2 * PRNG: Pseudo Random Number Generator
3 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
6 * (C) Neil Horman <nhorman@tuxdriver.com>
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the
10 * Free Software Foundation; either version 2 of the License, or (at your
16 #include <crypto/internal/rng.h>
17 #include <linux/err.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/string.h>
25 #define DEFAULT_PRNG_KEY "0123456789abcdef"
26 #define DEFAULT_PRNG_KSZ 16
27 #define DEFAULT_BLK_SZ 16
28 #define DEFAULT_V_SEED "zaybxcwdveuftgsh"
31 * Flags for the prng_context flags field
34 #define PRNG_FIXED_SIZE 0x1
35 #define PRNG_NEED_RESET 0x2
38 * Note: DT is our counter value
39 * I is our intermediate value
40 * V is our seed vector
41 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
42 * for implementation details
48 unsigned char rand_data[DEFAULT_BLK_SZ];
49 unsigned char last_rand_data[DEFAULT_BLK_SZ];
50 unsigned char DT[DEFAULT_BLK_SZ];
51 unsigned char I[DEFAULT_BLK_SZ];
52 unsigned char V[DEFAULT_BLK_SZ];
54 struct crypto_cipher *tfm;
60 static void hexdump(char *note, unsigned char *buf, unsigned int len)
63 printk(KERN_CRIT "%s", note);
64 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
70 #define dbgprint(format, args...) do {\
72 printk(format, ##args);\
75 static void xor_vectors(unsigned char *in1, unsigned char *in2,
76 unsigned char *out, unsigned int size)
80 for (i = 0; i < size; i++)
81 out[i] = in1[i] ^ in2[i];
85 * Returns DEFAULT_BLK_SZ bytes of random data per call
86 * returns 0 if generation succeeded, <0 if something went wrong
88 static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
91 unsigned char tmp[DEFAULT_BLK_SZ];
92 unsigned char *output = NULL;
95 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
98 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
99 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
100 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
103 * This algorithm is a 3 stage state machine
105 for (i = 0; i < 3; i++) {
110 * Start by encrypting the counter value
111 * This gives us an intermediate value I
113 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
115 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
120 * Next xor I with our secret vector V
121 * encrypt that result to obtain our
122 * pseudo random data which we output
124 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
125 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
126 output = ctx->rand_data;
130 * First check that we didn't produce the same
131 * random data that we did last time around through this
133 if (!memcmp(ctx->rand_data, ctx->last_rand_data,
136 panic("cprng %p Failed repetition check!\n",
141 "ctx %p Failed repetition check!\n",
144 ctx->flags |= PRNG_NEED_RESET;
147 memcpy(ctx->last_rand_data, ctx->rand_data,
151 * Lastly xor the random data with I
152 * and encrypt that to obtain a new secret vector V
154 xor_vectors(ctx->rand_data, ctx->I, tmp,
157 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
162 /* do the encryption */
163 crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
168 * Now update our DT value
170 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
176 dbgprint("Returning new block for context %p\n", ctx);
177 ctx->rand_data_valid = 0;
179 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
180 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
181 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
182 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
187 /* Our exported functions */
188 static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
191 unsigned char *ptr = buf;
192 unsigned int byte_count = (unsigned int)nbytes;
196 spin_lock_bh(&ctx->prng_lock);
199 if (ctx->flags & PRNG_NEED_RESET)
203 * If the FIXED_SIZE flag is on, only return whole blocks of
207 if (ctx->flags & PRNG_FIXED_SIZE) {
208 if (nbytes < DEFAULT_BLK_SZ)
210 byte_count = DEFAULT_BLK_SZ;
215 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
220 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
221 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
222 memset(buf, 0, nbytes);
229 * Copy any data less than an entire block
231 if (byte_count < DEFAULT_BLK_SZ) {
233 for (; ctx->rand_data_valid < DEFAULT_BLK_SZ;
234 ctx->rand_data_valid++) {
235 *ptr = ctx->rand_data[ctx->rand_data_valid];
244 * Now copy whole blocks
246 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
247 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
248 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
249 memset(buf, 0, nbytes);
254 if (ctx->rand_data_valid > 0)
256 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
257 ctx->rand_data_valid += DEFAULT_BLK_SZ;
258 ptr += DEFAULT_BLK_SZ;
262 * Now go back and get any remaining partial block
