2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44 /* XXX: unify with i386 target */
45 void cpu_loop_exit(void)
47 longjmp(env->jmp_env, 1);
50 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
54 /* exit the current TB from a signal handler. The host registers are
55 restored in a state compatible with the CPU emulator
57 void cpu_resume_from_signal(CPUState *env1, void *puc)
59 #if !defined(CONFIG_SOFTMMU)
60 struct ucontext *uc = puc;
65 /* XXX: restore cpu registers saved in host registers */
67 #if !defined(CONFIG_SOFTMMU)
69 /* XXX: use siglongjmp ? */
70 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
73 longjmp(env->jmp_env, 1);
77 static TranslationBlock *tb_find_slow(target_ulong pc,
81 TranslationBlock *tb, **ptb1;
84 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
89 tb_invalidated_flag = 0;
91 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93 /* find translated block using physical mappings */
94 phys_pc = get_phys_addr_code(env, pc);
95 phys_page1 = phys_pc & TARGET_PAGE_MASK;
97 h = tb_phys_hash_func(phys_pc);
98 ptb1 = &tb_phys_hash[h];
104 tb->page_addr[0] == phys_page1 &&
105 tb->cs_base == cs_base &&
106 tb->flags == flags) {
107 /* check next page if needed */
108 if (tb->page_addr[1] != -1) {
109 virt_page2 = (pc & TARGET_PAGE_MASK) +
111 phys_page2 = get_phys_addr_code(env, virt_page2);
112 if (tb->page_addr[1] == phys_page2)
118 ptb1 = &tb->phys_hash_next;
121 /* if no translated code available, then translate it now */
124 /* flush must be done */
126 /* cannot fail at this point */
128 /* don't forget to invalidate previous TB info */
129 tb_invalidated_flag = 1;
131 tc_ptr = code_gen_ptr;
133 tb->cs_base = cs_base;
135 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138 /* check next page if needed */
139 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142 phys_page2 = get_phys_addr_code(env, virt_page2);
144 tb_link_phys(tb, phys_pc, phys_page2);
147 /* we add the TB in the virtual pc hash table */
148 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149 spin_unlock(&tb_lock);
153 static inline TranslationBlock *tb_find_fast(void)
155 TranslationBlock *tb;
156 target_ulong cs_base, pc;
159 /* we record a subset of the CPU state. It will
160 always be the same before a given translated block
162 #if defined(TARGET_I386)
164 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165 cs_base = env->segs[R_CS].base;
166 pc = cs_base + env->eip;
167 #elif defined(TARGET_ARM)
168 flags = env->thumb | (env->vfp.vec_len << 1)
169 | (env->vfp.vec_stride << 4);
170 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
176 #elif defined(TARGET_SPARC)
177 #ifdef TARGET_SPARC64
178 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182 // FPU enable . MMU enabled . MMU no-fault . Supervisor
183 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
188 #elif defined(TARGET_PPC)
189 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190 (msr_se << MSR_SE) | (msr_le << MSR_LE);
193 #elif defined(TARGET_MIPS)
194 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
197 #elif defined(TARGET_M68K)
198 flags = env->fpcr & M68K_FPCR_PREC;
201 #elif defined(TARGET_SH4)
202 flags = env->sr & (SR_MD | SR_RB);
203 cs_base = 0; /* XXXXX */
206 #error unsupported CPU
208 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210 tb->flags != flags, 0)) {
211 tb = tb_find_slow(pc, cs_base, flags);
212 /* Note: we do it here to avoid a gcc bug on Mac OS X when
213 doing it in tb_find_slow */
214 if (tb_invalidated_flag) {
215 /* as some TB could have been invalidated because
216 of memory exceptions while generating the code, we
217 must recompute the hash index here */
225 /* main execution loop */
227 int cpu_exec(CPUState *env1)
229 #define DECLARE_HOST_REGS 1
230 #include "hostregs_helper.h"
231 #if defined(TARGET_SPARC)
232 #if defined(reg_REGWPTR)
233 uint32_t *saved_regwptr;
236 #if defined(__sparc__) && !defined(HOST_SOLARIS)
240 int ret, interrupt_request;
241 void (*gen_func)(void);
242 TranslationBlock *tb;
245 #if defined(TARGET_I386)
246 /* handle exit of HALTED state */
247 if (env1->hflags & HF_HALTED_MASK) {
