2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #if !defined(CONFIG_SOFTMMU)
35 #include <sys/ucontext.h>
38 int tb_invalidated_flag;
41 //#define DEBUG_SIGNAL
43 void cpu_loop_exit(void)
45 /* NOTE: the register at this point must be saved by hand because
46 longjmp restore them */
48 longjmp(env->jmp_env, 1);
51 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
55 /* exit the current TB from a signal handler. The host registers are
56 restored in a state compatible with the CPU emulator
58 void cpu_resume_from_signal(CPUState *env1, void *puc)
60 #if !defined(CONFIG_SOFTMMU)
61 struct ucontext *uc = puc;
66 /* XXX: restore cpu registers saved in host registers */
68 #if !defined(CONFIG_SOFTMMU)
70 /* XXX: use siglongjmp ? */
71 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
74 longjmp(env->jmp_env, 1);
78 static TranslationBlock *tb_find_slow(target_ulong pc,
82 TranslationBlock *tb, **ptb1;
85 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
90 tb_invalidated_flag = 0;
92 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
94 /* find translated block using physical mappings */
95 phys_pc = get_phys_addr_code(env, pc);
96 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 virt_page2 = (pc & TARGET_PAGE_MASK) +
112 phys_page2 = get_phys_addr_code(env, virt_page2);
113 if (tb->page_addr[1] == phys_page2)
119 ptb1 = &tb->phys_hash_next;
122 /* if no translated code available, then translate it now */
125 /* flush must be done */
127 /* cannot fail at this point */
129 /* don't forget to invalidate previous TB info */
130 tb_invalidated_flag = 1;
132 tc_ptr = code_gen_ptr;
134 tb->cs_base = cs_base;
136 cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
139 /* check next page if needed */
140 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
142 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143 phys_page2 = get_phys_addr_code(env, virt_page2);
145 tb_link_phys(tb, phys_pc, phys_page2);
148 /* we add the TB in the virtual pc hash table */
149 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150 spin_unlock(&tb_lock);
154 static inline TranslationBlock *tb_find_fast(void)
156 TranslationBlock *tb;
157 target_ulong cs_base, pc;
160 /* we record a subset of the CPU state. It will
161 always be the same before a given translated block
163 #if defined(TARGET_I386)
165 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166 flags |= env->intercept;
167 cs_base = env->segs[R_CS].base;
168 pc = cs_base + env->eip;
169 #elif defined(TARGET_ARM)
170 flags = env->thumb | (env->vfp.vec_len << 1)
171 | (env->vfp.vec_stride << 4);
172 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
174 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
178 #elif defined(TARGET_SPARC)
179 #ifdef TARGET_SPARC64
180 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
181 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
182 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
184 // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor
185 flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3)
186 | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
191 #elif defined(TARGET_PPC)
195 #elif defined(TARGET_MIPS)
196 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
198 pc = env->PC[env->current_tc];
199 #elif defined(TARGET_M68K)
200 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
201 | (env->sr & SR_S) /* Bit 13 */
202 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
205 #elif defined(TARGET_SH4)
206 flags = env->sr & (SR_MD | SR_RB);
207 cs_base = 0; /* XXXXX */
209 #elif defined(TARGET_ALPHA)
214 #error unsupported CPU
216 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
217 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
218 tb->flags != flags, 0)) {
219 tb = tb_find_slow(pc, cs_base, flags);
220 /* Note: we do it here to avoid a gcc bug on Mac OS X when
221 doing it in tb_find_slow */
222 if (tb_invalidated_flag) {
223 /* as some TB could have been invalidated because
224 of memory exceptions while generating the code, we
225 must recompute the hash index here */
233 /* main execution loop */
235 int cpu_exec(CPUState *env1)
237 #define DECLARE_HOST_REGS 1
238 #include "hostregs_helper.h"
239 #if defined(TARGET_SPARC)
240 #if defined(reg_REGWPTR)
241 uint32_t *saved_regwptr;
244 #if defined(__sparc__) && !defined(HOST_SOLARIS)
248 int ret, interrupt_request;
249 void (*gen_func)(void);
