2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #define CPU_NO_GLOBAL_REGS
26 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
40 #if defined(__sparc__) && !defined(HOST_SOLARIS)
41 // Work around ugly bugs in glibc that mangle global register contents
43 #define env cpu_single_env
46 int tb_invalidated_flag;
47 static unsigned long next_tb;
50 //#define DEBUG_SIGNAL
52 void cpu_loop_exit(void)
54 /* NOTE: the register at this point must be saved by hand because
55 longjmp restore them */
57 longjmp(env->jmp_env, 1);
60 #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
64 /* exit the current TB from a signal handler. The host registers are
65 restored in a state compatible with the CPU emulator
67 void cpu_resume_from_signal(CPUState *env1, void *puc)
69 #if !defined(CONFIG_SOFTMMU)
70 struct ucontext *uc = puc;
75 /* XXX: restore cpu registers saved in host registers */
77 #if !defined(CONFIG_SOFTMMU)
79 /* XXX: use siglongjmp ? */
80 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
83 longjmp(env->jmp_env, 1);
86 static TranslationBlock *tb_find_slow(target_ulong pc,
90 TranslationBlock *tb, **ptb1;
93 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
98 tb_invalidated_flag = 0;
100 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
102 /* find translated block using physical mappings */
103 phys_pc = get_phys_addr_code(env, pc);
104 phys_page1 = phys_pc & TARGET_PAGE_MASK;
106 h = tb_phys_hash_func(phys_pc);
107 ptb1 = &tb_phys_hash[h];
113 tb->page_addr[0] == phys_page1 &&
114 tb->cs_base == cs_base &&
115 tb->flags == flags) {
116 /* check next page if needed */
117 if (tb->page_addr[1] != -1) {
118 virt_page2 = (pc & TARGET_PAGE_MASK) +
120 phys_page2 = get_phys_addr_code(env, virt_page2);
121 if (tb->page_addr[1] == phys_page2)
127 ptb1 = &tb->phys_hash_next;
130 /* if no translated code available, then translate it now */
133 /* flush must be done */
135 /* cannot fail at this point */
137 /* don't forget to invalidate previous TB info */
138 tb_invalidated_flag = 1;
140 tc_ptr = code_gen_ptr;
142 tb->cs_base = cs_base;
144 cpu_gen_code(env, tb, &code_gen_size);
145 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
147 /* check next page if needed */
148 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
150 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
151 phys_page2 = get_phys_addr_code(env, virt_page2);
153 tb_link_phys(tb, phys_pc, phys_page2);
156 /* we add the TB in the virtual pc hash table */
157 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
158 spin_unlock(&tb_lock);
162 static inline TranslationBlock *tb_find_fast(void)
164 TranslationBlock *tb;
165 target_ulong cs_base, pc;
168 /* we record a subset of the CPU state. It will
169 always be the same before a given translated block
171 #if defined(TARGET_I386)
173 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
174 cs_base = env->segs[R_CS].base;
175 pc = cs_base + env->eip;
176 #elif defined(TARGET_ARM)
177 flags = env->thumb | (env->vfp.vec_len << 1)
178 | (env->vfp.vec_stride << 4);
179 if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
181 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
183 flags |= (env->condexec_bits << 8);
186 #elif defined(TARGET_SPARC)
187 #ifdef TARGET_SPARC64
188 // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
189 flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
190 | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
192 // FPU enable . Supervisor
193 flags = (env->psref << 4) | env->psrs;
197 #elif defined(TARGET_PPC)
201 #elif defined(TARGET_MIPS)
202 flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
204 pc = env->PC[env->current_tc];
205 #elif defined(TARGET_M68K)
206 flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
207 | (env->sr & SR_S) /* Bit 13 */
208 | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
211 #elif defined(TARGET_SH4)