248 /* disable halt condition */
249 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
250 (env1->eflags & IF_MASK)) {
251 env1->hflags &= ~HF_HALTED_MASK;
256 #elif defined(TARGET_PPC)
258 if (env1->msr[MSR_EE] &&
259 (env1->interrupt_request &
260 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
266 #elif defined(TARGET_SPARC)
268 if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
269 (env1->psret != 0)) {
275 #elif defined(TARGET_ARM)
277 /* An interrupt wakes the CPU even if the I and F CPSR bits are
279 if (env1->interrupt_request
280 & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
286 #elif defined(TARGET_MIPS)
288 if (env1->interrupt_request &
289 (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
297 cpu_single_env = env1;
299 /* first we save global registers */
300 #define SAVE_HOST_REGS 1
301 #include "hostregs_helper.h"
303 #if defined(__sparc__) && !defined(HOST_SOLARIS)
304 /* we also save i7 because longjmp may not restore it */
305 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
308 #if defined(TARGET_I386)
310 /* put eflags in CPU temporary format */
311 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
312 DF = 1 - (2 * ((env->eflags >> 10) & 1));
313 CC_OP = CC_OP_EFLAGS;
314 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
315 #elif defined(TARGET_ARM)
316 #elif defined(TARGET_SPARC)
317 #if defined(reg_REGWPTR)
318 saved_regwptr = REGWPTR;
320 #elif defined(TARGET_PPC)
321 #elif defined(TARGET_M68K)
322 env->cc_op = CC_OP_FLAGS;
323 env->cc_dest = env->sr & 0xf;
324 env->cc_x = (env->sr >> 4) & 1;
325 #elif defined(TARGET_MIPS)
326 #elif defined(TARGET_SH4)
329 #error unsupported target CPU
331 env->exception_index = -1;
333 /* prepare setjmp context for exception handling */
335 if (setjmp(env->jmp_env) == 0) {
336 env->current_tb = NULL;
337 /* if an exception is pending, we execute it here */
338 if (env->exception_index >= 0) {
339 if (env->exception_index >= EXCP_INTERRUPT) {
340 /* exit request from the cpu execution loop */
341 ret = env->exception_index;
343 } else if (env->user_mode_only) {
344 /* if user mode only, we simulate a fake exception
345 which will be handled outside the cpu execution
347 #if defined(TARGET_I386)
348 do_interrupt_user(env->exception_index,
349 env->exception_is_int,
351 env->exception_next_eip);
353 ret = env->exception_index;
356 #if defined(TARGET_I386)
357 /* simulate a real cpu exception. On i386, it can
358 trigger new exceptions, but we do not handle
359 double or triple faults yet. */
360 do_interrupt(env->exception_index,
361 env->exception_is_int,
363 env->exception_next_eip, 0);
364 #elif defined(TARGET_PPC)
366 #elif defined(TARGET_MIPS)
368 #elif defined(TARGET_SPARC)
369 do_interrupt(env->exception_index);
370 #elif defined(TARGET_ARM)
372 #elif defined(TARGET_SH4)
376 env->exception_index = -1;
379 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
381 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
382 ret = kqemu_cpu_exec(env);
383 /* put eflags in CPU temporary format */
384 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
385 DF = 1 - (2 * ((env->eflags >> 10) & 1));
386 CC_OP = CC_OP_EFLAGS;
387 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
390 longjmp(env->jmp_env, 1);
391 } else if (ret == 2) {
392 /* softmmu execution needed */
394 if (env->interrupt_request != 0) {
395 /* hardware interrupt will be executed just after */
397 /* otherwise, we restart */
398 longjmp(env->jmp_env, 1);
404 T0 = 0; /* force lookup of first TB */
406 #if defined(__sparc__) && !defined(HOST_SOLARIS)
407 /* g1 can be modified by some libc? functions */
410 interrupt_request = env->interrupt_request;
411 if (__builtin_expect(interrupt_request, 0)) {
412 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
413 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
414 env->exception_index = EXCP_DEBUG;
417 #if defined(TARGET_I386)
418 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
419 !(env->hflags & HF_SMM_MASK)) {
420 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
422 #if defined(__sparc__) && !defined(HOST_SOLARIS)
