Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[platform/kernel/linux-starfive.git] / crypto / aes_ti.c
1 /*
2  * Scalar fixed time AES core transform
3  *
4  * Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10
11 #include <crypto/aes.h>
12 #include <linux/crypto.h>
13 #include <linux/module.h>
14 #include <asm/unaligned.h>
15
16 /*
17  * Emit the sbox as volatile const to prevent the compiler from doing
18  * constant folding on sbox references involving fixed indexes.
19  */
20 static volatile const u8 __cacheline_aligned __aesti_sbox[] = {
21         0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5,
22         0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
23         0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
24         0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
25         0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc,
26         0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
27         0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a,
28         0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
29         0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
30         0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
31         0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
32         0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
33         0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85,
34         0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
35         0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
36         0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
37         0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17,
38         0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
39         0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
40         0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
41         0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
42         0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
43         0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9,
44         0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
45         0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6,
46         0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
47         0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
48         0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
49         0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94,
50         0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
51         0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68,
52         0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16,
53 };
54
55 static volatile const u8 __cacheline_aligned __aesti_inv_sbox[] = {
56         0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38,
57         0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
58         0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
59         0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
60         0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d,
61         0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
62         0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2,
63         0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
64         0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
65         0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
66         0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
67         0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
68         0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a,
69         0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
70         0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
71         0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
72         0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea,
73         0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
74         0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
75         0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
76         0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
77         0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
78         0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20,
79         0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
80         0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31,
81         0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
82         0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
83         0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
84         0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0,
85         0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
86         0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26,
87         0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d,
88 };
89
90 static u32 mul_by_x(u32 w)
91 {
92         u32 x = w & 0x7f7f7f7f;
93         u32 y = w & 0x80808080;
94
95         /* multiply by polynomial 'x' (0b10) in GF(2^8) */
96         return (x << 1) ^ (y >> 7) * 0x1b;
97 }
98
99 static u32 mul_by_x2(u32 w)
100 {
101         u32 x = w & 0x3f3f3f3f;
102         u32 y = w & 0x80808080;
103         u32 z = w & 0x40404040;
104
105         /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */
106         return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b;
107 }
108
109 static u32 mix_columns(u32 x)
110 {
111         /*
112          * Perform the following matrix multiplication in GF(2^8)
113          *
114          * | 0x2 0x3 0x1 0x1 |   | x[0] |