215 #elif defined(TARGET_ALPHA)
219 #elif defined(TARGET_CRIS)
220 flags = env->pregs[PR_CCS] & (U_FLAG | X_FLAG);
225 #error unsupported CPU
227 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
228 if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
229 tb->flags != flags, 0)) {
230 tb = tb_find_slow(pc, cs_base, flags);
231 /* Note: we do it here to avoid a gcc bug on Mac OS X when
232 doing it in tb_find_slow */
233 if (tb_invalidated_flag) {
234 /* as some TB could have been invalidated because
235 of memory exceptions while generating the code, we
236 must recompute the hash index here */
243 /* main execution loop */
245 int cpu_exec(CPUState *env1)
247 #define DECLARE_HOST_REGS 1
248 #include "hostregs_helper.h"
249 #if defined(TARGET_SPARC)
250 #if defined(reg_REGWPTR)
251 uint32_t *saved_regwptr;
254 int ret, interrupt_request;
255 TranslationBlock *tb;
258 if (cpu_halted(env1) == EXCP_HALTED)
261 cpu_single_env = env1;
263 /* first we save global registers */
264 #define SAVE_HOST_REGS 1
265 #include "hostregs_helper.h"
269 #if defined(TARGET_I386)
270 /* put eflags in CPU temporary format */
271 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
272 DF = 1 - (2 * ((env->eflags >> 10) & 1));
273 CC_OP = CC_OP_EFLAGS;
274 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
275 #elif defined(TARGET_SPARC)
276 #if defined(reg_REGWPTR)
277 saved_regwptr = REGWPTR;
279 #elif defined(TARGET_M68K)
280 env->cc_op = CC_OP_FLAGS;
281 env->cc_dest = env->sr & 0xf;
282 env->cc_x = (env->sr >> 4) & 1;
283 #elif defined(TARGET_ALPHA)
284 #elif defined(TARGET_ARM)
285 #elif defined(TARGET_PPC)
286 #elif defined(TARGET_MIPS)
287 #elif defined(TARGET_SH4)
288 #elif defined(TARGET_CRIS)
291 #error unsupported target CPU
293 env->exception_index = -1;
295 /* prepare setjmp context for exception handling */
297 if (setjmp(env->jmp_env) == 0) {
298 env->current_tb = NULL;
299 /* if an exception is pending, we execute it here */
300 if (env->exception_index >= 0) {
301 if (env->exception_index >= EXCP_INTERRUPT) {
302 /* exit request from the cpu execution loop */
303 ret = env->exception_index;
305 } else if (env->user_mode_only) {
306 /* if user mode only, we simulate a fake exception
307 which will be handled outside the cpu execution
309 #if defined(TARGET_I386)
310 do_interrupt_user(env->exception_index,
311 env->exception_is_int,
313 env->exception_next_eip);
314 /* successfully delivered */
315 env->old_exception = -1;
317 ret = env->exception_index;
320 #if defined(TARGET_I386)
321 /* simulate a real cpu exception. On i386, it can
322 trigger new exceptions, but we do not handle
323 double or triple faults yet. */
324 do_interrupt(env->exception_index,
325 env->exception_is_int,
327 env->exception_next_eip, 0);
328 /* successfully delivered */
329 env->old_exception = -1;
330 #elif defined(TARGET_PPC)
332 #elif defined(TARGET_MIPS)
334 #elif defined(TARGET_SPARC)
336 #elif defined(TARGET_ARM)
338 #elif defined(TARGET_SH4)
340 #elif defined(TARGET_ALPHA)
342 #elif defined(TARGET_CRIS)
344 #elif defined(TARGET_M68K)
348 env->exception_index = -1;
351 if (kqemu_is_ok(env) && env->interrupt_request == 0) {
353 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
354 ret = kqemu_cpu_exec(env);
355 /* put eflags in CPU temporary format */
356 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
357 DF = 1 - (2 * ((env->eflags >> 10) & 1));
358 CC_OP = CC_OP_EFLAGS;
359 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
362 longjmp(env->jmp_env, 1);
363 } else if (ret == 2) {
364 /* softmmu execution needed */
366 if (env->interrupt_request != 0) {
367 /* hardware interrupt will be executed just after */
369 /* otherwise, we restart */
370 longjmp(env->jmp_env, 1);
376 next_tb = 0; /* force lookup of first TB */
378 interrupt_request = env->interrupt_request;
379 if (__builtin_expect(interrupt_request, 0)
