2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 void cpu_loop_exit(void)
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
48 longjmp(env->jmp_env, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
82 TranslationBlock *tb, **ptb1;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
119 ptb1 = &tb->phys_hash_next;
122 /* if no translated code available, then translate it now */
125 /* flush must be done */
127 /* cannot fail at this point */
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
134 tb->cs_base = cs_base;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
163 #if defined(TARGET_I386)
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 cs_base = env->segs[R_CS].base;
167 pc = cs_base + env->eip;
168 #elif defined(TARGET_ARM)
169 flags = env->thumb | (env->vfp.vec_len << 1)
170 | (env->vfp.vec_stride << 4);
171 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
173 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
177 #elif defined(TARGET_SPARC)
178 #ifdef TARGET_SPARC64
179 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
183 // FPU enable . MMU enabled . MMU no-fault . Supervisor
184 flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
189 #elif defined(TARGET_PPC)
190 flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191 (msr_se << MSR_SE) | (msr_le << MSR_LE);
194 #elif defined(TARGET_MIPS)
195 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
198 #elif defined(TARGET_M68K)
199 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
200 | (env->sr & SR_S) /* Bit 13 */
201 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
204 #elif defined(TARGET_SH4)
205 flags = env->sr & (SR_MD | SR_RB);
206 cs_base = 0; /* XXXXX */
208 #elif defined(TARGET_ALPHA)
213 #error unsupported CPU
215 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217 tb->flags != flags, 0)) {
218 tb = tb_find_slow(pc, cs_base, flags);
219 /* Note: we do it here to avoid a gcc bug on Mac OS X when
220 doing it in tb_find_slow */
221 if (tb_invalidated_flag) {
222 /* as some TB could have been invalidated because
223 of memory exceptions while generating the code, we
224 must recompute the hash index here */
232 /* main execution loop */
234 int cpu_exec(CPUState *env1)
236 #define DECLARE_HOST_REGS 1
237 #include "hostregs_helper.h"
238 #if defined(TARGET_SPARC)
239 #if defined(reg_REGWPTR)
240 uint32_t *saved_regwptr;
243 #if defined(__sparc__) && !defined(HOST_SOLARIS)
247 int ret, interrupt_request;
248 void (*gen_func)(void);
249 TranslationBlock *tb;
252 if (cpu_halted(env1) == EXCP_HALTED)
255 cpu_single_env = env1;
257 /* first we save global registers */
258 #define SAVE_HOST_REGS 1
259 #include "hostregs_helper.h"
261 #if defined(__sparc__) && !defined(HOST_SOLARIS)
262 /* we also save i7 because longjmp may not restore it */
263 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
267 #if defined(TARGET_I386)
268 /* put eflags in CPU temporary format */
269 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270 DF = 1 - (2 * ((env->eflags >> 10) & 1));
271 CC_OP = CC_OP_EFLAGS;
272 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273 #elif defined(TARGET_SPARC)
274 #if defined(reg_REGWPTR)
275 saved_regwptr = REGWPTR;
277 #elif defined(TARGET_M68K)
278 env->cc_op = CC_OP_FLAGS;
279 env->cc_dest = env->sr & 0xf;
280 env->cc_x = (env->sr >> 4) & 1;
281 #elif defined(TARGET_ALPHA)
282 #elif defined(TARGET_ARM)
283 #elif defined(TARGET_PPC)
284 #elif defined(TARGET_MIPS)
285 #elif defined(TARGET_SH4)
288 #error unsupported target CPU
290 env->exception_index = -1;
292 /* prepare setjmp context for exception handling */
294 if (setjmp(env->jmp_env) == 0) {
295 env->current_tb = NULL;
296 /* if an exception is pending, we execute it here */
297 if (env->exception_index >= 0) {
298 if (env->exception_index >= EXCP_INTERRUPT) {
299 /* exit request from the cpu execution loop */
300 ret = env->exception_index;
302 } else if (env->user_mode_only) {
303 /* if user mode only, we simulate a fake exception
304 which will be handled outside the cpu execution
306 #if defined(TARGET_I386)
