2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #define CPU_NO_GLOBAL_REGS
26 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
40 #if defined(__sparc__) && !defined(HOST_SOLARIS)
41 // Work around ugly bugs in glibc that mangle global register contents
43 #define env cpu_single_env
46 int tb_invalidated_flag;
47 static unsigned long next_tb;
50 //#define DEBUG_SIGNAL
52 void cpu_loop_exit(void)
54 /* NOTE: the register at this point must be saved by hand because
55 longjmp restore them */
57 longjmp(env->jmp_env, 1);
60 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 struct ucontext *uc = puc;
75 /* XXX: restore cpu registers saved in host registers */
77 #if !defined(CONFIG_SOFTMMU)
79 /* XXX: use siglongjmp ? */
80 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
83 longjmp(env->jmp_env, 1);
86 static TranslationBlock *tb_find_slow(target_ulong pc,
90 TranslationBlock *tb, **ptb1;
93 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
98 tb_invalidated_flag = 0;
100 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
102 /* find translated block using physical mappings */
103 phys_pc = get_phys_addr_code(env, pc);
104 phys_page1 = phys_pc & TARGET_PAGE_MASK;
106 h = tb_phys_hash_func(phys_pc);
107 ptb1 = &tb_phys_hash[h];
113 tb->page_addr[0] == phys_page1 &&
114 tb->cs_base == cs_base &&
115 tb->flags == flags) {
116 /* check next page if needed */
117 if (tb->page_addr[1] != -1) {
118 virt_page2 = (pc & TARGET_PAGE_MASK) +
120 phys_page2 = get_phys_addr_code(env, virt_page2);
121 if (tb->page_addr[1] == phys_page2)
127 ptb1 = &tb->phys_hash_next;
130 /* if no translated code available, then translate it now */
133 /* flush must be done */
135 /* cannot fail at this point */
137 /* don't forget to invalidate previous TB info */
138 tb_invalidated_flag = 1;
140 tc_ptr = code_gen_ptr;
142 tb->cs_base = cs_base;
144 cpu_gen_code(env, tb, &code_gen_size);
145 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
147 /* check next page if needed */
148 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
150 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
151 phys_page2 = get_phys_addr_code(env, virt_page2);
153 tb_link_phys(tb, phys_pc, phys_page2);
156 /* we add the TB in the virtual pc hash table */
157 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
158 spin_unlock(&tb_lock);
162 static inline TranslationBlock *tb_find_fast(void)
164 TranslationBlock *tb;
165 target_ulong cs_base, pc;
168 /* we record a subset of the CPU state. It will
169 always be the same before a given translated block
171 #if defined(TARGET_I386)
173 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
174 flags |= env->intercept;
175 cs_base = env->segs[R_CS].base;
176 pc = cs_base + env->eip;
177 #elif defined(TARGET_ARM)
178 flags = env->thumb | (env->vfp.vec_len << 1)
179 | (env->vfp.vec_stride << 4);
180 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
182 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
184 flags |= (env->condexec_bits << 8);
187 #elif defined(TARGET_SPARC)
188 #ifdef TARGET_SPARC64
189 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
190 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
191 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
193 // FPU enable . Supervisor
194 flags = (env->psref << 4) | env->psrs;
198 #elif defined(TARGET_PPC)
202 #elif defined(TARGET_MIPS)
203 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
205 pc = env->PC[env->current_tc];
206 #elif defined(TARGET_M68K)
207 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
208 | (env->sr & SR_S) /* Bit 13 */
209 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
212 #elif defined(TARGET_SH4)
216 #elif defined(TARGET_ALPHA)
220 #elif defined(TARGET_CRIS)
221 flags = env->pregs[PR_CCS] & (U_FLAG | X_FLAG);
226 #error unsupported CPU
228 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
229 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
230 tb->flags != flags, 0)) {
231 tb = tb_find_slow(pc, cs_base, flags);
232 /* Note: we do it here to avoid a gcc bug on Mac OS X when
233 doing it in tb_find_slow */
234 if (tb_invalidated_flag) {
235 /* as some TB could have been invalidated because
236 of memory exceptions while generating the code, we
237 must recompute the hash index here */