250 TranslationBlock *tb;
253 if (cpu_halted(env1) == EXCP_HALTED)
256 cpu_single_env = env1;
258 /* first we save global registers */
259 #define SAVE_HOST_REGS 1
260 #include "hostregs_helper.h"
262 #if defined(__sparc__) && !defined(HOST_SOLARIS)
263 /* we also save i7 because longjmp may not restore it */
264 asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
268 #if defined(TARGET_I386)
269 /* put eflags in CPU temporary format */
270 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
271 DF = 1 - (2 * ((env->eflags >> 10) & 1));
272 CC_OP = CC_OP_EFLAGS;
273 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
274 #elif defined(TARGET_SPARC)
275 #if defined(reg_REGWPTR)
276 saved_regwptr = REGWPTR;
278 #elif defined(TARGET_M68K)
279 env->cc_op = CC_OP_FLAGS;
280 env->cc_dest = env->sr & 0xf;
281 env->cc_x = (env->sr >> 4) & 1;
282 #elif defined(TARGET_ALPHA)
283 #elif defined(TARGET_ARM)
284 #elif defined(TARGET_PPC)
285 #elif defined(TARGET_MIPS)
286 #elif defined(TARGET_SH4)
289 #error unsupported target CPU
291 env->exception_index = -1;
293 /* prepare setjmp context for exception handling */
295 if (setjmp(env->jmp_env) == 0) {
296 env->current_tb = NULL;
297 /* if an exception is pending, we execute it here */
298 if (env->exception_index >= 0) {
299 if (env->exception_index >= EXCP_INTERRUPT) {
300 /* exit request from the cpu execution loop */
301 ret = env->exception_index;
303 } else if (env->user_mode_only) {
304 /* if user mode only, we simulate a fake exception
305 which will be handled outside the cpu execution
307 #if defined(TARGET_I386)
308 do_interrupt_user(env->exception_index,
309 env->exception_is_int,
311 env->exception_next_eip);
313 ret = env->exception_index;
316 #if defined(TARGET_I386)
317 /* simulate a real cpu exception. On i386, it can
318 trigger new exceptions, but we do not handle
319 double or triple faults yet. */
320 do_interrupt(env->exception_index,
321 env->exception_is_int,
323 env->exception_next_eip, 0);
324 /* successfully delivered */
325 env->old_exception = -1;
326 #elif defined(TARGET_PPC)
328 #elif defined(TARGET_MIPS)
330 #elif defined(TARGET_SPARC)
331 do_interrupt(env->exception_index);
332 #elif defined(TARGET_ARM)
334 #elif defined(TARGET_SH4)
336 #elif defined(TARGET_ALPHA)
338 #elif defined(TARGET_M68K)
342 env->exception_index = -1;
345 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
347 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
348 ret = kqemu_cpu_exec(env);
349 /* put eflags in CPU temporary format */
350 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
351 DF = 1 - (2 * ((env->eflags >> 10) & 1));
352 CC_OP = CC_OP_EFLAGS;
353 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
356 longjmp(env->jmp_env, 1);
357 } else if (ret == 2) {
358 /* softmmu execution needed */
360 if (env->interrupt_request != 0) {
361 /* hardware interrupt will be executed just after */
363 /* otherwise, we restart */
364 longjmp(env->jmp_env, 1);
370 T0 = 0; /* force lookup of first TB */
372 #if defined(__sparc__) && !defined(HOST_SOLARIS)
373 /* g1 can be modified by some libc? functions */
376 interrupt_request = env->interrupt_request;
377 if (__builtin_expect(interrupt_request, 0)
378 #if defined(TARGET_I386)
379 && env->hflags & HF_GIF_MASK
382 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
383 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
384 env->exception_index = EXCP_DEBUG;
387 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
388 defined(TARGET_PPC) || defined(TARGET_ALPHA)
389 if (interrupt_request & CPU_INTERRUPT_HALT) {
390 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
392 env->exception_index = EXCP_HLT;
396 #if defined(TARGET_I386)
397 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
398 !(env->hflags & HF_SMM_MASK)) {
399 svm_check_intercept(SVM_EXIT_SMI);
400 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
402 #if defined(__sparc__) && !defined(HOST_SOLARIS)
407 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
408 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
409 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
411 svm_check_intercept(SVM_EXIT_INTR);
412 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
413 intno = cpu_get_pic_interrupt(env);
414 if (loglevel & CPU_LOG_TB_IN_ASM) {
415 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
417 do_interrupt(intno, 0, 0, 0, 1);
418 /* ensure that no TB jump will be modified as