307 do_interrupt_user(env->exception_index,
308 env->exception_is_int,
310 env->exception_next_eip);
312 ret = env->exception_index;
315 #if defined(TARGET_I386)
316 /* simulate a real cpu exception. On i386, it can
317 trigger new exceptions, but we do not handle
318 double or triple faults yet. */
319 do_interrupt(env->exception_index,
320 env->exception_is_int,
322 env->exception_next_eip, 0);
323 /* successfully delivered */
324 env->old_exception = -1;
325 #elif defined(TARGET_PPC)
327 #elif defined(TARGET_MIPS)
329 #elif defined(TARGET_SPARC)
330 do_interrupt(env->exception_index);
331 #elif defined(TARGET_ARM)
333 #elif defined(TARGET_SH4)
335 #elif defined(TARGET_ALPHA)
337 #elif defined(TARGET_M68K)
341 env->exception_index = -1;
344 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
346 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
347 ret = kqemu_cpu_exec(env);
348 /* put eflags in CPU temporary format */
349 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
350 DF = 1 - (2 * ((env->eflags >> 10) & 1));
351 CC_OP = CC_OP_EFLAGS;
352 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
355 longjmp(env->jmp_env, 1);
356 } else if (ret == 2) {
357 /* softmmu execution needed */
359 if (env->interrupt_request != 0) {
360 /* hardware interrupt will be executed just after */
362 /* otherwise, we restart */
363 longjmp(env->jmp_env, 1);
369 T0 = 0; /* force lookup of first TB */
371 #if defined(__sparc__) && !defined(HOST_SOLARIS)
372 /* g1 can be modified by some libc? functions */
375 interrupt_request = env->interrupt_request;
376 if (__builtin_expect(interrupt_request, 0)) {
377 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
378 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
379 env->exception_index = EXCP_DEBUG;
382 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
383 defined(TARGET_PPC) || defined(TARGET_ALPHA)
384 if (interrupt_request & CPU_INTERRUPT_HALT) {
385 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
387 env->exception_index = EXCP_HLT;
391 #if defined(TARGET_I386)
392 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
393 !(env->hflags & HF_SMM_MASK)) {
394 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
396 #if defined(__sparc__) && !defined(HOST_SOLARIS)
401 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
402 (env->eflags & IF_MASK) &&
403 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
405 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
406 intno = cpu_get_pic_interrupt(env);
407 if (loglevel & CPU_LOG_TB_IN_ASM) {
408 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
410 do_interrupt(intno, 0, 0, 0, 1);
411 /* ensure that no TB jump will be modified as
412 the program flow was changed */
413 #if defined(__sparc__) && !defined(HOST_SOLARIS)
419 #elif defined(TARGET_PPC)
421 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
425 if (interrupt_request & CPU_INTERRUPT_HARD) {
426 ppc_hw_interrupt(env);
427 if (env->pending_interrupts == 0)
428 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
429 #if defined(__sparc__) && !defined(HOST_SOLARIS)
435 #elif defined(TARGET_MIPS)
436 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
437 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
438 (env->CP0_Status & (1 << CP0St_IE)) &&
439 !(env->CP0_Status & (1 << CP0St_EXL)) &&
440 !(env->CP0_Status & (1 << CP0St_ERL)) &&
441 !(env->hflags & MIPS_HFLAG_DM)) {
443 env->exception_index = EXCP_EXT_INTERRUPT;
446 #if defined(__sparc__) && !defined(HOST_SOLARIS)
452 #elif defined(TARGET_SPARC)
453 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
455 int pil = env->interrupt_index & 15;
456 int type = env->interrupt_index & 0xf0;
458 if (((type == TT_EXTINT) &&
459 (pil == 15 || pil > env->psrpil)) ||
461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462 do_interrupt(env->interrupt_index);
463 env->interrupt_index = 0;
464 #if defined(__sparc__) && !defined(HOST_SOLARIS)
470 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
471 //do_interrupt(0, 0, 0, 0, 0);
472 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
474 #elif defined(TARGET_ARM)