427 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
428 (env->eflags & IF_MASK) &&
429 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
431 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
432 intno = cpu_get_pic_interrupt(env);
433 if (loglevel & CPU_LOG_TB_IN_ASM) {
434 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
436 do_interrupt(intno, 0, 0, 0, 1);
437 /* ensure that no TB jump will be modified as
438 the program flow was changed */
439 #if defined(__sparc__) && !defined(HOST_SOLARIS)
445 #elif defined(TARGET_PPC)
447 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
452 if ((interrupt_request & CPU_INTERRUPT_HARD)) {
454 env->exception_index = EXCP_EXTERNAL;
457 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
458 #if defined(__sparc__) && !defined(HOST_SOLARIS)
463 } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
465 env->exception_index = EXCP_DECR;
468 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
469 #if defined(__sparc__) && !defined(HOST_SOLARIS)
476 #elif defined(TARGET_MIPS)
477 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
478 (env->CP0_Status & (1 << CP0St_IE)) &&
479 (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
480 !(env->hflags & MIPS_HFLAG_EXL) &&
481 !(env->hflags & MIPS_HFLAG_ERL) &&
482 !(env->hflags & MIPS_HFLAG_DM)) {
484 env->exception_index = EXCP_EXT_INTERRUPT;
487 #if defined(__sparc__) && !defined(HOST_SOLARIS)
493 #elif defined(TARGET_SPARC)
494 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
496 int pil = env->interrupt_index & 15;
497 int type = env->interrupt_index & 0xf0;
499 if (((type == TT_EXTINT) &&
500 (pil == 15 || pil > env->psrpil)) ||
502 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
503 do_interrupt(env->interrupt_index);
504 env->interrupt_index = 0;
505 #if defined(__sparc__) && !defined(HOST_SOLARIS)
511 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
512 //do_interrupt(0, 0, 0, 0, 0);
513 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
514 } else if (interrupt_request & CPU_INTERRUPT_HALT) {
515 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
517 env->exception_index = EXCP_HLT;
520 #elif defined(TARGET_ARM)
521 if (interrupt_request & CPU_INTERRUPT_FIQ
522 && !(env->uncached_cpsr & CPSR_F)) {
523 env->exception_index = EXCP_FIQ;
526 if (interrupt_request & CPU_INTERRUPT_HARD
527 && !(env->uncached_cpsr & CPSR_I)) {
528 env->exception_index = EXCP_IRQ;
531 #elif defined(TARGET_SH4)
534 /* Don't use the cached interupt_request value,
535 do_interrupt may have updated the EXITTB flag. */
536 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
537 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
538 /* ensure that no TB jump will be modified as
539 the program flow was changed */
540 #if defined(__sparc__) && !defined(HOST_SOLARIS)
546 if (interrupt_request & CPU_INTERRUPT_EXIT) {
547 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
548 env->exception_index = EXCP_INTERRUPT;
553 if ((loglevel & CPU_LOG_TB_CPU)) {
554 #if defined(TARGET_I386)
555 /* restore flags in standard format */
557 env->regs[R_EAX] = EAX;
560 env->regs[R_EBX] = EBX;
563 env->regs[R_ECX] = ECX;
566 env->regs[R_EDX] = EDX;
569 env->regs[R_ESI] = ESI;
572 env->regs[R_EDI] = EDI;
575 env->regs[R_EBP] = EBP;
578 env->regs[R_ESP] = ESP;
580 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
581 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
582 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
583 #elif defined(TARGET_ARM)
584 cpu_dump_state(env, logfile, fprintf, 0);
585 #elif defined(TARGET_SPARC)
586 REGWPTR = env->regbase + (env->cwp * 16);
587 env->regwptr = REGWPTR;
588 cpu_dump_state(env, logfile, fprintf, 0);
589 #elif defined(TARGET_PPC)
590 cpu_dump_state(env, logfile, fprintf, 0);
591 #elif defined(TARGET_M68K)
592 cpu_m68k_flush_flags(env, env->cc_op);
593 env->cc_op = CC_OP_FLAGS;
594 env->sr = (env->sr & 0xffe0)
595 | env->cc_dest | (env->cc_x << 4);
596 cpu_dump_state(env, logfile, fprintf, 0);
597 #elif defined(TARGET_MIPS)
598 cpu_dump_state(env, logfile, fprintf, 0);
599 #elif defined(TARGET_SH4)
