Update FSF address in GPL/LGPL boilerplate
[sdk/emulator/qemu.git] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19  */
20 #ifndef CPU_ALL_H
21 #define CPU_ALL_H
22
23 #if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24 #define WORDS_ALIGNED
25 #endif
26
27 /* some important defines:
28  *
29  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30  * memory accesses.
31  *
32  * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33  * otherwise little endian.
34  *
35  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36  *
37  * TARGET_WORDS_BIGENDIAN : same for target cpu
38  */
39
40 #include "bswap.h"
41 #include "softfloat.h"
42
43 #if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46
47 #ifdef BSWAP_NEEDED
48
49 static inline uint16_t tswap16(uint16_t s)
50 {
51     return bswap16(s);
52 }
53
54 static inline uint32_t tswap32(uint32_t s)
55 {
56     return bswap32(s);
57 }
58
59 static inline uint64_t tswap64(uint64_t s)
60 {
61     return bswap64(s);
62 }
63
64 static inline void tswap16s(uint16_t *s)
65 {
66     *s = bswap16(*s);
67 }
68
69 static inline void tswap32s(uint32_t *s)
70 {
71     *s = bswap32(*s);
72 }
73
74 static inline void tswap64s(uint64_t *s)
75 {
76     *s = bswap64(*s);
77 }
78
79 #else
80
81 static inline uint16_t tswap16(uint16_t s)
82 {
83     return s;
84 }
85
86 static inline uint32_t tswap32(uint32_t s)
87 {
88     return s;
89 }
90
91 static inline uint64_t tswap64(uint64_t s)
92 {
93     return s;
94 }
95
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107
108 #endif
109
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119
120 typedef union {
121     float32 f;
122     uint32_t l;
123 } CPU_FloatU;
124
125 /* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126    endian ! */
127 typedef union {
128     float64 d;
129 #if defined(WORDS_BIGENDIAN) \
130     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131     struct {
132         uint32_t upper;
133         uint32_t lower;
134     } l;
135 #else
136     struct {
137         uint32_t lower;
138         uint32_t upper;
139     } l;
140 #endif
141     uint64_t ll;
142 } CPU_DoubleU;
143
144 #ifdef TARGET_SPARC
145 typedef union {
146     float128 q;
147 #if defined(WORDS_BIGENDIAN) \
148     || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149     struct {
150         uint32_t upmost;
151         uint32_t upper;
152         uint32_t lower;
153         uint32_t lowest;
154     } l;
155     struct {
156         uint64_t upper;
157         uint64_t lower;
158     } ll;
159 #else
160     struct {
161         uint32_t lowest;
162         uint32_t lower;
163         uint32_t upper;
164         uint32_t upmost;
165     } l;
166     struct {
167         uint64_t lower;
168         uint64_t upper;
169     } ll;
170 #endif
171 } CPU_QuadU;
172 #endif
173
174 /* CPU memory access without any memory or io remapping */
175
176 /*
177  * the generic syntax for the memory accesses is:
178  *
179  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180  *
181  * store: st{type}{size}{endian}_{access_type}(ptr, val)
182  *
183  * type is:
184  * (empty): integer access
185  *   f    : float access
186  *
187  * sign is:
188  * (empty): for floats or 32 bit size
189  *   u    : unsigned
190  *   s    : signed
191  *
192  * size is:
193  *   b: 8 bits
194  *   w: 16 bits
195  *   l: 32 bits
196  *   q: 64 bits
197  *
198  * endian is:
199  * (empty): target cpu endianness or 8 bit access
200  *   r    : reversed target cpu endianness (not implemented yet)
201  *   be   : big endian (not implemented yet)
202  *   le   : little endian (not implemented yet)
203  *
204  * access_type is:
205  *   raw    : host memory access
206  *   user   : user mode access using soft MMU
207  *   kernel : kernel mode access using soft MMU