244 /* main execution loop */
246 int cpu_exec(CPUState *env1)
248 #define DECLARE_HOST_REGS 1
249 #include "hostregs_helper.h"
250 #if defined(TARGET_SPARC)
251 #if defined(reg_REGWPTR)
252 uint32_t *saved_regwptr;
255 int ret, interrupt_request;
256 TranslationBlock *tb;
259 if (cpu_halted(env1) == EXCP_HALTED)
262 cpu_single_env = env1;
264 /* first we save global registers */
265 #define SAVE_HOST_REGS 1
266 #include "hostregs_helper.h"
270 #if defined(TARGET_I386)
271 /* put eflags in CPU temporary format */
272 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273 DF = 1 - (2 * ((env->eflags >> 10) & 1));
274 CC_OP = CC_OP_EFLAGS;
275 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
276 #elif defined(TARGET_SPARC)
277 #if defined(reg_REGWPTR)
278 saved_regwptr = REGWPTR;
280 #elif defined(TARGET_M68K)
281 env->cc_op = CC_OP_FLAGS;
282 env->cc_dest = env->sr & 0xf;
283 env->cc_x = (env->sr >> 4) & 1;
284 #elif defined(TARGET_ALPHA)
285 #elif defined(TARGET_ARM)
286 #elif defined(TARGET_PPC)
287 #elif defined(TARGET_MIPS)
288 #elif defined(TARGET_SH4)
289 #elif defined(TARGET_CRIS)
292 #error unsupported target CPU
294 env->exception_index = -1;
296 /* prepare setjmp context for exception handling */
298 if (setjmp(env->jmp_env) == 0) {
299 env->current_tb = NULL;
300 /* if an exception is pending, we execute it here */
301 if (env->exception_index >= 0) {
302 if (env->exception_index >= EXCP_INTERRUPT) {
303 /* exit request from the cpu execution loop */
304 ret = env->exception_index;
306 } else if (env->user_mode_only) {
307 /* if user mode only, we simulate a fake exception
308 which will be handled outside the cpu execution
310 #if defined(TARGET_I386)
311 do_interrupt_user(env->exception_index,
312 env->exception_is_int,
314 env->exception_next_eip);
315 /* successfully delivered */
316 env->old_exception = -1;
318 ret = env->exception_index;
321 #if defined(TARGET_I386)
322 /* simulate a real cpu exception. On i386, it can
323 trigger new exceptions, but we do not handle
324 double or triple faults yet. */
325 do_interrupt(env->exception_index,
326 env->exception_is_int,
328 env->exception_next_eip, 0);
329 /* successfully delivered */
330 env->old_exception = -1;
331 #elif defined(TARGET_PPC)
333 #elif defined(TARGET_MIPS)
335 #elif defined(TARGET_SPARC)
337 #elif defined(TARGET_ARM)
339 #elif defined(TARGET_SH4)
341 #elif defined(TARGET_ALPHA)
343 #elif defined(TARGET_CRIS)
345 #elif defined(TARGET_M68K)
349 env->exception_index = -1;
352 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
354 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
355 ret = kqemu_cpu_exec(env);
356 /* put eflags in CPU temporary format */
357 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
358 DF = 1 - (2 * ((env->eflags >> 10) & 1));
359 CC_OP = CC_OP_EFLAGS;
360 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
363 longjmp(env->jmp_env, 1);
364 } else if (ret == 2) {
365 /* softmmu execution needed */
367 if (env->interrupt_request != 0) {
368 /* hardware interrupt will be executed just after */
370 /* otherwise, we restart */
371 longjmp(env->jmp_env, 1);
377 next_tb = 0; /* force lookup of first TB */
379 interrupt_request = env->interrupt_request;
380 if (__builtin_expect(interrupt_request, 0)
381 #if defined(TARGET_I386)
382 && env->hflags & HF_GIF_MASK
384 && likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) {
385 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
386 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
387 env->exception_index = EXCP_DEBUG;
390 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
391 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
392 if (interrupt_request & CPU_INTERRUPT_HALT) {
393 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
395 env->exception_index = EXCP_HLT;
399 #if defined(TARGET_I386)
400 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
401 !(env->hflags & HF_SMM_MASK)) {
402 svm_check_intercept(SVM_EXIT_SMI);
403 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
406 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
407 !(env->hflags & HF_NMI_MASK)) {
408 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
409 env->hflags |= HF_NMI_MASK;
410 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