380 #if defined(TARGET_I386)
381 && env->hflags & HF_GIF_MASK
383 && likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) {
384 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
385 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
386 env->exception_index = EXCP_DEBUG;
389 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
390 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
391 if (interrupt_request & CPU_INTERRUPT_HALT) {
392 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
394 env->exception_index = EXCP_HLT;
398 #if defined(TARGET_I386)
399 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
400 !(env->hflags & HF_SMM_MASK)) {
401 svm_check_intercept(SVM_EXIT_SMI);
402 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
405 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
406 !(env->hflags & HF_NMI_MASK)) {
407 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
408 env->hflags |= HF_NMI_MASK;
409 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
411 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
412 (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
413 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
415 svm_check_intercept(SVM_EXIT_INTR);
416 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
417 intno = cpu_get_pic_interrupt(env);
418 if (loglevel & CPU_LOG_TB_IN_ASM) {
419 fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
421 do_interrupt(intno, 0, 0, 0, 1);
422 /* ensure that no TB jump will be modified as
423 the program flow was changed */
425 #if !defined(CONFIG_USER_ONLY)
426 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
427 (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
429 /* FIXME: this should respect TPR */
430 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
431 svm_check_intercept(SVM_EXIT_VINTR);
432 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
433 if (loglevel & CPU_LOG_TB_IN_ASM)
434 fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
435 do_interrupt(intno, 0, 0, -1, 1);
436 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
437 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
441 #elif defined(TARGET_PPC)
443 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
447 if (interrupt_request & CPU_INTERRUPT_HARD) {
448 ppc_hw_interrupt(env);
449 if (env->pending_interrupts == 0)
450 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453 #elif defined(TARGET_MIPS)
454 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
455 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
456 (env->CP0_Status & (1 << CP0St_IE)) &&
457 !(env->CP0_Status & (1 << CP0St_EXL)) &&
458 !(env->CP0_Status & (1 << CP0St_ERL)) &&
459 !(env->hflags & MIPS_HFLAG_DM)) {
461 env->exception_index = EXCP_EXT_INTERRUPT;
466 #elif defined(TARGET_SPARC)
467 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
469 int pil = env->interrupt_index & 15;
470 int type = env->interrupt_index & 0xf0;
472 if (((type == TT_EXTINT) &&
473 (pil == 15 || pil > env->psrpil)) ||
475 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
476 env->exception_index = env->interrupt_index;
478 env->interrupt_index = 0;
479 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
484 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
485 //do_interrupt(0, 0, 0, 0, 0);
486 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
488 #elif defined(TARGET_ARM)
489 if (interrupt_request & CPU_INTERRUPT_FIQ
490 && !(env->uncached_cpsr & CPSR_F)) {
491 env->exception_index = EXCP_FIQ;
495 /* ARMv7-M interrupt return works by loading a magic value
496 into the PC. On real hardware the load causes the
497 return to occur. The qemu implementation performs the
498 jump normally, then does the exception return when the
499 CPU tries to execute code at the magic address.
500 This will cause the magic PC value to be pushed to
501 the stack if an interrupt occured at the wrong time.