600 cpu_dump_state(env, logfile, fprintf, 0);
602 #error unsupported target CPU
608 if ((loglevel & CPU_LOG_EXEC)) {
609 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
610 (long)tb->tc_ptr, tb->pc,
611 lookup_symbol(tb->pc));
614 #if defined(__sparc__) && !defined(HOST_SOLARIS)
617 /* see if we can patch the calling TB. When the TB
618 spans two pages, we cannot safely do a direct
623 (env->kqemu_enabled != 2) &&
625 tb->page_addr[1] == -1
626 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
627 && (tb->cflags & CF_CODE_COPY) ==
628 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
632 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
633 #if defined(USE_CODE_COPY)
634 /* propagates the FP use info */
635 ((TranslationBlock *)(T0 & ~3))->cflags |=
636 (tb->cflags & CF_FP_USED);
638 spin_unlock(&tb_lock);
642 env->current_tb = tb;
643 /* execute the generated code */
644 gen_func = (void *)tc_ptr;
645 #if defined(__sparc__)
646 __asm__ __volatile__("call %0\n\t"
650 : "i0", "i1", "i2", "i3", "i4", "i5",
651 "l0", "l1", "l2", "l3", "l4", "l5",
653 #elif defined(__arm__)
654 asm volatile ("mov pc, %0\n\t"
655 ".global exec_loop\n\t"
659 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
660 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
662 if (!(tb->cflags & CF_CODE_COPY)) {
663 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
664 save_native_fp_state(env);
668 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
669 restore_native_fp_state(env);
671 /* we work with native eflags */
672 CC_SRC = cc_table[CC_OP].compute_all();
673 CC_OP = CC_OP_EFLAGS;
674 asm(".globl exec_loop\n"
679 " fs movl %11, %%eax\n"
680 " andl $0x400, %%eax\n"
681 " fs orl %8, %%eax\n"
684 " fs movl %%esp, %12\n"
685 " fs movl %0, %%eax\n"
686 " fs movl %1, %%ecx\n"
687 " fs movl %2, %%edx\n"
688 " fs movl %3, %%ebx\n"
689 " fs movl %4, %%esp\n"
690 " fs movl %5, %%ebp\n"
691 " fs movl %6, %%esi\n"
692 " fs movl %7, %%edi\n"
695 " fs movl %%esp, %4\n"
696 " fs movl %12, %%esp\n"
697 " fs movl %%eax, %0\n"
698 " fs movl %%ecx, %1\n"
699 " fs movl %%edx, %2\n"
700 " fs movl %%ebx, %3\n"
701 " fs movl %%ebp, %5\n"
702 " fs movl %%esi, %6\n"
703 " fs movl %%edi, %7\n"
706 " movl %%eax, %%ecx\n"
707 " andl $0x400, %%ecx\n"
709 " andl $0x8d5, %%eax\n"
710 " fs movl %%eax, %8\n"
712 " subl %%ecx, %%eax\n"
713 " fs movl %%eax, %11\n"
714 " fs movl %9, %%ebx\n" /* get T0 value */
717 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
718 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
719 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
720 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
721 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
722 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
723 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
724 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
725 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
726 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
728 "m" (*(uint8_t *)offsetof(CPUState, df)),
729 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
734 #elif defined(__ia64)
741 fp.gp = code_gen_buffer + 2 * (1 << 20);
742 (*(void (*)(void)) &fp)();
746 env->current_tb = NULL;
747 /* reset soft MMU for next block (it can currently
748 only be set by a memory fault) */
749 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
750 if (env->hflags & HF_SOFTMMU_MASK) {
751 env->hflags &= ~HF_SOFTMMU_MASK;
752 /* do not allow linking to another block */
756 #if defined(USE_KQEMU)
757 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
758 if (kqemu_is_ok(env) &&
759 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
770 #if defined(TARGET_I386)
771 #if defined(USE_CODE_COPY)
772 if (env->native_fp_regs) {
773 save_native_fp_state(env);
776 /* restore flags in standard format */
777 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
778 #elif defined(TARGET_ARM)
779 /* XXX: Save/restore host fpu exception state?. */
780 #elif defined(TARGET_SPARC)
781 #if defined(reg_REGWPTR)
782 REGWPTR = saved_regwptr;
784 #elif defined(TARGET_PPC)
785 #elif defined(TARGET_M68K)