412 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
413 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
414 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
416 svm_check_intercept(SVM_EXIT_INTR);
417 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
418 intno = cpu_get_pic_interrupt(env);
419 if (loglevel & CPU_LOG_TB_IN_ASM) {
420 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
422 do_interrupt(intno, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
426 #if !defined(CONFIG_USER_ONLY)
427 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
428 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
430 /* FIXME: this should respect TPR */
431 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
432 svm_check_intercept(SVM_EXIT_VINTR);
433 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
434 if (loglevel & CPU_LOG_TB_IN_ASM)
435 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
436 do_interrupt(intno, 0, 0, -1, 1);
437 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
438 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
442 #elif defined(TARGET_PPC)
444 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
448 if (interrupt_request & CPU_INTERRUPT_HARD) {
449 ppc_hw_interrupt(env);
450 if (env->pending_interrupts == 0)
451 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
454 #elif defined(TARGET_MIPS)
455 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
456 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
457 (env->CP0_Status & (1 << CP0St_IE)) &&
458 !(env->CP0_Status & (1 << CP0St_EXL)) &&
459 !(env->CP0_Status & (1 << CP0St_ERL)) &&
460 !(env->hflags & MIPS_HFLAG_DM)) {
462 env->exception_index = EXCP_EXT_INTERRUPT;
467 #elif defined(TARGET_SPARC)
468 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
470 int pil = env->interrupt_index & 15;
471 int type = env->interrupt_index & 0xf0;
473 if (((type == TT_EXTINT) &&
474 (pil == 15 || pil > env->psrpil)) ||
476 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
477 env->exception_index = env->interrupt_index;
479 env->interrupt_index = 0;
480 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
485 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
486 //do_interrupt(0, 0, 0, 0, 0);
487 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
489 #elif defined(TARGET_ARM)
490 if (interrupt_request & CPU_INTERRUPT_FIQ
491 && !(env->uncached_cpsr & CPSR_F)) {
492 env->exception_index = EXCP_FIQ;
496 /* ARMv7-M interrupt return works by loading a magic value
497 into the PC. On real hardware the load causes the
498 return to occur. The qemu implementation performs the
499 jump normally, then does the exception return when the
500 CPU tries to execute code at the magic address.
501 This will cause the magic PC value to be pushed to
502 the stack if an interrupt occured at the wrong time.
503 We avoid this by disabling interrupts when
504 pc contains a magic address. */
505 if (interrupt_request & CPU_INTERRUPT_HARD
506 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
507 || !(env->uncached_cpsr & CPSR_I))) {
508 env->exception_index = EXCP_IRQ;
512 #elif defined(TARGET_SH4)
513 if (interrupt_request & CPU_INTERRUPT_HARD) {
517 #elif defined(TARGET_ALPHA)
518 if (interrupt_request & CPU_INTERRUPT_HARD) {
522 #elif defined(TARGET_CRIS)
523 if (interrupt_request & CPU_INTERRUPT_HARD) {
527 #elif defined(TARGET_M68K)
528 if (interrupt_request & CPU_INTERRUPT_HARD
529 && ((env->sr & SR_I) >> SR_I_SHIFT)
530 < env->pending_level) {
531 /* Real hardware gets the interrupt vector via an
532 IACK cycle at this point. Current emulated
533 hardware doesn't rely on this, so we
534 provide/save the vector when the interrupt is
536 env->exception_index = env->pending_vector;
541 /* Don't use the cached interupt_request value,
542 do_interrupt may have updated the EXITTB flag. */
543 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
544 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
545 /* ensure that no TB jump will be modified as
546 the program flow was changed */
549 if (interrupt_request & CPU_INTERRUPT_EXIT) {
550 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
551 env->exception_index = EXCP_INTERRUPT;
556 if ((loglevel & CPU_LOG_TB_CPU)) {
557 /* restore flags in standard format */