268 spin_unlock_bh(&ctx->prng_lock);
269 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
274 static void free_prng_context(struct prng_context *ctx)
276 crypto_free_cipher(ctx->tfm);
279 static int reset_prng_context(struct prng_context *ctx,
280 unsigned char *key, size_t klen,
281 unsigned char *V, unsigned char *DT)
284 unsigned char *prng_key;
286 spin_lock_bh(&ctx->prng_lock);
287 ctx->flags |= PRNG_NEED_RESET;
289 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
292 klen = DEFAULT_PRNG_KSZ;
295 memcpy(ctx->V, V, DEFAULT_BLK_SZ);
297 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
300 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
302 memset(ctx->DT, 0, DEFAULT_BLK_SZ);
304 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
305 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
307 ctx->rand_data_valid = DEFAULT_BLK_SZ;
309 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
311 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
312 crypto_cipher_get_flags(ctx->tfm));
317 ctx->flags &= ~PRNG_NEED_RESET;
319 spin_unlock_bh(&ctx->prng_lock);
323 static int cprng_init(struct crypto_tfm *tfm)
325 struct prng_context *ctx = crypto_tfm_ctx(tfm);
327 spin_lock_init(&ctx->prng_lock);
328 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
329 if (IS_ERR(ctx->tfm)) {
330 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
332 return PTR_ERR(ctx->tfm);
335 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
339 * after allocation, we should always force the user to reset
340 * so they don't inadvertently use the insecure default values
341 * without specifying them intentially
343 ctx->flags |= PRNG_NEED_RESET;
347 static void cprng_exit(struct crypto_tfm *tfm)
349 free_prng_context(crypto_tfm_ctx(tfm));
352 static int cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
355 struct prng_context *prng = crypto_rng_ctx(tfm);
357 return get_prng_bytes(rdata, dlen, prng, 0);
361 * This is the cprng_registered reset method the seed value is
362 * interpreted as the tuple { V KEY DT}
363 * V and KEY are required during reset, and DT is optional, detected
364 * as being present by testing the length of the seed
366 static int cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
368 struct prng_context *prng = crypto_rng_ctx(tfm);
369 u8 *key = seed + DEFAULT_BLK_SZ;
372 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
375 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
376 dt = key + DEFAULT_PRNG_KSZ;
378 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
380 if (prng->flags & PRNG_NEED_RESET)
385 #ifdef CONFIG_CRYPTO_FIPS
386 static int fips_cprng_get_random(struct crypto_rng *tfm, u8 *rdata,
389 struct prng_context *prng = crypto_rng_ctx(tfm);
391 return get_prng_bytes(rdata, dlen, prng, 1);
394 static int fips_cprng_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
396 u8 rdata[DEFAULT_BLK_SZ];
397 u8 *key = seed + DEFAULT_BLK_SZ;
400 struct prng_context *prng = crypto_rng_ctx(tfm);
402 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
405 /* fips strictly requires seed != key */
406 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
409 rc = cprng_reset(tfm, seed, slen);
414 /* this primes our continuity test */
415 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416 prng->rand_data_valid = DEFAULT_BLK_SZ;
423 static struct crypto_alg rng_algs[] = { {
424 .cra_name = "stdrng",
425 .cra_driver_name = "ansi_cprng",
427 .cra_flags = CRYPTO_ALG_TYPE_RNG,
428 .cra_ctxsize = sizeof(struct prng_context),
429 .cra_type = &crypto_rng_type,
430 .cra_module = THIS_MODULE,
431 .cra_init = cprng_init,
432 .cra_exit = cprng_exit,
435 .rng_make_random = cprng_get_random,
436 .rng_reset = cprng_reset,
437 .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
440 #ifdef CONFIG_CRYPTO_FIPS
442 .cra_name = "fips(ansi_cprng)",
443 .cra_driver_name = "fips_ansi_cprng",
445 .cra_flags = CRYPTO_ALG_TYPE_RNG,
446 .cra_ctxsize = sizeof(struct prng_context),
447 .cra_type = &crypto_rng_type,
448 .cra_module = THIS_MODULE,
449 .cra_init = cprng_init,
450 .cra_exit = cprng_exit,
453 .rng_make_random = fips_cprng_get_random,
454 .rng_reset = fips_cprng_reset,
455 .seedsize = DEFAULT_PRNG_KSZ + 2*DEFAULT_BLK_SZ,
461 /* Module initalization */
462 static int __init prng_mod_init(void)
464 return crypto_register_algs(rng_algs, ARRAY_SIZE(rng_algs));
467 static void __exit prng_mod_fini(void)
469 crypto_unregister_algs(rng_algs, ARRAY_SIZE(rng_algs));
472 MODULE_LICENSE("GPL");
473 MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
474 MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
475 module_param(dbg, int, 0);
476 MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
477 module_init(prng_mod_init);
478 module_exit(prng_mod_fini);
479 MODULE_ALIAS("stdrng");