786 cpu_m68k_flush_flags(env, env->cc_op);
787 env->cc_op = CC_OP_FLAGS;
788 env->sr = (env->sr & 0xffe0)
789 | env->cc_dest | (env->cc_x << 4);
790 #elif defined(TARGET_MIPS)
791 #elif defined(TARGET_SH4)
794 #error unsupported target CPU
797 /* restore global registers */
798 #if defined(__sparc__) && !defined(HOST_SOLARIS)
799 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
801 #include "hostregs_helper.h"
803 /* fail safe : never use cpu_single_env outside cpu_exec() */
804 cpu_single_env = NULL;
808 /* must only be called from the generated code as an exception can be
810 void tb_invalidate_page_range(target_ulong start, target_ulong end)
812 /* XXX: cannot enable it yet because it yields to MMU exception
813 where NIP != read address on PowerPC */
815 target_ulong phys_addr;
816 phys_addr = get_phys_addr_code(env, start);
817 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
821 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
823 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
825 CPUX86State *saved_env;
829 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
831 cpu_x86_load_seg_cache(env, seg_reg, selector,
832 (selector << 4), 0xffff, 0);
834 load_seg(seg_reg, selector);
839 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
841 CPUX86State *saved_env;
846 helper_fsave((target_ulong)ptr, data32);
851 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
853 CPUX86State *saved_env;
858 helper_frstor((target_ulong)ptr, data32);
863 #endif /* TARGET_I386 */
865 #if !defined(CONFIG_SOFTMMU)
867 #if defined(TARGET_I386)
869 /* 'pc' is the host PC at which the exception was raised. 'address' is
870 the effective address of the memory exception. 'is_write' is 1 if a
871 write caused the exception and otherwise 0'. 'old_set' is the
872 signal set which should be restored */
873 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
874 int is_write, sigset_t *old_set,
877 TranslationBlock *tb;
881 env = cpu_single_env; /* XXX: find a correct solution for multithread */
882 #if defined(DEBUG_SIGNAL)
883 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
884 pc, address, is_write, *(unsigned long *)old_set);
886 /* XXX: locking issue */
887 if (is_write && page_unprotect(h2g(address), pc, puc)) {
891 /* see if it is an MMU fault */
892 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
893 ((env->hflags & HF_CPL_MASK) == 3), 0);
895 return 0; /* not an MMU fault */
897 return 1; /* the MMU fault was handled without causing real CPU fault */
898 /* now we have a real cpu fault */
901 /* the PC is inside the translated code. It means that we have
902 a virtual CPU fault */
903 cpu_restore_state(tb, env, pc, puc);
907 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
908 env->eip, env->cr[2], env->error_code);
910 /* we restore the process signal mask as the sigreturn should
911 do it (XXX: use sigsetjmp) */
912 sigprocmask(SIG_SETMASK, old_set, NULL);
913 raise_exception_err(env->exception_index, env->error_code);
915 /* activate soft MMU for this block */
916 env->hflags |= HF_SOFTMMU_MASK;
917 cpu_resume_from_signal(env, puc);
919 /* never comes here */
923 #elif defined(TARGET_ARM)
924 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
925 int is_write, sigset_t *old_set,
928 TranslationBlock *tb;
932 env = cpu_single_env; /* XXX: find a correct solution for multithread */
933 #if defined(DEBUG_SIGNAL)
934 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
935 pc, address, is_write, *(unsigned long *)old_set);
937 /* XXX: locking issue */
938 if (is_write && page_unprotect(h2g(address), pc, puc)) {
941 /* see if it is an MMU fault */
942 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
944 return 0; /* not an MMU fault */
946 return 1; /* the MMU fault was handled without causing real CPU fault */
947 /* now we have a real cpu fault */
950 /* the PC is inside the translated code. It means that we have
951 a virtual CPU fault */
952 cpu_restore_state(tb, env, pc, puc);
954 /* we restore the process signal mask as the sigreturn should
955 do it (XXX: use sigsetjmp) */
956 sigprocmask(SIG_SETMASK, old_set, NULL);