502 We avoid this by disabling interrupts when
503 pc contains a magic address. */
504 if (interrupt_request & CPU_INTERRUPT_HARD
505 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
506 || !(env->uncached_cpsr & CPSR_I))) {
507 env->exception_index = EXCP_IRQ;
511 #elif defined(TARGET_SH4)
512 if (interrupt_request & CPU_INTERRUPT_HARD) {
516 #elif defined(TARGET_ALPHA)
517 if (interrupt_request & CPU_INTERRUPT_HARD) {
521 #elif defined(TARGET_CRIS)
522 if (interrupt_request & CPU_INTERRUPT_HARD) {
526 #elif defined(TARGET_M68K)
527 if (interrupt_request & CPU_INTERRUPT_HARD
528 && ((env->sr & SR_I) >> SR_I_SHIFT)
529 < env->pending_level) {
530 /* Real hardware gets the interrupt vector via an
531 IACK cycle at this point. Current emulated
532 hardware doesn't rely on this, so we
533 provide/save the vector when the interrupt is
535 env->exception_index = env->pending_vector;
540 /* Don't use the cached interupt_request value,
541 do_interrupt may have updated the EXITTB flag. */
542 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
543 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
544 /* ensure that no TB jump will be modified as
545 the program flow was changed */
548 if (interrupt_request & CPU_INTERRUPT_EXIT) {
549 env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
550 env->exception_index = EXCP_INTERRUPT;
555 if ((loglevel & CPU_LOG_TB_CPU)) {
556 /* restore flags in standard format */
558 #if defined(TARGET_I386)
559 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
560 cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
561 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
562 #elif defined(TARGET_ARM)
563 cpu_dump_state(env, logfile, fprintf, 0);
564 #elif defined(TARGET_SPARC)
565 REGWPTR = env->regbase + (env->cwp * 16);
566 env->regwptr = REGWPTR;
567 cpu_dump_state(env, logfile, fprintf, 0);
568 #elif defined(TARGET_PPC)
569 cpu_dump_state(env, logfile, fprintf, 0);
570 #elif defined(TARGET_M68K)
571 cpu_m68k_flush_flags(env, env->cc_op);
572 env->cc_op = CC_OP_FLAGS;
573 env->sr = (env->sr & 0xffe0)
574 | env->cc_dest | (env->cc_x << 4);
575 cpu_dump_state(env, logfile, fprintf, 0);
576 #elif defined(TARGET_MIPS)
577 cpu_dump_state(env, logfile, fprintf, 0);
578 #elif defined(TARGET_SH4)
579 cpu_dump_state(env, logfile, fprintf, 0);
580 #elif defined(TARGET_ALPHA)
581 cpu_dump_state(env, logfile, fprintf, 0);
582 #elif defined(TARGET_CRIS)
583 cpu_dump_state(env, logfile, fprintf, 0);
585 #error unsupported target CPU
591 if ((loglevel & CPU_LOG_EXEC)) {
592 fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
593 (long)tb->tc_ptr, tb->pc,
594 lookup_symbol(tb->pc));
597 /* see if we can patch the calling TB. When the TB
598 spans two pages, we cannot safely do a direct
603 (env->kqemu_enabled != 2) &&
605 tb->page_addr[1] == -1) {
607 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
608 spin_unlock(&tb_lock);
612 env->current_tb = tb;
613 /* execute the generated code */
614 #if defined(__sparc__) && !defined(HOST_SOLARIS)
616 env = cpu_single_env;
617 #define env cpu_single_env
619 next_tb = tcg_qemu_tb_exec(tc_ptr);
620 env->current_tb = NULL;
621 /* reset soft MMU for next block (it can currently
622 only be set by a memory fault) */
623 #if defined(USE_KQEMU)
624 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
625 if (kqemu_is_ok(env) &&
626 (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
637 #if defined(TARGET_I386)
638 /* restore flags in standard format */
639 env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
640 #elif defined(TARGET_ARM)
641 /* XXX: Save/restore host fpu exception state?. */
642 #elif defined(TARGET_SPARC)
643 #if defined(reg_REGWPTR)
644 REGWPTR = saved_regwptr;
646 #elif defined(TARGET_PPC)
647 #elif defined(TARGET_M68K)
648 cpu_m68k_flush_flags(env, env->cc_op);
649 env->cc_op = CC_OP_FLAGS;
650 env->sr = (env->sr & 0xffe0)
651 | env->cc_dest | (env->cc_x << 4);
652 #elif defined(TARGET_MIPS)
653 #elif defined(TARGET_SH4)
654 #elif defined(TARGET_ALPHA)
655 #elif defined(TARGET_CRIS)
658 #error unsupported target CPU
661 /* restore global registers */
662 #include "hostregs_helper.h"
664 /* fail safe : never use cpu_single_env outside cpu_exec() */
665 cpu_single_env = NULL;
669 /* must only be called from the generated code as an exception can be
671 void tb_invalidate_page_range(target_ulong start, target_ulong end)
673 /* XXX: cannot enable it yet because it yields to MMU exception
674 where NIP != read address on PowerPC */
676 target_ulong phys_addr;