208  */
209 static inline int ldub_p(const void *ptr)
210 {
211     return *(uint8_t *)ptr;
212 }
213
214 static inline int ldsb_p(const void *ptr)
215 {
216     return *(int8_t *)ptr;
217 }
218
219 static inline void stb_p(void *ptr, int v)
220 {
221     *(uint8_t *)ptr = v;
222 }
223
224 /* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225    kernel handles unaligned load/stores may give better results, but
226    it is a system wide setting : bad */
227 #if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228
229 /* conservative code for little endian unaligned accesses */
230 static inline int lduw_le_p(const void *ptr)
231 {
232 #ifdef __powerpc__
233     int val;
234     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235     return val;
236 #else
237     const uint8_t *p = ptr;
238     return p[0] | (p[1] << 8);
239 #endif
240 }
241
242 static inline int ldsw_le_p(const void *ptr)
243 {
244 #ifdef __powerpc__
245     int val;
246     __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
247     return (int16_t)val;
248 #else
249     const uint8_t *p = ptr;
250     return (int16_t)(p[0] | (p[1] << 8));
251 #endif
252 }
253
254 static inline int ldl_le_p(const void *ptr)
255 {
256 #ifdef __powerpc__
257     int val;
258     __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
259     return val;
260 #else
261     const uint8_t *p = ptr;
262     return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
263 #endif
264 }
265
266 static inline uint64_t ldq_le_p(const void *ptr)
267 {
268     const uint8_t *p = ptr;
269     uint32_t v1, v2;
270     v1 = ldl_le_p(p);
271     v2 = ldl_le_p(p + 4);
272     return v1 | ((uint64_t)v2 << 32);
273 }
274
275 static inline void stw_le_p(void *ptr, int v)
276 {
277 #ifdef __powerpc__
278     __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
279 #else
280     uint8_t *p = ptr;
281     p[0] = v;
282     p[1] = v >> 8;
283 #endif
284 }
285
286 static inline void stl_le_p(void *ptr, int v)
287 {
288 #ifdef __powerpc__
289     __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
290 #else
291     uint8_t *p = ptr;
292     p[0] = v;
293     p[1] = v >> 8;
294     p[2] = v >> 16;
295     p[3] = v >> 24;
296 #endif
297 }
298
299 static inline void stq_le_p(void *ptr, uint64_t v)
300 {
301     uint8_t *p = ptr;
302     stl_le_p(p, (uint32_t)v);
303     stl_le_p(p + 4, v >> 32);
304 }
305
306 /* float access */
307
308 static inline float32 ldfl_le_p(const void *ptr)
309 {
310     union {
311         float32 f;
312         uint32_t i;
313     } u;
314     u.i = ldl_le_p(ptr);
315     return u.f;
316 }
317
318 static inline void stfl_le_p(void *ptr, float32 v)
319 {
320     union {
321         float32 f;
322         uint32_t i;
323     } u;
324     u.f = v;
325     stl_le_p(ptr, u.i);
326 }
327
328 static inline float64 ldfq_le_p(const void *ptr)
329 {
330     CPU_DoubleU u;
331     u.l.lower = ldl_le_p(ptr);
332     u.l.upper = ldl_le_p(ptr + 4);
333     return u.d;
334 }
335
336 static inline void stfq_le_p(void *ptr, float64 v)
337 {
338     CPU_DoubleU u;
339     u.d = v;
340     stl_le_p(ptr, u.l.lower);
341     stl_le_p(ptr + 4, u.l.upper);
342 }
343
344 #else
345
346 static inline int lduw_le_p(const void *ptr)
347 {
348     return *(uint16_t *)ptr;
349 }
350
351 static inline int ldsw_le_p(const void *ptr)
352 {
353     return *(int16_t *)ptr;
354 }
355
356 static inline int ldl_le_p(const void *ptr)
357 {
358     return *(uint32_t *)ptr;
359 }
360
361 static inline uint64_t ldq_le_p(const void *ptr)
362 {
363     return *(uint64_t *)ptr;
364 }
365
366 static inline void stw_le_p(void *ptr, int v)
367 {
368     *(uint16_t *)ptr = v;
369 }
370
371 static inline void stl_le_p(void *ptr, int v)
372 {
373     *(uint32_t *)ptr = v;