559 #if defined(TARGET_I386)
560 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
561 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
562 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
563 #elif defined(TARGET_ARM)
564 cpu_dump_state(env, logfile, fprintf, 0);
565 #elif defined(TARGET_SPARC)
566 REGWPTR = env->regbase + (env->cwp * 16);
567 env->regwptr = REGWPTR;
568 cpu_dump_state(env, logfile, fprintf, 0);
569 #elif defined(TARGET_PPC)
570 cpu_dump_state(env, logfile, fprintf, 0);
571 #elif defined(TARGET_M68K)
572 cpu_m68k_flush_flags(env, env->cc_op);
573 env->cc_op = CC_OP_FLAGS;
574 env->sr = (env->sr & 0xffe0)
575 | env->cc_dest | (env->cc_x << 4);
576 cpu_dump_state(env, logfile, fprintf, 0);
577 #elif defined(TARGET_MIPS)
578 cpu_dump_state(env, logfile, fprintf, 0);
579 #elif defined(TARGET_SH4)
580 cpu_dump_state(env, logfile, fprintf, 0);
581 #elif defined(TARGET_ALPHA)
582 cpu_dump_state(env, logfile, fprintf, 0);
583 #elif defined(TARGET_CRIS)
584 cpu_dump_state(env, logfile, fprintf, 0);
586 #error unsupported target CPU
592 if ((loglevel & CPU_LOG_EXEC)) {
593 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
594 (long)tb->tc_ptr, tb->pc,
595 lookup_symbol(tb->pc));
598 /* see if we can patch the calling TB. When the TB
599 spans two pages, we cannot safely do a direct
604 (env->kqemu_enabled != 2) &&
606 tb->page_addr[1] == -1) {
608 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
609 spin_unlock(&tb_lock);
613 env->current_tb = tb;
614 /* execute the generated code */
615 #if defined(__sparc__) && !defined(HOST_SOLARIS)
617 env = cpu_single_env;
618 #define env cpu_single_env
620 next_tb = tcg_qemu_tb_exec(tc_ptr);
621 env->current_tb = NULL;
622 /* reset soft MMU for next block (it can currently
623 only be set by a memory fault) */
624 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
625 if (env->hflags & HF_SOFTMMU_MASK) {
626 env->hflags &= ~HF_SOFTMMU_MASK;
627 /* do not allow linking to another block */
631 #if defined(USE_KQEMU)
632 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
633 if (kqemu_is_ok(env) &&
634 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
645 #if defined(TARGET_I386)
646 /* restore flags in standard format */
647 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
648 #elif defined(TARGET_ARM)
649 /* XXX: Save/restore host fpu exception state?. */
650 #elif defined(TARGET_SPARC)
651 #if defined(reg_REGWPTR)
652 REGWPTR = saved_regwptr;
654 #elif defined(TARGET_PPC)
655 #elif defined(TARGET_M68K)
656 cpu_m68k_flush_flags(env, env->cc_op);
657 env->cc_op = CC_OP_FLAGS;
658 env->sr = (env->sr & 0xffe0)
659 | env->cc_dest | (env->cc_x << 4);
660 #elif defined(TARGET_MIPS)
661 #elif defined(TARGET_SH4)
662 #elif defined(TARGET_ALPHA)
663 #elif defined(TARGET_CRIS)
666 #error unsupported target CPU
669 /* restore global registers */
670 #include "hostregs_helper.h"
672 /* fail safe : never use cpu_single_env outside cpu_exec() */
673 cpu_single_env = NULL;
677 /* must only be called from the generated code as an exception can be
679 void tb_invalidate_page_range(target_ulong start, target_ulong end)
681 /* XXX: cannot enable it yet because it yields to MMU exception
682 where NIP != read address on PowerPC */
684 target_ulong phys_addr;
685 phys_addr = get_phys_addr_code(env, start);
686 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
690 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
692 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
694 CPUX86State *saved_env;
698 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
700 cpu_x86_load_seg_cache(env, seg_reg, selector,
701 (selector << 4), 0xffff, 0);
703 helper_load_seg(seg_reg, selector);
708 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
710 CPUX86State *saved_env;
715 helper_fsave(ptr, data32);
720 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
722 CPUX86State *saved_env;
727 helper_frstor(ptr, data32);
732 #endif /* TARGET_I386 */
734 #if !defined(CONFIG_SOFTMMU)
736 #if defined(TARGET_I386)
738 /* 'pc' is the host PC at which the exception was raised. 'address' is
739 the effective address of the memory exception. 'is_write' is 1 if a
740 write caused the exception and otherwise 0'. 'old_set' is the
