1 /* RSA asymmetric public-key algorithm [RFC3447]
3 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public Licence
8 * as published by the Free Software Foundation; either version
9 * 2 of the Licence, or (at your option) any later version.
12 #define pr_fmt(fmt) "RSA: "fmt
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include "public_key.h"
18 MODULE_LICENSE("GPL");
19 MODULE_DESCRIPTION("RSA Public Key Algorithm");
21 #define kenter(FMT, ...) \
22 pr_devel("==> %s("FMT")\n", __func__, ##__VA_ARGS__)
23 #define kleave(FMT, ...) \
24 pr_devel("<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
27 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
29 static const u8 RSA_digest_info_MD5[] = {
30 0x30, 0x20, 0x30, 0x0C, 0x06, 0x08,
31 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x02, 0x05, /* OID */
32 0x05, 0x00, 0x04, 0x10
35 static const u8 RSA_digest_info_SHA1[] = {
36 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
37 0x2B, 0x0E, 0x03, 0x02, 0x1A,
38 0x05, 0x00, 0x04, 0x14
41 static const u8 RSA_digest_info_RIPE_MD_160[] = {
42 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
43 0x2B, 0x24, 0x03, 0x02, 0x01,
44 0x05, 0x00, 0x04, 0x14
47 static const u8 RSA_digest_info_SHA224[] = {
48 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
49 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
50 0x05, 0x00, 0x04, 0x1C
53 static const u8 RSA_digest_info_SHA256[] = {
54 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
55 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
56 0x05, 0x00, 0x04, 0x20
59 static const u8 RSA_digest_info_SHA384[] = {
60 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
61 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
62 0x05, 0x00, 0x04, 0x30
65 static const u8 RSA_digest_info_SHA512[] = {
66 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
67 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
68 0x05, 0x00, 0x04, 0x40
74 } RSA_ASN1_templates[PKEY_HASH__LAST] = {
75 #define _(X) { RSA_digest_info_##X, sizeof(RSA_digest_info_##X) }
76 [PKEY_HASH_MD5] = _(MD5),
77 [PKEY_HASH_SHA1] = _(SHA1),
78 [PKEY_HASH_RIPE_MD_160] = _(RIPE_MD_160),
79 [PKEY_HASH_SHA256] = _(SHA256),
80 [PKEY_HASH_SHA384] = _(SHA384),
81 [PKEY_HASH_SHA512] = _(SHA512),
82 [PKEY_HASH_SHA224] = _(SHA224),
87 * RSAVP1() function [RFC3447 sec 5.2.2]
89 static int RSAVP1(const struct public_key *key, MPI s, MPI *_m)
94 /* (1) Validate 0 <= s < n */
95 if (mpi_cmp_ui(s, 0) < 0) {
96 kleave(" = -EBADMSG [s < 0]");
99 if (mpi_cmp(s, key->rsa.n) >= 0) {
100 kleave(" = -EBADMSG [s >= n]");
108 /* (2) m = s^e mod n */
109 ret = mpi_powm(m, s, key->rsa.e, key->rsa.n);
120 * Integer to Octet String conversion [RFC3447 sec 4.1]
122 static int RSA_I2OSP(MPI x, size_t xLen, u8 **_X)
124 unsigned X_size, x_size;
128 /* Make sure the string is the right length. The number should begin
129 * with { 0x00, 0x01, ... } so we have to account for 15 leading zero
130 * bits not being reported by MPI.
132 x_size = mpi_get_nbits(x);
133 pr_devel("size(x)=%u xLen*8=%zu\n", x_size, xLen * 8);
134 if (x_size != xLen * 8 - 15)
137 X = mpi_get_buffer(x, &X_size, &X_sign);
144 if (X_size != xLen - 1) {
154 * Perform the RSA signature verification.
155 * @H: Value of hash of data and metadata
156 * @EM: The computed signature value
157 * @k: The size of EM (EM[0] is an invalid location but should hold 0x00)
158 * @hash_size: The size of H
159 * @asn1_template: The DigestInfo ASN.1 template
160 * @asn1_size: Size of asm1_template[]
162 static int RSA_verify(const u8 *H, const u8 *EM, size_t k, size_t hash_size,
163 const u8 *asn1_template, size_t asn1_size)
165 unsigned PS_end, T_offset, i;
167 kenter(",,%zu,%zu,%zu", k, hash_size, asn1_size);
169 if (k < 2 + 1 + asn1_size + hash_size)
172 /* Decode the EMSA-PKCS1-v1_5 */
174 kleave(" = -EBADMSG [EM[1] == %02u]", EM[1]);
178 T_offset = k - (asn1_size + hash_size);
179 PS_end = T_offset - 1;
180 if (EM[PS_end] != 0x00) {
181 kleave(" = -EBADMSG [EM[T-1] == %02u]", EM[PS_end]);
185 for (i = 2; i < PS_end; i++) {
187 kleave(" = -EBADMSG [EM[PS%x] == %02u]", i - 2, EM[i]);
192 if (memcmp(asn1_template, EM + T_offset, asn1_size) != 0) {
193 kleave(" = -EBADMSG [EM[T] ASN.1 mismatch]");
197 if (memcmp(H, EM + T_offset + asn1_size, hash_size) != 0) {
198 kleave(" = -EKEYREJECTED [EM[T] hash mismatch]");
199 return -EKEYREJECTED;
207 * Perform the verification step [RFC3447 sec 8.2.2].
209 static int RSA_verify_signature(const struct public_key *key,
210 const struct public_key_signature *sig)
215 /* Variables as per RFC3447 sec 8.2.2 */
216 const u8 *H = sig->digest;
223 if (!RSA_ASN1_templates[sig->pkey_hash_algo].data)
226 /* (1) Check the signature size against the public key modulus size */
227 k = mpi_get_nbits(key->rsa.n);
228 tsize = mpi_get_nbits(sig->rsa.s);
230 /* According to RFC 4880 sec 3.2, length of MPI is computed starting
231 * from most significant bit. So the RFC 3447 sec 8.2.2 size check
232 * must be relaxed to conform with shorter signatures - so we fail here
233 * only if signature length is longer than modulus size.
235 pr_devel("step 1: k=%zu size(S)=%zu\n", k, tsize);
241 /* Round up and convert to octets */
244 /* (2b) Apply the RSAVP1 verification primitive to the public key */
245 ret = RSAVP1(key, sig->rsa.s, &m);
249 /* (2c) Convert the message representative (m) to an encoded message
250 * (EM) of length k octets.
252 * NOTE! The leading zero byte is suppressed by MPI, so we pass a
253 * pointer to the _preceding_ byte to RSA_verify()!
255 ret = RSA_I2OSP(m, k, &EM);
259 ret = RSA_verify(H, EM - 1, k, sig->digest_size,
260 RSA_ASN1_templates[sig->pkey_hash_algo].data,
261 RSA_ASN1_templates[sig->pkey_hash_algo].size);
266 kleave(" = %d", ret);
270 const struct public_key_algorithm RSA_public_key_algorithm = {
275 .verify_signature = RSA_verify_signature,
277 EXPORT_SYMBOL_GPL(RSA_public_key_algorithm);