115          * | 0x1 0x2 0x3 0x1 |   | x[1] |
116          * | 0x1 0x1 0x2 0x3 | x | x[2] |
117          * | 0x3 0x1 0x1 0x2 |   | x[3] |
118          */
119         u32 y = mul_by_x(x) ^ ror32(x, 16);
120
121         return y ^ ror32(x ^ y, 8);
122 }
123
124 static u32 inv_mix_columns(u32 x)
125 {
126         /*
127          * Perform the following matrix multiplication in GF(2^8)
128          *
129          * | 0xe 0xb 0xd 0x9 |   | x[0] |
130          * | 0x9 0xe 0xb 0xd |   | x[1] |
131          * | 0xd 0x9 0xe 0xb | x | x[2] |
132          * | 0xb 0xd 0x9 0xe |   | x[3] |
133          *
134          * which can conveniently be reduced to
135          *
136          * | 0x2 0x3 0x1 0x1 |   | 0x5 0x0 0x4 0x0 |   | x[0] |
137          * | 0x1 0x2 0x3 0x1 |   | 0x0 0x5 0x0 0x4 |   | x[1] |
138          * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] |
139          * | 0x3 0x1 0x1 0x2 |   | 0x0 0x4 0x0 0x5 |   | x[3] |
140          */
141         u32 y = mul_by_x2(x);
142
143         return mix_columns(x ^ y ^ ror32(y, 16));
144 }
145
146 static __always_inline u32 subshift(u32 in[], int pos)
147 {
148         return (__aesti_sbox[in[pos] & 0xff]) ^
149                (__aesti_sbox[(in[(pos + 1) % 4] >>  8) & 0xff] <<  8) ^
150                (__aesti_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
151                (__aesti_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24);
152 }
153
154 static __always_inline u32 inv_subshift(u32 in[], int pos)
155 {
156         return (__aesti_inv_sbox[in[pos] & 0xff]) ^
157                (__aesti_inv_sbox[(in[(pos + 3) % 4] >>  8) & 0xff] <<  8) ^
158                (__aesti_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^
159                (__aesti_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24);
160 }
161
162 static u32 subw(u32 in)
163 {
164         return (__aesti_sbox[in & 0xff]) ^
165                (__aesti_sbox[(in >>  8) & 0xff] <<  8) ^
166                (__aesti_sbox[(in >> 16) & 0xff] << 16) ^
167                (__aesti_sbox[(in >> 24) & 0xff] << 24);
168 }
169
170 static int aesti_expand_key(struct crypto_aes_ctx *ctx, const u8 *in_key,
171                             unsigned int key_len)
172 {
173         u32 kwords = key_len / sizeof(u32);
174         u32 rc, i, j;
175
176         if (key_len != AES_KEYSIZE_128 &&
177             key_len != AES_KEYSIZE_192 &&
178             key_len != AES_KEYSIZE_256)
179                 return -EINVAL;
180
181         ctx->key_length = key_len;
182
183         for (i = 0; i < kwords; i++)
184                 ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
185
186         for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) {
187                 u32 *rki = ctx->key_enc + (i * kwords);
188                 u32 *rko = rki + kwords;
189
190                 rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0];
191                 rko[1] = rko[0] ^ rki[1];
192                 rko[2] = rko[1] ^ rki[2];
193                 rko[3] = rko[2] ^ rki[3];
194
195                 if (key_len == 24) {
196                         if (i >= 7)
197                                 break;
198                         rko[4] = rko[3] ^ rki[4];
199                         rko[5] = rko[4] ^ rki[5];
200                 } else if (key_len == 32) {
201                         if (i >= 6)
202                                 break;
203                         rko[4] = subw(rko[3]) ^ rki[4];
204                         rko[5] = rko[4] ^ rki[5];
205                         rko[6] = rko[5] ^ rki[6];
206                         rko[7] = rko[6] ^ rki[7];
207                 }
208         }
209
210         /*
211          * Generate the decryption keys for the Equivalent Inverse Cipher.
212          * This involves reversing the order of the round keys, and applying
213          * the Inverse Mix Columns transformation to all but the first and
214          * the last one.
215          */
216         ctx->key_dec[0] = ctx->key_enc[key_len + 24];
217         ctx->key_dec[1] = ctx->key_enc[key_len + 25];
218         ctx->key_dec[2] = ctx->key_enc[key_len + 26];
219         ctx->key_dec[3] = ctx->key_enc[key_len + 27];
220
221         for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) {
222                 ctx->key_dec[i]     = inv_mix_columns(ctx->key_enc[j]);
223                 ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]);
224                 ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]);
225                 ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]);
226         }
227
228         ctx->key_dec[i]     = ctx->key_enc[0];
229         ctx->key_dec[i + 1] = ctx->key_enc[1];
230         ctx->key_dec[i + 2] = ctx->key_enc[2];
231         ctx->key_dec[i + 3] = ctx->key_enc[3];
232
233         return 0;
234 }
235
236 static int aesti_set_key(struct crypto_tfm *tfm, const u8 *in_key,
237                          unsigned int key_len)
238 {
239         struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
240         int err;
241
242         err = aesti_expand_key(ctx, in_key, key_len);
243         if (err)
244                 return err;
245
246         /*
247          * In order to force the compiler to emit data independent Sbox lookups
248          * at the start of each block, xor the first round key with values at
249          * fixed indexes in the Sbox. This will need to be repeated each time
250          * the key is used, which will pull the entire Sbox into the D-cache
251          * before any data dependent Sbox lookups are performed.