419 the program flow was changed */
420 #if defined(__sparc__) && !defined(HOST_SOLARIS)
425 #if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429 /* FIXME: this should respect TPR */
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
432 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
433 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
434 if (loglevel & CPU_LOG_TB_IN_ASM)
435 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
436 do_interrupt(intno, 0, 0, -1, 1);
437 #if defined(__sparc__) && !defined(HOST_SOLARIS)
444 #elif defined(TARGET_PPC)
446 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
450 if (interrupt_request & CPU_INTERRUPT_HARD) {
451 ppc_hw_interrupt(env);
452 if (env->pending_interrupts == 0)
453 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
454 #if defined(__sparc__) && !defined(HOST_SOLARIS)
460 #elif defined(TARGET_MIPS)
461 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
462 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
463 (env->CP0_Status & (1 << CP0St_IE)) &&
464 !(env->CP0_Status & (1 << CP0St_EXL)) &&
465 !(env->CP0_Status & (1 << CP0St_ERL)) &&
466 !(env->hflags & MIPS_HFLAG_DM)) {
468 env->exception_index = EXCP_EXT_INTERRUPT;
471 #if defined(__sparc__) && !defined(HOST_SOLARIS)
477 #elif defined(TARGET_SPARC)
478 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
480 int pil = env->interrupt_index & 15;
481 int type = env->interrupt_index & 0xf0;
483 if (((type == TT_EXTINT) &&
484 (pil == 15 || pil > env->psrpil)) ||
486 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
487 do_interrupt(env->interrupt_index);
488 env->interrupt_index = 0;
489 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
492 #if defined(__sparc__) && !defined(HOST_SOLARIS)
498 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
499 //do_interrupt(0, 0, 0, 0, 0);
500 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
502 #elif defined(TARGET_ARM)
503 if (interrupt_request & CPU_INTERRUPT_FIQ
504 && !(env->uncached_cpsr & CPSR_F)) {
505 env->exception_index = EXCP_FIQ;
508 if (interrupt_request & CPU_INTERRUPT_HARD
509 && !(env->uncached_cpsr & CPSR_I)) {
510 env->exception_index = EXCP_IRQ;
513 #elif defined(TARGET_SH4)
515 #elif defined(TARGET_ALPHA)
516 if (interrupt_request & CPU_INTERRUPT_HARD) {
519 #elif defined(TARGET_M68K)
520 if (interrupt_request & CPU_INTERRUPT_HARD
521 && ((env->sr & SR_I) >> SR_I_SHIFT)
522 < env->pending_level) {
523 /* Real hardware gets the interrupt vector via an
524 IACK cycle at this point. Current emulated
525 hardware doesn't rely on this, so we
526 provide/save the vector when the interrupt is
528 env->exception_index = env->pending_vector;
532 /* Don't use the cached interupt_request value,
533 do_interrupt may have updated the EXITTB flag. */
534 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
535 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
536 /* ensure that no TB jump will be modified as
537 the program flow was changed */
538 #if defined(__sparc__) && !defined(HOST_SOLARIS)
544 if (interrupt_request & CPU_INTERRUPT_EXIT) {
545 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
546 env->exception_index = EXCP_INTERRUPT;
551 if ((loglevel & CPU_LOG_TB_CPU)) {
552 /* restore flags in standard format */
554 #if defined(TARGET_I386)
555 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
556 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
557 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
558 #elif defined(TARGET_ARM)
559 cpu_dump_state(env, logfile, fprintf, 0);
560 #elif defined(TARGET_SPARC)
561 REGWPTR = env->regbase + (env->cwp * 16);
562 env->regwptr = REGWPTR;
563 cpu_dump_state(env, logfile, fprintf, 0);
564 #elif defined(TARGET_PPC)
565 cpu_dump_state(env, logfile, fprintf, 0);
566 #elif defined(TARGET_M68K)
567 cpu_m68k_flush_flags(env, env->cc_op);
568 env->cc_op = CC_OP_FLAGS;
569 env->sr = (env->sr & 0xffe0)
570 | env->cc_dest | (env->cc_x << 4);
571 cpu_dump_state(env, logfile, fprintf, 0);
572 #elif defined(TARGET_MIPS)
573 cpu_dump_state(env, logfile, fprintf, 0);
574 #elif defined(TARGET_SH4)
575 cpu_dump_state(env, logfile, fprintf, 0);
576 #elif defined(TARGET_ALPHA)
577 cpu_dump_state(env, logfile, fprintf, 0);
579 #error unsupported target CPU
585 if ((loglevel & CPU_LOG_EXEC)) {
586 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
587 (long)tb->tc_ptr, tb->pc,
588 lookup_symbol(tb->pc));
