543 * Return: the crypto engine structure on success, else NULL.
545 struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt)
547 return crypto_engine_alloc_init_and_set(dev, false, NULL, rt,
548 CRYPTO_ENGINE_MAX_QLEN);
550 EXPORT_SYMBOL_GPL(crypto_engine_alloc_init);
553 * crypto_engine_exit - free the resources of hardware engine when exit
554 * @engine: the hardware engine need to be freed
556 * Return 0 for success.
558 int crypto_engine_exit(struct crypto_engine *engine)
562 ret = crypto_engine_stop(engine);
566 kthread_destroy_worker(engine->kworker);
570 EXPORT_SYMBOL_GPL(crypto_engine_exit);
572 int crypto_engine_register_aead(struct aead_engine_alg *alg)
574 if (!alg->op.do_one_request)
577 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
579 return crypto_register_aead(&alg->base);
581 EXPORT_SYMBOL_GPL(crypto_engine_register_aead);
583 void crypto_engine_unregister_aead(struct aead_engine_alg *alg)
585 crypto_unregister_aead(&alg->base);
587 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aead);
589 int crypto_engine_register_aeads(struct aead_engine_alg *algs, int count)
593 for (i = 0; i < count; i++) {
594 ret = crypto_engine_register_aead(&algs[i]);
602 crypto_engine_unregister_aeads(algs, i);
606 EXPORT_SYMBOL_GPL(crypto_engine_register_aeads);
608 void crypto_engine_unregister_aeads(struct aead_engine_alg *algs, int count)
612 for (i = count - 1; i >= 0; --i)
613 crypto_engine_unregister_aead(&algs[i]);
615 EXPORT_SYMBOL_GPL(crypto_engine_unregister_aeads);
617 int crypto_engine_register_ahash(struct ahash_engine_alg *alg)
619 if (!alg->op.do_one_request)
622 alg->base.halg.base.cra_flags |= CRYPTO_ALG_ENGINE;
624 return crypto_register_ahash(&alg->base);
626 EXPORT_SYMBOL_GPL(crypto_engine_register_ahash);
628 void crypto_engine_unregister_ahash(struct ahash_engine_alg *alg)
630 crypto_unregister_ahash(&alg->base);
632 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahash);
634 int crypto_engine_register_ahashes(struct ahash_engine_alg *algs, int count)
638 for (i = 0; i < count; i++) {
639 ret = crypto_engine_register_ahash(&algs[i]);
647 crypto_engine_unregister_ahashes(algs, i);
651 EXPORT_SYMBOL_GPL(crypto_engine_register_ahashes);
653 void crypto_engine_unregister_ahashes(struct ahash_engine_alg *algs,
658 for (i = count - 1; i >= 0; --i)
659 crypto_engine_unregister_ahash(&algs[i]);
661 EXPORT_SYMBOL_GPL(crypto_engine_unregister_ahashes);
663 int crypto_engine_register_akcipher(struct akcipher_engine_alg *alg)
665 if (!alg->op.do_one_request)
668 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
670 return crypto_register_akcipher(&alg->base);
672 EXPORT_SYMBOL_GPL(crypto_engine_register_akcipher);
674 void crypto_engine_unregister_akcipher(struct akcipher_engine_alg *alg)
676 crypto_unregister_akcipher(&alg->base);
678 EXPORT_SYMBOL_GPL(crypto_engine_unregister_akcipher);
680 int crypto_engine_register_kpp(struct kpp_engine_alg *alg)
682 if (!alg->op.do_one_request)
685 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
687 return crypto_register_kpp(&alg->base);
689 EXPORT_SYMBOL_GPL(crypto_engine_register_kpp);
691 void crypto_engine_unregister_kpp(struct kpp_engine_alg *alg)
693 crypto_unregister_kpp(&alg->base);
695 EXPORT_SYMBOL_GPL(crypto_engine_unregister_kpp);
697 int crypto_engine_register_skcipher(struct skcipher_engine_alg *alg)
699 if (!alg->op.do_one_request)
702 alg->base.base.cra_flags |= CRYPTO_ALG_ENGINE;
704 return crypto_register_skcipher(&alg->base);
706 EXPORT_SYMBOL_GPL(crypto_engine_register_skcipher);
708 void crypto_engine_unregister_skcipher(struct skcipher_engine_alg *alg)
710 return crypto_unregister_skcipher(&alg->base);
712 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skcipher);
714 int crypto_engine_register_skciphers(struct skcipher_engine_alg *algs,
719 for (i = 0; i < count; i++) {
720 ret = crypto_engine_register_skcipher(&algs[i]);
728 crypto_engine_unregister_skciphers(algs, i);
732 EXPORT_SYMBOL_GPL(crypto_engine_register_skciphers);
734 void crypto_engine_unregister_skciphers(struct skcipher_engine_alg *algs,
739 for (i = count - 1; i >= 0; --i)
740 crypto_engine_unregister_skcipher(&algs[i]);
742 EXPORT_SYMBOL_GPL(crypto_engine_unregister_skciphers);
744 MODULE_LICENSE("GPL");
745 MODULE_DESCRIPTION("Crypto hardware engine framework");