475 if (interrupt_request & CPU_INTERRUPT_FIQ
476 && !(env->uncached_cpsr & CPSR_F)) {
477 env->exception_index = EXCP_FIQ;
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && !(env->uncached_cpsr & CPSR_I)) {
482 env->exception_index = EXCP_IRQ;
485 #elif defined(TARGET_SH4)
487 #elif defined(TARGET_ALPHA)
488 if (interrupt_request & CPU_INTERRUPT_HARD) {
491 #elif defined(TARGET_M68K)
492 if (interrupt_request & CPU_INTERRUPT_HARD
493 && ((env->sr & SR_I) >> SR_I_SHIFT)
494 < env->pending_level) {
495 /* Real hardware gets the interrupt vector via an
496 IACK cycle at this point. Current emulated
497 hardware doesn't rely on this, so we
498 provide/save the vector when the interrupt is
500 env->exception_index = env->pending_vector;
504 /* Don't use the cached interupt_request value,
505 do_interrupt may have updated the EXITTB flag. */
506 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
507 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
508 /* ensure that no TB jump will be modified as
509 the program flow was changed */
510 #if defined(__sparc__) && !defined(HOST_SOLARIS)
516 if (interrupt_request & CPU_INTERRUPT_EXIT) {
517 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
518 env->exception_index = EXCP_INTERRUPT;
523 if ((loglevel & CPU_LOG_TB_CPU)) {
524 /* restore flags in standard format */
526 #if defined(TARGET_I386)
527 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
528 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
529 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
530 #elif defined(TARGET_ARM)
531 cpu_dump_state(env, logfile, fprintf, 0);
532 #elif defined(TARGET_SPARC)
533 REGWPTR = env->regbase + (env->cwp * 16);
534 env->regwptr = REGWPTR;
535 cpu_dump_state(env, logfile, fprintf, 0);
536 #elif defined(TARGET_PPC)
537 cpu_dump_state(env, logfile, fprintf, 0);
538 #elif defined(TARGET_M68K)
539 cpu_m68k_flush_flags(env, env->cc_op);
540 env->cc_op = CC_OP_FLAGS;
541 env->sr = (env->sr & 0xffe0)
542 | env->cc_dest | (env->cc_x << 4);
543 cpu_dump_state(env, logfile, fprintf, 0);
544 #elif defined(TARGET_MIPS)
545 cpu_dump_state(env, logfile, fprintf, 0);
546 #elif defined(TARGET_SH4)
547 cpu_dump_state(env, logfile, fprintf, 0);
548 #elif defined(TARGET_ALPHA)
549 cpu_dump_state(env, logfile, fprintf, 0);
551 #error unsupported target CPU
557 if ((loglevel & CPU_LOG_EXEC)) {
558 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
559 (long)tb->tc_ptr, tb->pc,
560 lookup_symbol(tb->pc));
563 #if defined(__sparc__) && !defined(HOST_SOLARIS)
566 /* see if we can patch the calling TB. When the TB
567 spans two pages, we cannot safely do a direct
572 (env->kqemu_enabled != 2) &&
574 tb->page_addr[1] == -1
575 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
576 && (tb->cflags & CF_CODE_COPY) ==
577 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
581 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
582 #if defined(USE_CODE_COPY)
583 /* propagates the FP use info */
584 ((TranslationBlock *)(T0 & ~3))->cflags |=
585 (tb->cflags & CF_FP_USED);
587 spin_unlock(&tb_lock);
591 env->current_tb = tb;
592 /* execute the generated code */
593 gen_func = (void *)tc_ptr;
594 #if defined(__sparc__)
595 __asm__ __volatile__("call %0\n\t"
599 : "i0", "i1", "i2", "i3", "i4", "i5",
600 "o0", "o1", "o2", "o3", "o4", "o5",
601 "l0", "l1", "l2", "l3", "l4", "l5",
603 #elif defined(__arm__)
604 asm volatile ("mov pc, %0\n\t"
605 ".global exec_loop\n\t"
609 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
610 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
612 if (!(tb->cflags & CF_CODE_COPY)) {
613 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
614 save_native_fp_state(env);
618 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
619 restore_native_fp_state(env);
621 /* we work with native eflags */
622 CC_SRC = cc_table[CC_OP].compute_all();
623 CC_OP = CC_OP_EFLAGS;
624 asm(".globl exec_loop\n"
629 " fs movl %11, %%eax\n"
630 " andl $0x400, %%eax\n"
631 " fs orl %8, %%eax\n"
634 " fs movl %%esp, %12\n"
635 " fs movl %0, %%eax\n"
636 " fs movl %1, %%ecx\n"