591 #if defined(__sparc__) && !defined(HOST_SOLARIS)
594 /* see if we can patch the calling TB. When the TB
595 spans two pages, we cannot safely do a direct
600 (env->kqemu_enabled != 2) &&
602 tb->page_addr[1] == -1
603 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
604 && (tb->cflags & CF_CODE_COPY) ==
605 (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
609 tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
610 #if defined(USE_CODE_COPY)
611 /* propagates the FP use info */
612 ((TranslationBlock *)(T0 & ~3))->cflags |=
613 (tb->cflags & CF_FP_USED);
615 spin_unlock(&tb_lock);
619 env->current_tb = tb;
620 /* execute the generated code */
621 gen_func = (void *)tc_ptr;
622 #if defined(__sparc__)
623 __asm__ __volatile__("call %0\n\t"
627 : "i0", "i1", "i2", "i3", "i4", "i5",
628 "o0", "o1", "o2", "o3", "o4", "o5",
629 "l0", "l1", "l2", "l3", "l4", "l5",
631 #elif defined(__arm__)
632 asm volatile ("mov pc, %0\n\t"
633 ".global exec_loop\n\t"
637 : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
638 #elif defined(TARGET_I386) && defined(USE_CODE_COPY)
640 if (!(tb->cflags & CF_CODE_COPY)) {
641 if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
642 save_native_fp_state(env);
646 if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
647 restore_native_fp_state(env);
649 /* we work with native eflags */
650 CC_SRC = cc_table[CC_OP].compute_all();
651 CC_OP = CC_OP_EFLAGS;
652 asm(".globl exec_loop\n"
657 " fs movl %11, %%eax\n"
658 " andl $0x400, %%eax\n"
659 " fs orl %8, %%eax\n"
662 " fs movl %%esp, %12\n"
663 " fs movl %0, %%eax\n"
664 " fs movl %1, %%ecx\n"
665 " fs movl %2, %%edx\n"
666 " fs movl %3, %%ebx\n"
667 " fs movl %4, %%esp\n"
668 " fs movl %5, %%ebp\n"
669 " fs movl %6, %%esi\n"
670 " fs movl %7, %%edi\n"
673 " fs movl %%esp, %4\n"
674 " fs movl %12, %%esp\n"
675 " fs movl %%eax, %0\n"
676 " fs movl %%ecx, %1\n"
677 " fs movl %%edx, %2\n"
678 " fs movl %%ebx, %3\n"
679 " fs movl %%ebp, %5\n"
680 " fs movl %%esi, %6\n"
681 " fs movl %%edi, %7\n"
684 " movl %%eax, %%ecx\n"
685 " andl $0x400, %%ecx\n"
687 " andl $0x8d5, %%eax\n"
688 " fs movl %%eax, %8\n"
690 " subl %%ecx, %%eax\n"
691 " fs movl %%eax, %11\n"
692 " fs movl %9, %%ebx\n" /* get T0 value */
695 : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
696 "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
697 "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
698 "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
699 "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
700 "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
701 "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
702 "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
703 "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
704 "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
706 "m" (*(uint8_t *)offsetof(CPUState, df)),
707 "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
712 #elif defined(__ia64)
719 fp.gp = code_gen_buffer + 2 * (1 << 20);
720 (*(void (*)(void)) &fp)();
724 env->current_tb = NULL;
725 /* reset soft MMU for next block (it can currently
726 only be set by a memory fault) */
727 #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
728 if (env->hflags & HF_SOFTMMU_MASK) {
729 env->hflags &= ~HF_SOFTMMU_MASK;
730 /* do not allow linking to another block */
734 #if defined(USE_KQEMU)
735 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
736 if (kqemu_is_ok(env) &&
737 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
748 #if defined(TARGET_I386)
749 #if defined(USE_CODE_COPY)
750 if (env->native_fp_regs) {
751 save_native_fp_state(env);
754 /* restore flags in standard format */
755 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
756 #elif defined(TARGET_ARM)
757 /* XXX: Save/restore host fpu exception state?. */
758 #elif defined(TARGET_SPARC)
759 #if defined(reg_REGWPTR)
760 REGWPTR = saved_regwptr;
762 #elif defined(TARGET_PPC)
763 #elif defined(TARGET_M68K)
764 cpu_m68k_flush_flags(env, env->cc_op);
765 env->cc_op = CC_OP_FLAGS;
766 env->sr = (env->sr & 0xffe0)
767 | env->cc_dest | (env->cc_x << 4);
768 #elif defined(TARGET_MIPS)
769 #elif defined(TARGET_SH4)
770 #elif defined(TARGET_ALPHA)
773 #error unsupported target CPU
776 /* restore global registers */
777 #if defined(__sparc__) && !defined(HOST_SOLARIS)
778 asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
780 #include "hostregs_helper.h"