959 #elif defined(TARGET_SPARC)
960 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
961 int is_write, sigset_t *old_set,
964 TranslationBlock *tb;
968 env = cpu_single_env; /* XXX: find a correct solution for multithread */
969 #if defined(DEBUG_SIGNAL)
970 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
971 pc, address, is_write, *(unsigned long *)old_set);
973 /* XXX: locking issue */
974 if (is_write && page_unprotect(h2g(address), pc, puc)) {
977 /* see if it is an MMU fault */
978 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
980 return 0; /* not an MMU fault */
982 return 1; /* the MMU fault was handled without causing real CPU fault */
983 /* now we have a real cpu fault */
986 /* the PC is inside the translated code. It means that we have
987 a virtual CPU fault */
988 cpu_restore_state(tb, env, pc, puc);
990 /* we restore the process signal mask as the sigreturn should
991 do it (XXX: use sigsetjmp) */
992 sigprocmask(SIG_SETMASK, old_set, NULL);
995 #elif defined (TARGET_PPC)
996 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
997 int is_write, sigset_t *old_set,
1000 TranslationBlock *tb;
1004 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1005 #if defined(DEBUG_SIGNAL)
1006 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1007 pc, address, is_write, *(unsigned long *)old_set);
1009 /* XXX: locking issue */
1010 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1014 /* see if it is an MMU fault */
1015 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1017 return 0; /* not an MMU fault */
1019 return 1; /* the MMU fault was handled without causing real CPU fault */
1021 /* now we have a real cpu fault */
1022 tb = tb_find_pc(pc);
1024 /* the PC is inside the translated code. It means that we have
1025 a virtual CPU fault */
1026 cpu_restore_state(tb, env, pc, puc);
1030 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1031 env->nip, env->error_code, tb);
1033 /* we restore the process signal mask as the sigreturn should
1034 do it (XXX: use sigsetjmp) */
1035 sigprocmask(SIG_SETMASK, old_set, NULL);
1036 do_raise_exception_err(env->exception_index, env->error_code);
1038 /* activate soft MMU for this block */
1039 cpu_resume_from_signal(env, puc);
1041 /* never comes here */
1045 #elif defined(TARGET_M68K)
1046 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1047 int is_write, sigset_t *old_set,
1050 TranslationBlock *tb;
1054 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1055 #if defined(DEBUG_SIGNAL)
1056 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1057 pc, address, is_write, *(unsigned long *)old_set);
1059 /* XXX: locking issue */
1060 if (is_write && page_unprotect(address, pc, puc)) {
1063 /* see if it is an MMU fault */
1064 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1066 return 0; /* not an MMU fault */
1068 return 1; /* the MMU fault was handled without causing real CPU fault */
1069 /* now we have a real cpu fault */
1070 tb = tb_find_pc(pc);
1072 /* the PC is inside the translated code. It means that we have
1073 a virtual CPU fault */
1074 cpu_restore_state(tb, env, pc, puc);
1076 /* we restore the process signal mask as the sigreturn should
1077 do it (XXX: use sigsetjmp) */
1078 sigprocmask(SIG_SETMASK, old_set, NULL);
1080 /* never comes here */
1084 #elif defined (TARGET_MIPS)
1085 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1086 int is_write, sigset_t *old_set,
1089 TranslationBlock *tb;
1093 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1094 #if defined(DEBUG_SIGNAL)
1095 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1096 pc, address, is_write, *(unsigned long *)old_set);
1098 /* XXX: locking issue */
1099 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1103 /* see if it is an MMU fault */
1104 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1106 return 0; /* not an MMU fault */
1108 return 1; /* the MMU fault was handled without causing real CPU fault */
1110 /* now we have a real cpu fault */
1111 tb = tb_find_pc(pc);
1113 /* the PC is inside the translated code. It means that we have
1114 a virtual CPU fault */