637 " fs movl %2, %%edx\n"
638 " fs movl %3, %%ebx\n"
639 " fs movl %4, %%esp\n"
640 " fs movl %5, %%ebp\n"
641 " fs movl %6, %%esi\n"
642 " fs movl %7, %%edi\n"
645 " fs movl %%esp, %4\n"
646 " fs movl %12, %%esp\n"
647 " fs movl %%eax, %0\n"
648 " fs movl %%ecx, %1\n"
649 " fs movl %%edx, %2\n"
650 " fs movl %%ebx, %3\n"
651 " fs movl %%ebp, %5\n"
652 " fs movl %%esi, %6\n"
653 " fs movl %%edi, %7\n"
656 " movl %%eax, %%ecx\n"
657 " andl $0x400, %%ecx\n"
659 " andl $0x8d5, %%eax\n"
660 " fs movl %%eax, %8\n"
662 " subl %%ecx, %%eax\n"
663 " fs movl %%eax, %11\n"
664 " fs movl %9, %%ebx\n" /* get T0 value */
667 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
668 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
669 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
670 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
671 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
672 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
673 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
674 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
675 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
676 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
678 "m" (*(uint8_t *)offsetof(CPUState, df)),
679 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
684 #elif defined(__ia64)
691 fp.gp = code_gen_buffer + 2 * (1 << 20);
692 (*(void (*)(void)) &fp)();
696 env->current_tb = NULL;
697 /* reset soft MMU for next block (it can currently
698 only be set by a memory fault) */
699 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
700 if (env->hflags & HF_SOFTMMU_MASK) {
701 env->hflags &= ~HF_SOFTMMU_MASK;
702 /* do not allow linking to another block */
706 #if defined(USE_KQEMU)
707 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
708 if (kqemu_is_ok(env) &&
709 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
720 #if defined(TARGET_I386)
721 #if defined(USE_CODE_COPY)
722 if (env->native_fp_regs) {
723 save_native_fp_state(env);
726 /* restore flags in standard format */
727 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
728 #elif defined(TARGET_ARM)
729 /* XXX: Save/restore host fpu exception state?. */
730 #elif defined(TARGET_SPARC)
731 #if defined(reg_REGWPTR)
732 REGWPTR = saved_regwptr;
734 #elif defined(TARGET_PPC)
735 #elif defined(TARGET_M68K)
736 cpu_m68k_flush_flags(env, env->cc_op);
737 env->cc_op = CC_OP_FLAGS;
738 env->sr = (env->sr & 0xffe0)
739 | env->cc_dest | (env->cc_x << 4);
740 #elif defined(TARGET_MIPS)
741 #elif defined(TARGET_SH4)
742 #elif defined(TARGET_ALPHA)
745 #error unsupported target CPU
748 /* restore global registers */
749 #if defined(__sparc__) && !defined(HOST_SOLARIS)
750 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
752 #include "hostregs_helper.h"
754 /* fail safe : never use cpu_single_env outside cpu_exec() */
755 cpu_single_env = NULL;
759 /* must only be called from the generated code as an exception can be
761 void tb_invalidate_page_range(target_ulong start, target_ulong end)
763 /* XXX: cannot enable it yet because it yields to MMU exception
764 where NIP != read address on PowerPC */
766 target_ulong phys_addr;
767 phys_addr = get_phys_addr_code(env, start);
768 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
772 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
774 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
776 CPUX86State *saved_env;
780 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
782 cpu_x86_load_seg_cache(env, seg_reg, selector,
783 (selector << 4), 0xffff, 0);
785 load_seg(seg_reg, selector);
790 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
792 CPUX86State *saved_env;
797 helper_fsave((target_ulong)ptr, data32);
802 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
804 CPUX86State *saved_env;
809 helper_frstor((target_ulong)ptr, data32);
814 #endif /* TARGET_I386 */
816 #if !defined(CONFIG_SOFTMMU)
818 #if defined(TARGET_I386)
820 /* 'pc' is the host PC at which the exception was raised. 'address' is
821 the effective address of the memory exception. 'is_write' is 1 if a