782 /* fail safe : never use cpu_single_env outside cpu_exec() */
783 cpu_single_env = NULL;
787 /* must only be called from the generated code as an exception can be
789 void tb_invalidate_page_range(target_ulong start, target_ulong end)
791 /* XXX: cannot enable it yet because it yields to MMU exception
792 where NIP != read address on PowerPC */
794 target_ulong phys_addr;
795 phys_addr = get_phys_addr_code(env, start);
796 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
800 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
802 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
804 CPUX86State *saved_env;
808 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
810 cpu_x86_load_seg_cache(env, seg_reg, selector,
811 (selector << 4), 0xffff, 0);
813 load_seg(seg_reg, selector);
818 void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
820 CPUX86State *saved_env;
825 helper_fsave((target_ulong)ptr, data32);
830 void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
832 CPUX86State *saved_env;
837 helper_frstor((target_ulong)ptr, data32);
842 #endif /* TARGET_I386 */
844 #if !defined(CONFIG_SOFTMMU)
846 #if defined(TARGET_I386)
848 /* 'pc' is the host PC at which the exception was raised. 'address' is
849 the effective address of the memory exception. 'is_write' is 1 if a
850 write caused the exception and otherwise 0'. 'old_set' is the
851 signal set which should be restored */
852 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
853 int is_write, sigset_t *old_set,
856 TranslationBlock *tb;
860 env = cpu_single_env; /* XXX: find a correct solution for multithread */
861 #if defined(DEBUG_SIGNAL)
862 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
863 pc, address, is_write, *(unsigned long *)old_set);
865 /* XXX: locking issue */
866 if (is_write && page_unprotect(h2g(address), pc, puc)) {
870 /* see if it is an MMU fault */
871 ret = cpu_x86_handle_mmu_fault(env, address, is_write,
872 ((env->hflags & HF_CPL_MASK) == 3), 0);
874 return 0; /* not an MMU fault */
876 return 1; /* the MMU fault was handled without causing real CPU fault */
877 /* now we have a real cpu fault */
880 /* the PC is inside the translated code. It means that we have
881 a virtual CPU fault */
882 cpu_restore_state(tb, env, pc, puc);
886 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
887 env->eip, env->cr[2], env->error_code);
889 /* we restore the process signal mask as the sigreturn should
890 do it (XXX: use sigsetjmp) */
891 sigprocmask(SIG_SETMASK, old_set, NULL);
892 raise_exception_err(env->exception_index, env->error_code);
894 /* activate soft MMU for this block */
895 env->hflags |= HF_SOFTMMU_MASK;
896 cpu_resume_from_signal(env, puc);
898 /* never comes here */
902 #elif defined(TARGET_ARM)
903 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
904 int is_write, sigset_t *old_set,
907 TranslationBlock *tb;
911 env = cpu_single_env; /* XXX: find a correct solution for multithread */
912 #if defined(DEBUG_SIGNAL)
913 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
914 pc, address, is_write, *(unsigned long *)old_set);
916 /* XXX: locking issue */
917 if (is_write && page_unprotect(h2g(address), pc, puc)) {
920 /* see if it is an MMU fault */
921 ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
923 return 0; /* not an MMU fault */
925 return 1; /* the MMU fault was handled without causing real CPU fault */
926 /* now we have a real cpu fault */
929 /* the PC is inside the translated code. It means that we have
930 a virtual CPU fault */
931 cpu_restore_state(tb, env, pc, puc);
933 /* we restore the process signal mask as the sigreturn should
934 do it (XXX: use sigsetjmp) */
935 sigprocmask(SIG_SETMASK, old_set, NULL);
938 #elif defined(TARGET_SPARC)
939 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
940 int is_write, sigset_t *old_set,
943 TranslationBlock *tb;
947 env = cpu_single_env; /* XXX: find a correct solution for multithread */
948 #if defined(DEBUG_SIGNAL)
949 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
950 pc, address, is_write, *(unsigned long *)old_set);
952 /* XXX: locking issue */
953 if (is_write && page_unprotect(h2g(address), pc, puc)) {
956 /* see if it is an MMU fault */
957 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
959 return 0; /* not an MMU fault */
961 return 1; /* the MMU fault was handled without causing real CPU fault */
962 /* now we have a real cpu fault */