677 phys_addr = get_phys_addr_code(env, start);
678 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
682 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
684 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
686 CPUX86State *saved_env;
690 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
692 cpu_x86_load_seg_cache(env, seg_reg, selector,
693 (selector << 4), 0xffff, 0);
695 helper_load_seg(seg_reg, selector);
700 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
702 CPUX86State *saved_env;
707 helper_fsave(ptr, data32);
712 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
714 CPUX86State *saved_env;
719 helper_frstor(ptr, data32);
724 #endif /* TARGET_I386 */
726 #if !defined(CONFIG_SOFTMMU)
728 #if defined(TARGET_I386)
730 /* 'pc' is the host PC at which the exception was raised. 'address' is
731 the effective address of the memory exception. 'is_write' is 1 if a
732 write caused the exception and otherwise 0'. 'old_set' is the
733 signal set which should be restored */
734 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
735 int is_write, sigset_t *old_set,
738 TranslationBlock *tb;
742 env = cpu_single_env; /* XXX: find a correct solution for multithread */
743 #if defined(DEBUG_SIGNAL)
744 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
745 pc, address, is_write, *(unsigned long *)old_set);
747 /* XXX: locking issue */
748 if (is_write && page_unprotect(h2g(address), pc, puc)) {
752 /* see if it is an MMU fault */
753 ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
755 return 0; /* not an MMU fault */
757 return 1; /* the MMU fault was handled without causing real CPU fault */
758 /* now we have a real cpu fault */
761 /* the PC is inside the translated code. It means that we have
762 a virtual CPU fault */
763 cpu_restore_state(tb, env, pc, puc);
767 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
768 env->eip, env->cr[2], env->error_code);
770 /* we restore the process signal mask as the sigreturn should
771 do it (XXX: use sigsetjmp) */
772 sigprocmask(SIG_SETMASK, old_set, NULL);
773 raise_exception_err(env->exception_index, env->error_code);
775 /* activate soft MMU for this block */
776 env->hflags |= HF_SOFTMMU_MASK;
777 cpu_resume_from_signal(env, puc);
779 /* never comes here */
783 #elif defined(TARGET_ARM)
784 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
785 int is_write, sigset_t *old_set,
788 TranslationBlock *tb;
792 env = cpu_single_env; /* XXX: find a correct solution for multithread */
793 #if defined(DEBUG_SIGNAL)
794 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
795 pc, address, is_write, *(unsigned long *)old_set);
797 /* XXX: locking issue */
798 if (is_write && page_unprotect(h2g(address), pc, puc)) {
801 /* see if it is an MMU fault */
802 ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
804 return 0; /* not an MMU fault */
806 return 1; /* the MMU fault was handled without causing real CPU fault */
807 /* now we have a real cpu fault */
810 /* the PC is inside the translated code. It means that we have
811 a virtual CPU fault */
812 cpu_restore_state(tb, env, pc, puc);
814 /* we restore the process signal mask as the sigreturn should
815 do it (XXX: use sigsetjmp) */
816 sigprocmask(SIG_SETMASK, old_set, NULL);
818 /* never comes here */
821 #elif defined(TARGET_SPARC)
822 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
823 int is_write, sigset_t *old_set,
826 TranslationBlock *tb;
830 env = cpu_single_env; /* XXX: find a correct solution for multithread */
831 #if defined(DEBUG_SIGNAL)
832 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
833 pc, address, is_write, *(unsigned long *)old_set);
835 /* XXX: locking issue */
836 if (is_write && page_unprotect(h2g(address), pc, puc)) {
839 /* see if it is an MMU fault */
840 ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
842 return 0; /* not an MMU fault */
844 return 1; /* the MMU fault was handled without causing real CPU fault */
845 /* now we have a real cpu fault */
848 /* the PC is inside the translated code. It means that we have
849 a virtual CPU fault */
850 cpu_restore_state(tb, env, pc, puc);
852 /* we restore the process signal mask as the sigreturn should
853 do it (XXX: use sigsetjmp) */
854 sigprocmask(SIG_SETMASK, old_set, NULL);
856 /* never comes here */
859 #elif defined (TARGET_PPC)
860 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
861 int is_write, sigset_t *old_set,
864 TranslationBlock *tb;
868 env = cpu_single_env; /* XXX: find a correct solution for multithread */