1115 cpu_restore_state(tb, env, pc, puc);
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1125 do_raise_exception_err(env->exception_index, env->error_code);
1127 /* activate soft MMU for this block */
1128 cpu_resume_from_signal(env, puc);
1130 /* never comes here */
1134 #elif defined (TARGET_SH4)
1135 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1136 int is_write, sigset_t *old_set,
1139 TranslationBlock *tb;
1143 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1144 #if defined(DEBUG_SIGNAL)
1145 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1146 pc, address, is_write, *(unsigned long *)old_set);
1148 /* XXX: locking issue */
1149 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1153 /* see if it is an MMU fault */
1154 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1156 return 0; /* not an MMU fault */
1158 return 1; /* the MMU fault was handled without causing real CPU fault */
1160 /* now we have a real cpu fault */
1161 tb = tb_find_pc(pc);
1163 /* the PC is inside the translated code. It means that we have
1164 a virtual CPU fault */
1165 cpu_restore_state(tb, env, pc, puc);
1168 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1169 env->nip, env->error_code, tb);
1171 /* we restore the process signal mask as the sigreturn should
1172 do it (XXX: use sigsetjmp) */
1173 sigprocmask(SIG_SETMASK, old_set, NULL);
1175 /* never comes here */
1179 #error unsupported target CPU
1182 #if defined(__i386__)
1184 #if defined(__APPLE__)
1185 # include <sys/ucontext.h>
1187 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1188 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1189 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1191 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1192 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1193 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1196 #if defined(USE_CODE_COPY)
1197 static void cpu_send_trap(unsigned long pc, int trap,
1198 struct ucontext *uc)
1200 TranslationBlock *tb;
1203 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1204 /* now we have a real cpu fault */
1205 tb = tb_find_pc(pc);
1207 /* the PC is inside the translated code. It means that we have
1208 a virtual CPU fault */
1209 cpu_restore_state(tb, env, pc, uc);
1211 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1212 raise_exception_err(trap, env->error_code);
1216 int cpu_signal_handler(int host_signum, void *pinfo,
1219 siginfo_t *info = pinfo;
1220 struct ucontext *uc = puc;
1228 #define REG_TRAPNO TRAPNO
1231 trapno = TRAP_sig(uc);
1232 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1233 if (trapno == 0x00 || trapno == 0x05) {
1234 /* send division by zero or bound exception */
1235 cpu_send_trap(pc, trapno, uc);
1239 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1241 (ERROR_sig(uc) >> 1) & 1 : 0,
1242 &uc->uc_sigmask, puc);
1245 #elif defined(__x86_64__)
1247 int cpu_signal_handler(int host_signum, void *pinfo,
1250 siginfo_t *info = pinfo;
1251 struct ucontext *uc = puc;
1254 pc = uc->uc_mcontext.gregs[REG_RIP];
1255 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1256 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1257 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1258 &uc->uc_sigmask, puc);
1261 #elif defined(__powerpc__)
1263 /***********************************************************************
1264 * signal context platform-specific definitions
1268 /* All Registers access - only for local access */
1269 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1270 /* Gpr Registers access */
1271 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1272 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1273 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1274 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1275 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1276 # define LR_sig(context) REG_sig(link, context) /* Link register */
1277 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1278 /* Float Registers access */
1279 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1280 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1281 /* Exception Registers access */