252          */
253         ctx->key_enc[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
254         ctx->key_enc[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
255         ctx->key_enc[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
256         ctx->key_enc[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
257
258         ctx->key_dec[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
259         ctx->key_dec[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
260         ctx->key_dec[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
261         ctx->key_dec[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
262
263         return 0;
264 }
265
266 static void aesti_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
267 {
268         const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
269         const u32 *rkp = ctx->key_enc + 4;
270         int rounds = 6 + ctx->key_length / 4;
271         u32 st0[4], st1[4];
272         unsigned long flags;
273         int round;
274
275         st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in);
276         st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4);
277         st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8);
278         st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12);
279
280         /*
281          * Temporarily disable interrupts to avoid races where cachelines are
282          * evicted when the CPU is interrupted to do something else.
283          */
284         local_irq_save(flags);
285
286         st0[0] ^= __aesti_sbox[ 0] ^ __aesti_sbox[128];
287         st0[1] ^= __aesti_sbox[32] ^ __aesti_sbox[160];
288         st0[2] ^= __aesti_sbox[64] ^ __aesti_sbox[192];
289         st0[3] ^= __aesti_sbox[96] ^ __aesti_sbox[224];
290
291         for (round = 0;; round += 2, rkp += 8) {
292                 st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0];
293                 st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1];
294                 st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2];
295                 st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3];
296
297                 if (round == rounds - 2)
298                         break;
299
300                 st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4];
301                 st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5];
302                 st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6];
303                 st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7];
304         }
305
306         put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out);
307         put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4);
308         put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8);
309         put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12);
310
311         local_irq_restore(flags);
312 }
313
314 static void aesti_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
315 {
316         const struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
317         const u32 *rkp = ctx->key_dec + 4;
318         int rounds = 6 + ctx->key_length / 4;
319         u32 st0[4], st1[4];
320         unsigned long flags;
321         int round;
322
323         st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in);
324         st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4);
325         st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8);
326         st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12);
327
328         /*
329          * Temporarily disable interrupts to avoid races where cachelines are
330          * evicted when the CPU is interrupted to do something else.
331          */
332         local_irq_save(flags);
333
334         st0[0] ^= __aesti_inv_sbox[ 0] ^ __aesti_inv_sbox[128];
335         st0[1] ^= __aesti_inv_sbox[32] ^ __aesti_inv_sbox[160];
336         st0[2] ^= __aesti_inv_sbox[64] ^ __aesti_inv_sbox[192];
337         st0[3] ^= __aesti_inv_sbox[96] ^ __aesti_inv_sbox[224];
338
339         for (round = 0;; round += 2, rkp += 8) {
340                 st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0];
341                 st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1];
342                 st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2];
343                 st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3];
344
345                 if (round == rounds - 2)
346                         break;
347
348                 st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4];
349                 st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5];
350                 st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6];
351                 st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7];
352         }
353
354         put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out);
355         put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4);
356         put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8);
357         put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12);
358
359         local_irq_restore(flags);
360 }
361
362 static struct crypto_alg aes_alg = {
363         .cra_name                       = "aes",
364         .cra_driver_name                = "aes-fixed-time",
365         .cra_priority                   = 100 + 1,
366         .cra_flags                      = CRYPTO_ALG_TYPE_CIPHER,
367         .cra_blocksize                  = AES_BLOCK_SIZE,
368         .cra_ctxsize                    = sizeof(struct crypto_aes_ctx),
369         .cra_module                     = THIS_MODULE,
370
371         .cra_cipher.cia_min_keysize     = AES_MIN_KEY_SIZE,
372         .cra_cipher.cia_max_keysize     = AES_MAX_KEY_SIZE,
373         .cra_cipher.cia_setkey          = aesti_set_key,
374         .cra_cipher.cia_encrypt         = aesti_encrypt,
375         .cra_cipher.cia_decrypt         = aesti_decrypt
376 };
377
378 static int __init aes_init(void)
379 {
380         return crypto_register_alg(&aes_alg);
381 }
382
383 static void __exit aes_fini(void)
384 {
385         crypto_unregister_alg(&aes_alg);
386 }
387
388 module_init(aes_init);
389 module_exit(aes_fini);
390
391 MODULE_DESCRIPTION("Generic fixed time AES");
392 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
393 MODULE_LICENSE("GPL v2");