965 /* the PC is inside the translated code. It means that we have
966 a virtual CPU fault */
967 cpu_restore_state(tb, env, pc, puc);
969 /* we restore the process signal mask as the sigreturn should
970 do it (XXX: use sigsetjmp) */
971 sigprocmask(SIG_SETMASK, old_set, NULL);
974 #elif defined (TARGET_PPC)
975 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
976 int is_write, sigset_t *old_set,
979 TranslationBlock *tb;
983 env = cpu_single_env; /* XXX: find a correct solution for multithread */
984 #if defined(DEBUG_SIGNAL)
985 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
986 pc, address, is_write, *(unsigned long *)old_set);
988 /* XXX: locking issue */
989 if (is_write && page_unprotect(h2g(address), pc, puc)) {
993 /* see if it is an MMU fault */
994 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
996 return 0; /* not an MMU fault */
998 return 1; /* the MMU fault was handled without causing real CPU fault */
1000 /* now we have a real cpu fault */
1001 tb = tb_find_pc(pc);
1003 /* the PC is inside the translated code. It means that we have
1004 a virtual CPU fault */
1005 cpu_restore_state(tb, env, pc, puc);
1009 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1010 env->nip, env->error_code, tb);
1012 /* we restore the process signal mask as the sigreturn should
1013 do it (XXX: use sigsetjmp) */
1014 sigprocmask(SIG_SETMASK, old_set, NULL);
1015 do_raise_exception_err(env->exception_index, env->error_code);
1017 /* activate soft MMU for this block */
1018 cpu_resume_from_signal(env, puc);
1020 /* never comes here */
1024 #elif defined(TARGET_M68K)
1025 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1026 int is_write, sigset_t *old_set,
1029 TranslationBlock *tb;
1033 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1034 #if defined(DEBUG_SIGNAL)
1035 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1036 pc, address, is_write, *(unsigned long *)old_set);
1038 /* XXX: locking issue */
1039 if (is_write && page_unprotect(address, pc, puc)) {
1042 /* see if it is an MMU fault */
1043 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1045 return 0; /* not an MMU fault */
1047 return 1; /* the MMU fault was handled without causing real CPU fault */
1048 /* now we have a real cpu fault */
1049 tb = tb_find_pc(pc);
1051 /* the PC is inside the translated code. It means that we have
1052 a virtual CPU fault */
1053 cpu_restore_state(tb, env, pc, puc);
1055 /* we restore the process signal mask as the sigreturn should
1056 do it (XXX: use sigsetjmp) */
1057 sigprocmask(SIG_SETMASK, old_set, NULL);
1059 /* never comes here */
1063 #elif defined (TARGET_MIPS)
1064 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1065 int is_write, sigset_t *old_set,
1068 TranslationBlock *tb;
1072 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1073 #if defined(DEBUG_SIGNAL)
1074 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1075 pc, address, is_write, *(unsigned long *)old_set);
1077 /* XXX: locking issue */
1078 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1082 /* see if it is an MMU fault */
1083 ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1085 return 0; /* not an MMU fault */
1087 return 1; /* the MMU fault was handled without causing real CPU fault */
1089 /* now we have a real cpu fault */
1090 tb = tb_find_pc(pc);
1092 /* the PC is inside the translated code. It means that we have
1093 a virtual CPU fault */
1094 cpu_restore_state(tb, env, pc, puc);
1098 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
1099 env->PC, env->error_code, tb);
1101 /* we restore the process signal mask as the sigreturn should
1102 do it (XXX: use sigsetjmp) */
1103 sigprocmask(SIG_SETMASK, old_set, NULL);
1104 do_raise_exception_err(env->exception_index, env->error_code);
1106 /* activate soft MMU for this block */
1107 cpu_resume_from_signal(env, puc);
1109 /* never comes here */
1113 #elif defined (TARGET_SH4)
1114 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1115 int is_write, sigset_t *old_set,
1118 TranslationBlock *tb;
1122 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1123 #if defined(DEBUG_SIGNAL)
1124 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1125 pc, address, is_write, *(unsigned long *)old_set);
1127 /* XXX: locking issue */
1128 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1132 /* see if it is an MMU fault */
1133 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1135 return 0; /* not an MMU fault */