869 #if defined(DEBUG_SIGNAL)
870 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
871 pc, address, is_write, *(unsigned long *)old_set);
873 /* XXX: locking issue */
874 if (is_write && page_unprotect(h2g(address), pc, puc)) {
878 /* see if it is an MMU fault */
879 ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
881 return 0; /* not an MMU fault */
883 return 1; /* the MMU fault was handled without causing real CPU fault */
885 /* now we have a real cpu fault */
888 /* the PC is inside the translated code. It means that we have
889 a virtual CPU fault */
890 cpu_restore_state(tb, env, pc, puc);
894 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
895 env->nip, env->error_code, tb);
897 /* we restore the process signal mask as the sigreturn should
898 do it (XXX: use sigsetjmp) */
899 sigprocmask(SIG_SETMASK, old_set, NULL);
900 do_raise_exception_err(env->exception_index, env->error_code);
902 /* activate soft MMU for this block */
903 cpu_resume_from_signal(env, puc);
905 /* never comes here */
909 #elif defined(TARGET_M68K)
910 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
911 int is_write, sigset_t *old_set,
914 TranslationBlock *tb;
918 env = cpu_single_env; /* XXX: find a correct solution for multithread */
919 #if defined(DEBUG_SIGNAL)
920 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
921 pc, address, is_write, *(unsigned long *)old_set);
923 /* XXX: locking issue */
924 if (is_write && page_unprotect(address, pc, puc)) {
927 /* see if it is an MMU fault */
928 ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
930 return 0; /* not an MMU fault */
932 return 1; /* the MMU fault was handled without causing real CPU fault */
933 /* now we have a real cpu fault */
936 /* the PC is inside the translated code. It means that we have
937 a virtual CPU fault */
938 cpu_restore_state(tb, env, pc, puc);
940 /* we restore the process signal mask as the sigreturn should
941 do it (XXX: use sigsetjmp) */
942 sigprocmask(SIG_SETMASK, old_set, NULL);
944 /* never comes here */
948 #elif defined (TARGET_MIPS)
949 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
950 int is_write, sigset_t *old_set,
953 TranslationBlock *tb;
957 env = cpu_single_env; /* XXX: find a correct solution for multithread */
958 #if defined(DEBUG_SIGNAL)
959 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
960 pc, address, is_write, *(unsigned long *)old_set);
962 /* XXX: locking issue */
963 if (is_write && page_unprotect(h2g(address), pc, puc)) {
967 /* see if it is an MMU fault */
968 ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
970 return 0; /* not an MMU fault */
972 return 1; /* the MMU fault was handled without causing real CPU fault */
974 /* now we have a real cpu fault */
977 /* the PC is inside the translated code. It means that we have
978 a virtual CPU fault */
979 cpu_restore_state(tb, env, pc, puc);
983 printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
984 env->PC, env->error_code, tb);
986 /* we restore the process signal mask as the sigreturn should
987 do it (XXX: use sigsetjmp) */
988 sigprocmask(SIG_SETMASK, old_set, NULL);
989 do_raise_exception_err(env->exception_index, env->error_code);
991 /* activate soft MMU for this block */
992 cpu_resume_from_signal(env, puc);
994 /* never comes here */
998 #elif defined (TARGET_SH4)
999 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1000 int is_write, sigset_t *old_set,
1003 TranslationBlock *tb;
1007 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1008 #if defined(DEBUG_SIGNAL)
1009 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1010 pc, address, is_write, *(unsigned long *)old_set);
1012 /* XXX: locking issue */
1013 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1017 /* see if it is an MMU fault */
1018 ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1020 return 0; /* not an MMU fault */
1022 return 1; /* the MMU fault was handled without causing real CPU fault */
1024 /* now we have a real cpu fault */
1025 tb = tb_find_pc(pc);
1027 /* the PC is inside the translated code. It means that we have
1028 a virtual CPU fault */
1029 cpu_restore_state(tb, env, pc, puc);
1032 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1033 env->nip, env->error_code, tb);
1035 /* we restore the process signal mask as the sigreturn should
1036 do it (XXX: use sigsetjmp) */
1037 sigprocmask(SIG_SETMASK, old_set, NULL);
1039 /* never comes here */
1043 #elif defined (TARGET_ALPHA)
1044 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1045 int is_write, sigset_t *old_set,