741 signal set which should be restored */
742 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
743 int is_write, sigset_t *old_set,
746 TranslationBlock *tb;
750 env = cpu_single_env; /* XXX: find a correct solution for multithread */
751 #if defined(DEBUG_SIGNAL)
752 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
753 pc, address, is_write, *(unsigned long *)old_set);
755 /* XXX: locking issue */
756 if (is_write && page_unprotect(h2g(address), pc, puc)) {
760 /* see if it is an MMU fault */
761 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
763 return 0; /* not an MMU fault */
765 return 1; /* the MMU fault was handled without causing real CPU fault */
766 /* now we have a real cpu fault */
769 /* the PC is inside the translated code. It means that we have
770 a virtual CPU fault */
771 cpu_restore_state(tb, env, pc, puc);
775 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
776 env->eip, env->cr[2], env->error_code);
778 /* we restore the process signal mask as the sigreturn should
779 do it (XXX: use sigsetjmp) */
780 sigprocmask(SIG_SETMASK, old_set, NULL);
781 raise_exception_err(env->exception_index, env->error_code);
783 /* activate soft MMU for this block */
784 env->hflags |= HF_SOFTMMU_MASK;
785 cpu_resume_from_signal(env, puc);
787 /* never comes here */
791 #elif defined(TARGET_ARM)
792 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
793 int is_write, sigset_t *old_set,
796 TranslationBlock *tb;
800 env = cpu_single_env; /* XXX: find a correct solution for multithread */
801 #if defined(DEBUG_SIGNAL)
802 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
803 pc, address, is_write, *(unsigned long *)old_set);
805 /* XXX: locking issue */
806 if (is_write && page_unprotect(h2g(address), pc, puc)) {
809 /* see if it is an MMU fault */
810 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
812 return 0; /* not an MMU fault */
814 return 1; /* the MMU fault was handled without causing real CPU fault */
815 /* now we have a real cpu fault */
818 /* the PC is inside the translated code. It means that we have
819 a virtual CPU fault */
820 cpu_restore_state(tb, env, pc, puc);
822 /* we restore the process signal mask as the sigreturn should
823 do it (XXX: use sigsetjmp) */
824 sigprocmask(SIG_SETMASK, old_set, NULL);
826 /* never comes here */
829 #elif defined(TARGET_SPARC)
830 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
831 int is_write, sigset_t *old_set,
834 TranslationBlock *tb;
838 env = cpu_single_env; /* XXX: find a correct solution for multithread */
839 #if defined(DEBUG_SIGNAL)
840 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
841 pc, address, is_write, *(unsigned long *)old_set);
843 /* XXX: locking issue */
844 if (is_write && page_unprotect(h2g(address), pc, puc)) {
847 /* see if it is an MMU fault */
848 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
850 return 0; /* not an MMU fault */
852 return 1; /* the MMU fault was handled without causing real CPU fault */
853 /* now we have a real cpu fault */
856 /* the PC is inside the translated code. It means that we have
857 a virtual CPU fault */
858 cpu_restore_state(tb, env, pc, puc);
860 /* we restore the process signal mask as the sigreturn should
861 do it (XXX: use sigsetjmp) */
862 sigprocmask(SIG_SETMASK, old_set, NULL);
864 /* never comes here */
867 #elif defined (TARGET_PPC)
868 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
869 int is_write, sigset_t *old_set,
872 TranslationBlock *tb;
876 env = cpu_single_env; /* XXX: find a correct solution for multithread */
877 #if defined(DEBUG_SIGNAL)
878 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
879 pc, address, is_write, *(unsigned long *)old_set);
881 /* XXX: locking issue */
882 if (is_write && page_unprotect(h2g(address), pc, puc)) {
886 /* see if it is an MMU fault */
887 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
889 return 0; /* not an MMU fault */
891 return 1; /* the MMU fault was handled without causing real CPU fault */
893 /* now we have a real cpu fault */
896 /* the PC is inside the translated code. It means that we have
897 a virtual CPU fault */
898 cpu_restore_state(tb, env, pc, puc);
902 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
903 env->nip, env->error_code, tb);