1282 # define DAR_sig(context) REG_sig(dar, context)
1283 # define DSISR_sig(context) REG_sig(dsisr, context)
1284 # define TRAP_sig(context) REG_sig(trap, context)
1288 # include <sys/ucontext.h>
1289 typedef struct ucontext SIGCONTEXT;
1290 /* All Registers access - only for local access */
1291 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1292 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1293 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1294 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1295 /* Gpr Registers access */
1296 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1297 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1298 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1299 # define CTR_sig(context) REG_sig(ctr, context)
1300 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1301 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1302 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1303 /* Float Registers access */
1304 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1305 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1306 /* Exception Registers access */
1307 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1308 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1309 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1310 #endif /* __APPLE__ */
1312 int cpu_signal_handler(int host_signum, void *pinfo,
1315 siginfo_t *info = pinfo;
1316 struct ucontext *uc = puc;
1324 if (DSISR_sig(uc) & 0x00800000)
1327 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1330 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1331 is_write, &uc->uc_sigmask, puc);
1334 #elif defined(__alpha__)
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1339 siginfo_t *info = pinfo;
1340 struct ucontext *uc = puc;
1341 uint32_t *pc = uc->uc_mcontext.sc_pc;
1342 uint32_t insn = *pc;
1345 /* XXX: need kernel patch to get write flag faster */
1346 switch (insn >> 26) {
1361 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1362 is_write, &uc->uc_sigmask, puc);
1364 #elif defined(__sparc__)
1366 int cpu_signal_handler(int host_signum, void *pinfo,
1369 siginfo_t *info = pinfo;
1370 uint32_t *regs = (uint32_t *)(info + 1);
1371 void *sigmask = (regs + 20);
1376 /* XXX: is there a standard glibc define ? */
1378 /* XXX: need kernel patch to get write flag faster */
1380 insn = *(uint32_t *)pc;
1381 if ((insn >> 30) == 3) {
1382 switch((insn >> 19) & 0x3f) {
1394 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1395 is_write, sigmask, NULL);
1398 #elif defined(__arm__)
1400 int cpu_signal_handler(int host_signum, void *pinfo,
1403 siginfo_t *info = pinfo;
1404 struct ucontext *uc = puc;
1408 pc = uc->uc_mcontext.gregs[R15];
1409 /* XXX: compute is_write */
1411 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1413 &uc->uc_sigmask, puc);
1416 #elif defined(__mc68000)
1418 int cpu_signal_handler(int host_signum, void *pinfo,
1421 siginfo_t *info = pinfo;
1422 struct ucontext *uc = puc;
1426 pc = uc->uc_mcontext.gregs[16];
1427 /* XXX: compute is_write */
1429 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1431 &uc->uc_sigmask, puc);
1434 #elif defined(__ia64)
1437 /* This ought to be in <bits/siginfo.h>... */
1438 # define __ISR_VALID 1
1441 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1443 siginfo_t *info = pinfo;
1444 struct ucontext *uc = puc;
1448 ip = uc->uc_mcontext.sc_ip;
1449 switch (host_signum) {
1455 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1456 /* ISR.W (write-access) is bit 33: */
1457 is_write = (info->si_isr >> 33) & 1;
1463 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1465 &uc->uc_sigmask, puc);
1468 #elif defined(__s390__)
1470 int cpu_signal_handler(int host_signum, void *pinfo,
1473 siginfo_t *info = pinfo;
1474 struct ucontext *uc = puc;
1478 pc = uc->uc_mcontext.psw.addr;
1479 /* XXX: compute is_write */
1481 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1483 &uc->uc_sigmask, puc);
1488 #error host CPU specific signal handler needed
1492 #endif /* !defined(CONFIG_SOFTMMU) */