822 write caused the exception and otherwise 0'. 'old_set' is the
823 signal set which should be restored */
824 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
825 int is_write, sigset_t *old_set,
828 TranslationBlock *tb;
832 env = cpu_single_env; /* XXX: find a correct solution for multithread */
833 #if defined(DEBUG_SIGNAL)
834 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
835 pc, address, is_write, *(unsigned long *)old_set);
837 /* XXX: locking issue */
838 if (is_write && page_unprotect(h2g(address), pc, puc)) {
842 /* see if it is an MMU fault */
843 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
844 ((env->hflags & HF_CPL_MASK) == 3), 0);
846 return 0; /* not an MMU fault */
848 return 1; /* the MMU fault was handled without causing real CPU fault */
849 /* now we have a real cpu fault */
852 /* the PC is inside the translated code. It means that we have
853 a virtual CPU fault */
854 cpu_restore_state(tb, env, pc, puc);
858 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
859 env->eip, env->cr[2], env->error_code);
861 /* we restore the process signal mask as the sigreturn should
862 do it (XXX: use sigsetjmp) */
863 sigprocmask(SIG_SETMASK, old_set, NULL);
864 raise_exception_err(env->exception_index, env->error_code);
866 /* activate soft MMU for this block */
867 env->hflags |= HF_SOFTMMU_MASK;
868 cpu_resume_from_signal(env, puc);
870 /* never comes here */
874 #elif defined(TARGET_ARM)
875 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
876 int is_write, sigset_t *old_set,
879 TranslationBlock *tb;
883 env = cpu_single_env; /* XXX: find a correct solution for multithread */
884 #if defined(DEBUG_SIGNAL)
885 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
886 pc, address, is_write, *(unsigned long *)old_set);
888 /* XXX: locking issue */
889 if (is_write && page_unprotect(h2g(address), pc, puc)) {
892 /* see if it is an MMU fault */
893 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
895 return 0; /* not an MMU fault */
897 return 1; /* the MMU fault was handled without causing real CPU fault */
898 /* now we have a real cpu fault */
901 /* the PC is inside the translated code. It means that we have
902 a virtual CPU fault */
903 cpu_restore_state(tb, env, pc, puc);
905 /* we restore the process signal mask as the sigreturn should
906 do it (XXX: use sigsetjmp) */
907 sigprocmask(SIG_SETMASK, old_set, NULL);
910 #elif defined(TARGET_SPARC)
911 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
912 int is_write, sigset_t *old_set,
915 TranslationBlock *tb;
919 env = cpu_single_env; /* XXX: find a correct solution for multithread */
920 #if defined(DEBUG_SIGNAL)
921 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
922 pc, address, is_write, *(unsigned long *)old_set);
924 /* XXX: locking issue */
925 if (is_write && page_unprotect(h2g(address), pc, puc)) {
928 /* see if it is an MMU fault */
929 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
931 return 0; /* not an MMU fault */
933 return 1; /* the MMU fault was handled without causing real CPU fault */
934 /* now we have a real cpu fault */
937 /* the PC is inside the translated code. It means that we have
938 a virtual CPU fault */
939 cpu_restore_state(tb, env, pc, puc);
941 /* we restore the process signal mask as the sigreturn should
942 do it (XXX: use sigsetjmp) */
943 sigprocmask(SIG_SETMASK, old_set, NULL);
946 #elif defined (TARGET_PPC)
947 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
948 int is_write, sigset_t *old_set,
951 TranslationBlock *tb;
955 env = cpu_single_env; /* XXX: find a correct solution for multithread */
956 #if defined(DEBUG_SIGNAL)
957 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
958 pc, address, is_write, *(unsigned long *)old_set);
960 /* XXX: locking issue */
961 if (is_write && page_unprotect(h2g(address), pc, puc)) {
965 /* see if it is an MMU fault */
966 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
968 return 0; /* not an MMU fault */
970 return 1; /* the MMU fault was handled without causing real CPU fault */
972 /* now we have a real cpu fault */