905 /* we restore the process signal mask as the sigreturn should
906 do it (XXX: use sigsetjmp) */
907 sigprocmask(SIG_SETMASK, old_set, NULL);
908 do_raise_exception_err(env->exception_index, env->error_code);
910 /* activate soft MMU for this block */
911 cpu_resume_from_signal(env, puc);
913 /* never comes here */
917 #elif defined(TARGET_M68K)
918 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
919 int is_write, sigset_t *old_set,
922 TranslationBlock *tb;
926 env = cpu_single_env; /* XXX: find a correct solution for multithread */
927 #if defined(DEBUG_SIGNAL)
928 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
929 pc, address, is_write, *(unsigned long *)old_set);
931 /* XXX: locking issue */
932 if (is_write && page_unprotect(address, pc, puc)) {
935 /* see if it is an MMU fault */
936 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
938 return 0; /* not an MMU fault */
940 return 1; /* the MMU fault was handled without causing real CPU fault */
941 /* now we have a real cpu fault */
944 /* the PC is inside the translated code. It means that we have
945 a virtual CPU fault */
946 cpu_restore_state(tb, env, pc, puc);
948 /* we restore the process signal mask as the sigreturn should
949 do it (XXX: use sigsetjmp) */
950 sigprocmask(SIG_SETMASK, old_set, NULL);
952 /* never comes here */
956 #elif defined (TARGET_MIPS)
957 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
958 int is_write, sigset_t *old_set,
961 TranslationBlock *tb;
965 env = cpu_single_env; /* XXX: find a correct solution for multithread */
966 #if defined(DEBUG_SIGNAL)
967 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
968 pc, address, is_write, *(unsigned long *)old_set);
970 /* XXX: locking issue */
971 if (is_write && page_unprotect(h2g(address), pc, puc)) {
975 /* see if it is an MMU fault */
976 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
978 return 0; /* not an MMU fault */
980 return 1; /* the MMU fault was handled without causing real CPU fault */
982 /* now we have a real cpu fault */
985 /* the PC is inside the translated code. It means that we have
986 a virtual CPU fault */
987 cpu_restore_state(tb, env, pc, puc);
991 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
992 env->PC, env->error_code, tb);
994 /* we restore the process signal mask as the sigreturn should
995 do it (XXX: use sigsetjmp) */
996 sigprocmask(SIG_SETMASK, old_set, NULL);
997 do_raise_exception_err(env->exception_index, env->error_code);
999 /* activate soft MMU for this block */
1000 cpu_resume_from_signal(env, puc);
1002 /* never comes here */
1006 #elif defined (TARGET_SH4)
1007 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1008 int is_write, sigset_t *old_set,
1011 TranslationBlock *tb;
1015 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1016 #if defined(DEBUG_SIGNAL)
1017 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1018 pc, address, is_write, *(unsigned long *)old_set);
1020 /* XXX: locking issue */
1021 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1025 /* see if it is an MMU fault */
1026 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1028 return 0; /* not an MMU fault */
1030 return 1; /* the MMU fault was handled without causing real CPU fault */
1032 /* now we have a real cpu fault */
1033 tb = tb_find_pc(pc);
1035 /* the PC is inside the translated code. It means that we have
1036 a virtual CPU fault */
1037 cpu_restore_state(tb, env, pc, puc);
1040 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1041 env->nip, env->error_code, tb);
1043 /* we restore the process signal mask as the sigreturn should
1044 do it (XXX: use sigsetjmp) */
1045 sigprocmask(SIG_SETMASK, old_set, NULL);
1047 /* never comes here */
1051 #elif defined (TARGET_ALPHA)
1052 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1053 int is_write, sigset_t *old_set,
1056 TranslationBlock *tb;
1060 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1061 #if defined(DEBUG_SIGNAL)
1062 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1063 pc, address, is_write, *(unsigned long *)old_set);
1065 /* XXX: locking issue */
1066 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1070 /* see if it is an MMU fault */
1071 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1073 return 0; /* not an MMU fault */