1137 return 1; /* the MMU fault was handled without causing real CPU fault */
1139 /* now we have a real cpu fault */
1140 tb = tb_find_pc(pc);
1142 /* the PC is inside the translated code. It means that we have
1143 a virtual CPU fault */
1144 cpu_restore_state(tb, env, pc, puc);
1147 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1148 env->nip, env->error_code, tb);
1150 /* we restore the process signal mask as the sigreturn should
1151 do it (XXX: use sigsetjmp) */
1152 sigprocmask(SIG_SETMASK, old_set, NULL);
1154 /* never comes here */
1158 #elif defined (TARGET_ALPHA)
1159 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1160 int is_write, sigset_t *old_set,
1163 TranslationBlock *tb;
1167 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1168 #if defined(DEBUG_SIGNAL)
1169 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1170 pc, address, is_write, *(unsigned long *)old_set);
1172 /* XXX: locking issue */
1173 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1177 /* see if it is an MMU fault */
1178 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1180 return 0; /* not an MMU fault */
1182 return 1; /* the MMU fault was handled without causing real CPU fault */
1184 /* now we have a real cpu fault */
1185 tb = tb_find_pc(pc);
1187 /* the PC is inside the translated code. It means that we have
1188 a virtual CPU fault */
1189 cpu_restore_state(tb, env, pc, puc);
1192 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1193 env->nip, env->error_code, tb);
1195 /* we restore the process signal mask as the sigreturn should
1196 do it (XXX: use sigsetjmp) */
1197 sigprocmask(SIG_SETMASK, old_set, NULL);
1199 /* never comes here */
1203 #error unsupported target CPU
1206 #if defined(__i386__)
1208 #if defined(__APPLE__)
1209 # include <sys/ucontext.h>
1211 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1212 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1213 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1215 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1216 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1217 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1220 #if defined(USE_CODE_COPY)
1221 static void cpu_send_trap(unsigned long pc, int trap,
1222 struct ucontext *uc)
1224 TranslationBlock *tb;
1227 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1228 /* now we have a real cpu fault */
1229 tb = tb_find_pc(pc);
1231 /* the PC is inside the translated code. It means that we have
1232 a virtual CPU fault */
1233 cpu_restore_state(tb, env, pc, uc);
1235 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1236 raise_exception_err(trap, env->error_code);
1240 int cpu_signal_handler(int host_signum, void *pinfo,
1243 siginfo_t *info = pinfo;
1244 struct ucontext *uc = puc;
1252 #define REG_TRAPNO TRAPNO
1255 trapno = TRAP_sig(uc);
1256 #if defined(TARGET_I386) && defined(USE_CODE_COPY)
1257 if (trapno == 0x00 || trapno == 0x05) {
1258 /* send division by zero or bound exception */
1259 cpu_send_trap(pc, trapno, uc);
1263 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1265 (ERROR_sig(uc) >> 1) & 1 : 0,
1266 &uc->uc_sigmask, puc);
1269 #elif defined(__x86_64__)
1271 int cpu_signal_handler(int host_signum, void *pinfo,
1274 siginfo_t *info = pinfo;
1275 struct ucontext *uc = puc;
1278 pc = uc->uc_mcontext.gregs[REG_RIP];
1279 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1280 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1281 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1282 &uc->uc_sigmask, puc);
1285 #elif defined(__powerpc__)
1287 /***********************************************************************
1288 * signal context platform-specific definitions
1292 /* All Registers access - only for local access */
1293 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1294 /* Gpr Registers access */
1295 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1296 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1297 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1298 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1299 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1300 # define LR_sig(context) REG_sig(link, context) /* Link register */
1301 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1302 /* Float Registers access */
1303 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1304 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1305 /* Exception Registers access */