975 /* the PC is inside the translated code. It means that we have
976 a virtual CPU fault */
977 cpu_restore_state(tb, env, pc, puc);
981 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
982 env->nip, env->error_code, tb);
984 /* we restore the process signal mask as the sigreturn should
985 do it (XXX: use sigsetjmp) */
986 sigprocmask(SIG_SETMASK, old_set, NULL);
987 do_raise_exception_err(env->exception_index, env->error_code);
989 /* activate soft MMU for this block */
990 cpu_resume_from_signal(env, puc);
992 /* never comes here */
996 #elif defined(TARGET_M68K)
997 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
998 int is_write, sigset_t *old_set,
1001 TranslationBlock *tb;
1005 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1006 #if defined(DEBUG_SIGNAL)
1007 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1008 pc, address, is_write, *(unsigned long *)old_set);
1010 /* XXX: locking issue */
1011 if (is_write && page_unprotect(address, pc, puc)) {
1014 /* see if it is an MMU fault */
1015 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1017 return 0; /* not an MMU fault */
1019 return 1; /* the MMU fault was handled without causing real CPU fault */
1020 /* now we have a real cpu fault */
1021 tb = tb_find_pc(pc);
1023 /* the PC is inside the translated code. It means that we have
1024 a virtual CPU fault */
1025 cpu_restore_state(tb, env, pc, puc);
1027 /* we restore the process signal mask as the sigreturn should
1028 do it (XXX: use sigsetjmp) */
1029 sigprocmask(SIG_SETMASK, old_set, NULL);
1031 /* never comes here */
1035 #elif defined (TARGET_MIPS)
1036 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1037 int is_write, sigset_t *old_set,
1040 TranslationBlock *tb;
1044 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1045 #if defined(DEBUG_SIGNAL)
1046 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1047 pc, address, is_write, *(unsigned long *)old_set);
1049 /* XXX: locking issue */
1050 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1054 /* see if it is an MMU fault */
1055 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1057 return 0; /* not an MMU fault */
1059 return 1; /* the MMU fault was handled without causing real CPU fault */
1061 /* now we have a real cpu fault */
1062 tb = tb_find_pc(pc);
1064 /* the PC is inside the translated code. It means that we have
1065 a virtual CPU fault */
1066 cpu_restore_state(tb, env, pc, puc);
1070 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1071 env->PC, env->error_code, tb);
1073 /* we restore the process signal mask as the sigreturn should
1074 do it (XXX: use sigsetjmp) */
1075 sigprocmask(SIG_SETMASK, old_set, NULL);
1076 do_raise_exception_err(env->exception_index, env->error_code);
1078 /* activate soft MMU for this block */
1079 cpu_resume_from_signal(env, puc);
1081 /* never comes here */
1085 #elif defined (TARGET_SH4)
1086 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1087 int is_write, sigset_t *old_set,
1090 TranslationBlock *tb;
1094 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1095 #if defined(DEBUG_SIGNAL)
1096 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1097 pc, address, is_write, *(unsigned long *)old_set);
1099 /* XXX: locking issue */
1100 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1104 /* see if it is an MMU fault */
1105 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1107 return 0; /* not an MMU fault */
1109 return 1; /* the MMU fault was handled without causing real CPU fault */
1111 /* now we have a real cpu fault */
1112 tb = tb_find_pc(pc);
1114 /* the PC is inside the translated code. It means that we have
1115 a virtual CPU fault */
1116 cpu_restore_state(tb, env, pc, puc);
1119 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1120 env->nip, env->error_code, tb);
1122 /* we restore the process signal mask as the sigreturn should
1123 do it (XXX: use sigsetjmp) */
1124 sigprocmask(SIG_SETMASK, old_set, NULL);
1126 /* never comes here */
1130 #elif defined (TARGET_ALPHA)
1131 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1132 int is_write, sigset_t *old_set,