1048 TranslationBlock *tb;
1052 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1053 #if defined(DEBUG_SIGNAL)
1054 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1055 pc, address, is_write, *(unsigned long *)old_set);
1057 /* XXX: locking issue */
1058 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1062 /* see if it is an MMU fault */
1063 ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1065 return 0; /* not an MMU fault */
1067 return 1; /* the MMU fault was handled without causing real CPU fault */
1069 /* now we have a real cpu fault */
1070 tb = tb_find_pc(pc);
1072 /* the PC is inside the translated code. It means that we have
1073 a virtual CPU fault */
1074 cpu_restore_state(tb, env, pc, puc);
1077 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1078 env->nip, env->error_code, tb);
1080 /* we restore the process signal mask as the sigreturn should
1081 do it (XXX: use sigsetjmp) */
1082 sigprocmask(SIG_SETMASK, old_set, NULL);
1084 /* never comes here */
1087 #elif defined (TARGET_CRIS)
1088 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1089 int is_write, sigset_t *old_set,
1092 TranslationBlock *tb;
1096 env = cpu_single_env; /* XXX: find a correct solution for multithread */
1097 #if defined(DEBUG_SIGNAL)
1098 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1099 pc, address, is_write, *(unsigned long *)old_set);
1101 /* XXX: locking issue */
1102 if (is_write && page_unprotect(h2g(address), pc, puc)) {
1106 /* see if it is an MMU fault */
1107 ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
1109 return 0; /* not an MMU fault */
1111 return 1; /* the MMU fault was handled without causing real CPU fault */
1113 /* now we have a real cpu fault */
1114 tb = tb_find_pc(pc);
1116 /* the PC is inside the translated code. It means that we have
1117 a virtual CPU fault */
1118 cpu_restore_state(tb, env, pc, puc);
1120 /* we restore the process signal mask as the sigreturn should
1121 do it (XXX: use sigsetjmp) */
1122 sigprocmask(SIG_SETMASK, old_set, NULL);
1124 /* never comes here */
1129 #error unsupported target CPU
1132 #if defined(__i386__)
1134 #if defined(__APPLE__)
1135 # include <sys/ucontext.h>
1137 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1138 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1139 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1141 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1142 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1143 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1146 int cpu_signal_handler(int host_signum, void *pinfo,
1149 siginfo_t *info = pinfo;
1150 struct ucontext *uc = puc;
1158 #define REG_TRAPNO TRAPNO
1161 trapno = TRAP_sig(uc);
1162 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1164 (ERROR_sig(uc) >> 1) & 1 : 0,
1165 &uc->uc_sigmask, puc);
1168 #elif defined(__x86_64__)
1170 int cpu_signal_handler(int host_signum, void *pinfo,
1173 siginfo_t *info = pinfo;
1174 struct ucontext *uc = puc;
1177 pc = uc->uc_mcontext.gregs[REG_RIP];
1178 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1179 uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
1180 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1181 &uc->uc_sigmask, puc);
1184 #elif defined(__powerpc__)
1186 /***********************************************************************
1187 * signal context platform-specific definitions
1191 /* All Registers access - only for local access */
1192 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1193 /* Gpr Registers access */
1194 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1195 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1196 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1197 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1198 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1199 # define LR_sig(context) REG_sig(link, context) /* Link register */
1200 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1201 /* Float Registers access */
1202 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1203 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1204 /* Exception Registers access */
1205 # define DAR_sig(context) REG_sig(dar, context)
1206 # define DSISR_sig(context) REG_sig(dsisr, context)
1207 # define TRAP_sig(context) REG_sig(trap, context)
1211 # include <sys/ucontext.h>
1212 typedef struct ucontext SIGCONTEXT;
1213 /* All Registers access - only for local access */