1075 return 1; /* the MMU fault was handled without causing real CPU fault */
1077 /* now we have a real cpu fault */
1078 tb = tb_find_pc(pc);
1080 /* the PC is inside the translated code. It means that we have
1081 a virtual CPU fault */
1082 cpu_restore_state(tb, env, pc, puc);
1085 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1086 env->nip, env->error_code, tb);
1088 /* we restore the process signal mask as the sigreturn should
1089 do it (XXX: use sigsetjmp) */
1090 sigprocmask(SIG_SETMASK, old_set, NULL);
1092 /* never comes here */
1095 #elif defined (TARGET_CRIS)
1096 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1097 int is_write, sigset_t *old_set,
1100 TranslationBlock *tb;
1104 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1105 #if defined(DEBUG_SIGNAL)
1106 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1107 pc, address, is_write, *(unsigned long *)old_set);
1109 /* XXX: locking issue */
1110 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1114 /* see if it is an MMU fault */
1115 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1117 return 0; /* not an MMU fault */
1119 return 1; /* the MMU fault was handled without causing real CPU fault */
1121 /* now we have a real cpu fault */
1122 tb = tb_find_pc(pc);
1124 /* the PC is inside the translated code. It means that we have
1125 a virtual CPU fault */
1126 cpu_restore_state(tb, env, pc, puc);
1128 /* we restore the process signal mask as the sigreturn should
1129 do it (XXX: use sigsetjmp) */
1130 sigprocmask(SIG_SETMASK, old_set, NULL);
1132 /* never comes here */
1137 #error unsupported target CPU
1140 #if defined(__i386__)
1142 #if defined(__APPLE__)
1143 # include <sys/ucontext.h>
1145 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1146 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1147 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1149 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1150 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1151 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1154 int cpu_signal_handler(int host_signum, void *pinfo,
1157 siginfo_t *info = pinfo;
1158 struct ucontext *uc = puc;
1166 #define REG_TRAPNO TRAPNO
1169 trapno = TRAP_sig(uc);
1170 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1172 (ERROR_sig(uc) >> 1) & 1 : 0,
1173 &uc->uc_sigmask, puc);
1176 #elif defined(__x86_64__)
1178 int cpu_signal_handler(int host_signum, void *pinfo,
1181 siginfo_t *info = pinfo;
1182 struct ucontext *uc = puc;
1185 pc = uc->uc_mcontext.gregs[REG_RIP];
1186 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1187 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1188 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1189 &uc->uc_sigmask, puc);
1192 #elif defined(__powerpc__)
1194 /***********************************************************************
1195 * signal context platform-specific definitions
1199 /* All Registers access - only for local access */
1200 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1201 /* Gpr Registers access */
1202 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1203 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1204 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1205 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1206 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1207 # define LR_sig(context) REG_sig(link, context) /* Link register */
1208 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1209 /* Float Registers access */
1210 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1211 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1212 /* Exception Registers access */
1213 # define DAR_sig(context) REG_sig(dar, context)
1214 # define DSISR_sig(context) REG_sig(dsisr, context)
1215 # define TRAP_sig(context) REG_sig(trap, context)
1219 # include <sys/ucontext.h>
1220 typedef struct ucontext SIGCONTEXT;
1221 /* All Registers access - only for local access */
1222 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1223 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1224 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1225 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1226 /* Gpr Registers access */