1135 TranslationBlock *tb;
1139 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1140 #if defined(DEBUG_SIGNAL)
1141 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1142 pc, address, is_write, *(unsigned long *)old_set);
1144 /* XXX: locking issue */
1145 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1149 /* see if it is an MMU fault */
1150 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1152 return 0; /* not an MMU fault */
1154 return 1; /* the MMU fault was handled without causing real CPU fault */
1156 /* now we have a real cpu fault */
1157 tb = tb_find_pc(pc);
1159 /* the PC is inside the translated code. It means that we have
1160 a virtual CPU fault */
1161 cpu_restore_state(tb, env, pc, puc);
1164 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1165 env->nip, env->error_code, tb);
1167 /* we restore the process signal mask as the sigreturn should
1168 do it (XXX: use sigsetjmp) */
1169 sigprocmask(SIG_SETMASK, old_set, NULL);
1171 /* never comes here */
1175 #error unsupported target CPU
1178 #if defined(__i386__)
1180 #if defined(__APPLE__)
1181 # include <sys/ucontext.h>
1183 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1184 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1185 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1187 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1188 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1189 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1192 #if defined(USE_CODE_COPY)
1193 static void cpu_send_trap(unsigned long pc, int trap,
1194 struct ucontext *uc)
1196 TranslationBlock *tb;
1199 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1200 /* now we have a real cpu fault */
1201 tb = tb_find_pc(pc);
1203 /* the PC is inside the translated code. It means that we have
1204 a virtual CPU fault */
1205 cpu_restore_state(tb, env, pc, uc);
1207 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1208 raise_exception_err(trap, env->error_code);
1212 int cpu_signal_handler(int host_signum, void *pinfo,
1215 siginfo_t *info = pinfo;
1216 struct ucontext *uc = puc;
1224 #define REG_TRAPNO TRAPNO
1227 trapno = TRAP_sig(uc);
1228 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1229 if (trapno == 0x00 || trapno == 0x05) {
1230 /* send division by zero or bound exception */
1231 cpu_send_trap(pc, trapno, uc);
1235 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1237 (ERROR_sig(uc) >> 1) & 1 : 0,
1238 &uc->uc_sigmask, puc);
1241 #elif defined(__x86_64__)
1243 int cpu_signal_handler(int host_signum, void *pinfo,
1246 siginfo_t *info = pinfo;
1247 struct ucontext *uc = puc;
1250 pc = uc->uc_mcontext.gregs[REG_RIP];
1251 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1252 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1253 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1254 &uc->uc_sigmask, puc);
1257 #elif defined(__powerpc__)
1259 /***********************************************************************
1260 * signal context platform-specific definitions
1264 /* All Registers access - only for local access */
1265 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1266 /* Gpr Registers access */
1267 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1268 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1269 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1270 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1271 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1272 # define LR_sig(context) REG_sig(link, context) /* Link register */
1273 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1274 /* Float Registers access */
1275 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1276 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1277 /* Exception Registers access */
1278 # define DAR_sig(context) REG_sig(dar, context)
1279 # define DSISR_sig(context) REG_sig(dsisr, context)
1280 # define TRAP_sig(context) REG_sig(trap, context)
1284 # include <sys/ucontext.h>
1285 typedef struct ucontext SIGCONTEXT;
1286 /* All Registers access - only for local access */