1214 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1215 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1216 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1217 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1218 /* Gpr Registers access */
1219 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1220 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1221 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1222 # define CTR_sig(context) REG_sig(ctr, context)
1223 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1224 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1225 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1226 /* Float Registers access */
1227 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1228 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1229 /* Exception Registers access */
1230 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1231 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1232 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1233 #endif /* __APPLE__ */
1235 int cpu_signal_handler(int host_signum, void *pinfo,
1238 siginfo_t *info = pinfo;
1239 struct ucontext *uc = puc;
1247 if (DSISR_sig(uc) & 0x00800000)
1250 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1253 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1254 is_write, &uc->uc_sigmask, puc);
1257 #elif defined(__alpha__)
1259 int cpu_signal_handler(int host_signum, void *pinfo,
1262 siginfo_t *info = pinfo;
1263 struct ucontext *uc = puc;
1264 uint32_t *pc = uc->uc_mcontext.sc_pc;
1265 uint32_t insn = *pc;
1268 /* XXX: need kernel patch to get write flag faster */
1269 switch (insn >> 26) {
1284 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1285 is_write, &uc->uc_sigmask, puc);
1287 #elif defined(__sparc__)
1289 int cpu_signal_handler(int host_signum, void *pinfo,
1292 siginfo_t *info = pinfo;
1295 #if !defined(__arch64__) || defined(HOST_SOLARIS)
1296 uint32_t *regs = (uint32_t *)(info + 1);
1297 void *sigmask = (regs + 20);
1298 /* XXX: is there a standard glibc define ? */
1299 unsigned long pc = regs[1];
1301 struct sigcontext *sc = puc;
1302 unsigned long pc = sc->sigc_regs.tpc;
1303 void *sigmask = (void *)sc->sigc_mask;
1306 /* XXX: need kernel patch to get write flag faster */
1308 insn = *(uint32_t *)pc;
1309 if ((insn >> 30) == 3) {
1310 switch((insn >> 19) & 0x3f) {
1322 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1323 is_write, sigmask, NULL);
1326 #elif defined(__arm__)
1328 int cpu_signal_handler(int host_signum, void *pinfo,
1331 siginfo_t *info = pinfo;
1332 struct ucontext *uc = puc;
1336 pc = uc->uc_mcontext.arm_pc;
1337 /* XXX: compute is_write */
1339 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1341 &uc->uc_sigmask, puc);
1344 #elif defined(__mc68000)
1346 int cpu_signal_handler(int host_signum, void *pinfo,
1349 siginfo_t *info = pinfo;
1350 struct ucontext *uc = puc;
1354 pc = uc->uc_mcontext.gregs[16];
1355 /* XXX: compute is_write */
1357 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1359 &uc->uc_sigmask, puc);
1362 #elif defined(__ia64)
1365 /* This ought to be in <bits/siginfo.h>... */
1366 # define __ISR_VALID 1
1369 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1371 siginfo_t *info = pinfo;
1372 struct ucontext *uc = puc;
1376 ip = uc->uc_mcontext.sc_ip;
1377 switch (host_signum) {
1383 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1384 /* ISR.W (write-access) is bit 33: */
1385 is_write = (info->si_isr >> 33) & 1;
1391 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1393 &uc->uc_sigmask, puc);
1396 #elif defined(__s390__)
1398 int cpu_signal_handler(int host_signum, void *pinfo,
1401 siginfo_t *info = pinfo;
1402 struct ucontext *uc = puc;
1406 pc = uc->uc_mcontext.psw.addr;
1407 /* XXX: compute is_write */
1409 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1410 is_write, &uc->uc_sigmask, puc);
1413 #elif defined(__mips__)
1415 int cpu_signal_handler(int host_signum, void *pinfo,
1418 siginfo_t *info = pinfo;
1419 struct ucontext *uc = puc;
1420 greg_t pc = uc->uc_mcontext.pc;
1423 /* XXX: compute is_write */
1425 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1426 is_write, &uc->uc_sigmask, puc);
1429 #elif defined(__hppa__)
1431 int cpu_signal_handler(int host_signum, void *pinfo,
1434 struct siginfo *info = pinfo;
1435 struct ucontext *uc = puc;
1439 pc = uc->uc_mcontext.sc_iaoq[0];
1440 /* FIXME: compute is_write */
1442 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1444 &uc->uc_sigmask, puc);
1449 #error host CPU specific signal handler needed
1453 #endif /* !defined(CONFIG_SOFTMMU) */