1227 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1228 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1229 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1230 # define CTR_sig(context) REG_sig(ctr, context)
1231 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1232 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1233 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1234 /* Float Registers access */
1235 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1236 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1237 /* Exception Registers access */
1238 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1239 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1240 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1241 #endif /* __APPLE__ */
1243 int cpu_signal_handler(int host_signum, void *pinfo,
1246 siginfo_t *info = pinfo;
1247 struct ucontext *uc = puc;
1255 if (DSISR_sig(uc) & 0x00800000)
1258 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1261 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1262 is_write, &uc->uc_sigmask, puc);
1265 #elif defined(__alpha__)
1267 int cpu_signal_handler(int host_signum, void *pinfo,
1270 siginfo_t *info = pinfo;
1271 struct ucontext *uc = puc;
1272 uint32_t *pc = uc->uc_mcontext.sc_pc;
1273 uint32_t insn = *pc;
1276 /* XXX: need kernel patch to get write flag faster */
1277 switch (insn >> 26) {
1292 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1293 is_write, &uc->uc_sigmask, puc);
1295 #elif defined(__sparc__)
1297 int cpu_signal_handler(int host_signum, void *pinfo,
1300 siginfo_t *info = pinfo;
1303 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1304 uint32_t *regs = (uint32_t *)(info + 1);
1305 void *sigmask = (regs + 20);
1306 /* XXX: is there a standard glibc define ? */
1307 unsigned long pc = regs[1];
1309 struct sigcontext *sc = puc;
1310 unsigned long pc = sc->sigc_regs.tpc;
1311 void *sigmask = (void *)sc->sigc_mask;
1314 /* XXX: need kernel patch to get write flag faster */
1316 insn = *(uint32_t *)pc;
1317 if ((insn >> 30) == 3) {
1318 switch((insn >> 19) & 0x3f) {
1330 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1331 is_write, sigmask, NULL);
1334 #elif defined(__arm__)
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1339 siginfo_t *info = pinfo;
1340 struct ucontext *uc = puc;
1344 pc = uc->uc_mcontext.arm_pc;
1345 /* XXX: compute is_write */
1347 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1349 &uc->uc_sigmask, puc);
1352 #elif defined(__mc68000)
1354 int cpu_signal_handler(int host_signum, void *pinfo,
1357 siginfo_t *info = pinfo;
1358 struct ucontext *uc = puc;
1362 pc = uc->uc_mcontext.gregs[16];
1363 /* XXX: compute is_write */
1365 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1367 &uc->uc_sigmask, puc);
1370 #elif defined(__ia64)
1373 /* This ought to be in <bits/siginfo.h>... */
1374 # define __ISR_VALID 1
1377 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1379 siginfo_t *info = pinfo;
1380 struct ucontext *uc = puc;
1384 ip = uc->uc_mcontext.sc_ip;
1385 switch (host_signum) {
1391 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1392 /* ISR.W (write-access) is bit 33: */
1393 is_write = (info->si_isr >> 33) & 1;
1399 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1401 &uc->uc_sigmask, puc);
1404 #elif defined(__s390__)
1406 int cpu_signal_handler(int host_signum, void *pinfo,
1409 siginfo_t *info = pinfo;
1410 struct ucontext *uc = puc;
1414 pc = uc->uc_mcontext.psw.addr;
1415 /* XXX: compute is_write */
1417 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1418 is_write, &uc->uc_sigmask, puc);
1421 #elif defined(__mips__)
1423 int cpu_signal_handler(int host_signum, void *pinfo,
1426 siginfo_t *info = pinfo;
1427 struct ucontext *uc = puc;
1428 greg_t pc = uc->uc_mcontext.pc;
1431 /* XXX: compute is_write */
1433 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1434 is_write, &uc->uc_sigmask, puc);
1437 #elif defined(__hppa__)
1439 int cpu_signal_handler(int host_signum, void *pinfo,
1442 struct siginfo *info = pinfo;
1443 struct ucontext *uc = puc;
1447 pc = uc->uc_mcontext.sc_iaoq[0];
1448 /* FIXME: compute is_write */
1450 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1452 &uc->uc_sigmask, puc);
1457 #error host CPU specific signal handler needed
1461 #endif /* !defined(CONFIG_SOFTMMU) */