1287 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1288 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1289 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1290 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1291 /* Gpr Registers access */
1292 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1293 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1294 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1295 # define CTR_sig(context) REG_sig(ctr, context)
1296 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1297 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1298 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1299 /* Float Registers access */
1300 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1301 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1302 /* Exception Registers access */
1303 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1304 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1305 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1306 #endif /* __APPLE__ */
1308 int cpu_signal_handler(int host_signum, void *pinfo,
1311 siginfo_t *info = pinfo;
1312 struct ucontext *uc = puc;
1320 if (DSISR_sig(uc) & 0x00800000)
1323 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1326 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1327 is_write, &uc->uc_sigmask, puc);
1330 #elif defined(__alpha__)
1332 int cpu_signal_handler(int host_signum, void *pinfo,
1335 siginfo_t *info = pinfo;
1336 struct ucontext *uc = puc;
1337 uint32_t *pc = uc->uc_mcontext.sc_pc;
1338 uint32_t insn = *pc;
1341 /* XXX: need kernel patch to get write flag faster */
1342 switch (insn >> 26) {
1357 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1358 is_write, &uc->uc_sigmask, puc);
1360 #elif defined(__sparc__)
1362 int cpu_signal_handler(int host_signum, void *pinfo,
1365 siginfo_t *info = pinfo;
1366 uint32_t *regs = (uint32_t *)(info + 1);
1367 void *sigmask = (regs + 20);
1372 /* XXX: is there a standard glibc define ? */
1374 /* XXX: need kernel patch to get write flag faster */
1376 insn = *(uint32_t *)pc;
1377 if ((insn >> 30) == 3) {
1378 switch((insn >> 19) & 0x3f) {
1390 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1391 is_write, sigmask, NULL);
1394 #elif defined(__arm__)
1396 int cpu_signal_handler(int host_signum, void *pinfo,
1399 siginfo_t *info = pinfo;
1400 struct ucontext *uc = puc;
1404 pc = uc->uc_mcontext.gregs[R15];
1405 /* XXX: compute is_write */
1407 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1409 &uc->uc_sigmask, puc);
1412 #elif defined(__mc68000)
1414 int cpu_signal_handler(int host_signum, void *pinfo,
1417 siginfo_t *info = pinfo;
1418 struct ucontext *uc = puc;
1422 pc = uc->uc_mcontext.gregs[16];
1423 /* XXX: compute is_write */
1425 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1427 &uc->uc_sigmask, puc);
1430 #elif defined(__ia64)
1433 /* This ought to be in <bits/siginfo.h>... */
1434 # define __ISR_VALID 1
1437 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1439 siginfo_t *info = pinfo;
1440 struct ucontext *uc = puc;
1444 ip = uc->uc_mcontext.sc_ip;
1445 switch (host_signum) {
1451 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1452 /* ISR.W (write-access) is bit 33: */
1453 is_write = (info->si_isr >> 33) & 1;
1459 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1461 &uc->uc_sigmask, puc);
1464 #elif defined(__s390__)
1466 int cpu_signal_handler(int host_signum, void *pinfo,
1469 siginfo_t *info = pinfo;
1470 struct ucontext *uc = puc;
1474 pc = uc->uc_mcontext.psw.addr;
1475 /* XXX: compute is_write */
1477 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1478 is_write, &uc->uc_sigmask, puc);
1481 #elif defined(__mips__)
1483 int cpu_signal_handler(int host_signum, void *pinfo,
1486 siginfo_t *info = pinfo;
1487 struct ucontext *uc = puc;
1488 greg_t pc = uc->uc_mcontext.pc;
1491 /* XXX: compute is_write */
1493 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1494 is_write, &uc->uc_sigmask, puc);
1499 #error host CPU specific signal handler needed
1503 #endif /* !defined(CONFIG_SOFTMMU) */