1306 # define DAR_sig(context) REG_sig(dar, context)
1307 # define DSISR_sig(context) REG_sig(dsisr, context)
1308 # define TRAP_sig(context) REG_sig(trap, context)
1312 # include <sys/ucontext.h>
1313 typedef struct ucontext SIGCONTEXT;
1314 /* All Registers access - only for local access */
1315 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1316 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1317 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1318 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1319 /* Gpr Registers access */
1320 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1321 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1322 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1323 # define CTR_sig(context) REG_sig(ctr, context)
1324 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1325 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1326 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1327 /* Float Registers access */
1328 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1329 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1330 /* Exception Registers access */
1331 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1332 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1333 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1334 #endif /* __APPLE__ */
1336 int cpu_signal_handler(int host_signum, void *pinfo,
1339 siginfo_t *info = pinfo;
1340 struct ucontext *uc = puc;
1348 if (DSISR_sig(uc) & 0x00800000)
1351 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1354 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1355 is_write, &uc->uc_sigmask, puc);
1358 #elif defined(__alpha__)
1360 int cpu_signal_handler(int host_signum, void *pinfo,
1363 siginfo_t *info = pinfo;
1364 struct ucontext *uc = puc;
1365 uint32_t *pc = uc->uc_mcontext.sc_pc;
1366 uint32_t insn = *pc;
1369 /* XXX: need kernel patch to get write flag faster */
1370 switch (insn >> 26) {
1385 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1386 is_write, &uc->uc_sigmask, puc);
1388 #elif defined(__sparc__)
1390 int cpu_signal_handler(int host_signum, void *pinfo,
1393 siginfo_t *info = pinfo;
1394 uint32_t *regs = (uint32_t *)(info + 1);
1395 void *sigmask = (regs + 20);
1400 /* XXX: is there a standard glibc define ? */
1402 /* XXX: need kernel patch to get write flag faster */
1404 insn = *(uint32_t *)pc;
1405 if ((insn >> 30) == 3) {
1406 switch((insn >> 19) & 0x3f) {
1418 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1419 is_write, sigmask, NULL);
1422 #elif defined(__arm__)
1424 int cpu_signal_handler(int host_signum, void *pinfo,
1427 siginfo_t *info = pinfo;
1428 struct ucontext *uc = puc;
1432 pc = uc->uc_mcontext.gregs[R15];
1433 /* XXX: compute is_write */
1435 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1437 &uc->uc_sigmask, puc);
1440 #elif defined(__mc68000)
1442 int cpu_signal_handler(int host_signum, void *pinfo,
1445 siginfo_t *info = pinfo;
1446 struct ucontext *uc = puc;
1450 pc = uc->uc_mcontext.gregs[16];
1451 /* XXX: compute is_write */
1453 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1455 &uc->uc_sigmask, puc);
1458 #elif defined(__ia64)
1461 /* This ought to be in <bits/siginfo.h>... */
1462 # define __ISR_VALID 1
1465 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1467 siginfo_t *info = pinfo;
1468 struct ucontext *uc = puc;
1472 ip = uc->uc_mcontext.sc_ip;
1473 switch (host_signum) {
1479 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1480 /* ISR.W (write-access) is bit 33: */
1481 is_write = (info->si_isr >> 33) & 1;
1487 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1489 &uc->uc_sigmask, puc);
1492 #elif defined(__s390__)
1494 int cpu_signal_handler(int host_signum, void *pinfo,
1497 siginfo_t *info = pinfo;
1498 struct ucontext *uc = puc;
1502 pc = uc->uc_mcontext.psw.addr;
1503 /* XXX: compute is_write */
1505 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1506 is_write, &uc->uc_sigmask, puc);
1509 #elif defined(__mips__)
1511 int cpu_signal_handler(int host_signum, void *pinfo,
1514 siginfo_t *info = pinfo;
1515 struct ucontext *uc = puc;
1516 greg_t pc = uc->uc_mcontext.pc;
1519 /* XXX: compute is_write */
1521 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1522 is_write, &uc->uc_sigmask, puc);
1527 #error host CPU specific signal handler needed
1531 #endif /* !defined(CONFIG_SOFTMMU) */