374 }
375
376 static inline void stq_le_p(void *ptr, uint64_t v)
377 {
378     *(uint64_t *)ptr = v;
379 }
380
381 /* float access */
382
383 static inline float32 ldfl_le_p(const void *ptr)
384 {
385     return *(float32 *)ptr;
386 }
387
388 static inline float64 ldfq_le_p(const void *ptr)
389 {
390     return *(float64 *)ptr;
391 }
392
393 static inline void stfl_le_p(void *ptr, float32 v)
394 {
395     *(float32 *)ptr = v;
396 }
397
398 static inline void stfq_le_p(void *ptr, float64 v)
399 {
400     *(float64 *)ptr = v;
401 }
402 #endif
403
404 #if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
405
406 static inline int lduw_be_p(const void *ptr)
407 {
408 #if defined(__i386__)
409     int val;
410     asm volatile ("movzwl %1, %0\n"
411                   "xchgb %b0, %h0\n"
412                   : "=q" (val)
413                   : "m" (*(uint16_t *)ptr));
414     return val;
415 #else
416     const uint8_t *b = ptr;
417     return ((b[0] << 8) | b[1]);
418 #endif
419 }
420
421 static inline int ldsw_be_p(const void *ptr)
422 {
423 #if defined(__i386__)
424     int val;
425     asm volatile ("movzwl %1, %0\n"
426                   "xchgb %b0, %h0\n"
427                   : "=q" (val)
428                   : "m" (*(uint16_t *)ptr));
429     return (int16_t)val;
430 #else
431     const uint8_t *b = ptr;
432     return (int16_t)((b[0] << 8) | b[1]);
433 #endif
434 }
435
436 static inline int ldl_be_p(const void *ptr)
437 {
438 #if defined(__i386__) || defined(__x86_64__)
439     int val;
440     asm volatile ("movl %1, %0\n"
441                   "bswap %0\n"
442                   : "=r" (val)
443                   : "m" (*(uint32_t *)ptr));
444     return val;
445 #else
446     const uint8_t *b = ptr;
447     return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
448 #endif
449 }
450
451 static inline uint64_t ldq_be_p(const void *ptr)
452 {
453     uint32_t a,b;
454     a = ldl_be_p(ptr);
455     b = ldl_be_p((uint8_t *)ptr + 4);
456     return (((uint64_t)a<<32)|b);
457 }
458
459 static inline void stw_be_p(void *ptr, int v)
460 {
461 #if defined(__i386__)
462     asm volatile ("xchgb %b0, %h0\n"
463                   "movw %w0, %1\n"
464                   : "=q" (v)
465                   : "m" (*(uint16_t *)ptr), "0" (v));
466 #else
467     uint8_t *d = (uint8_t *) ptr;
468     d[0] = v >> 8;
469     d[1] = v;
470 #endif
471 }
472
473 static inline void stl_be_p(void *ptr, int v)
474 {
475 #if defined(__i386__) || defined(__x86_64__)
476     asm volatile ("bswap %0\n"
477                   "movl %0, %1\n"
478                   : "=r" (v)
479                   : "m" (*(uint32_t *)ptr), "0" (v));
480 #else
481     uint8_t *d = (uint8_t *) ptr;
482     d[0] = v >> 24;
483     d[1] = v >> 16;
484     d[2] = v >> 8;
485     d[3] = v;
486 #endif
487 }
488
489 static inline void stq_be_p(void *ptr, uint64_t v)
490 {
491     stl_be_p(ptr, v >> 32);
492     stl_be_p((uint8_t *)ptr + 4, v);
493 }
494
495 /* float access */
496
497 static inline float32 ldfl_be_p(const void *ptr)
498 {
499     union {
500         float32 f;
501         uint32_t i;
502     } u;
503     u.i = ldl_be_p(ptr);
504     return u.f;
505 }
506
507 static inline void stfl_be_p(void *ptr, float32 v)
508 {
509     union {
510         float32 f;
511         uint32_t i;
512     } u;
513     u.f = v;
514     stl_be_p(ptr, u.i);
515 }
516
517 static inline float64 ldfq_be_p(const void *ptr)
518 {
519     CPU_DoubleU u;
520     u.l.upper = ldl_be_p(ptr);
521     u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
522     return u.d;
523 }
524
525 static inline void stfq_be_p(void *ptr, float64 v)
526 {
527     CPU_DoubleU u;
528     u.d = v;
529     stl_be_p(ptr, u.l.upper);
530     stl_be_p((uint8_t *)ptr + 4, u.l.lower);
531 }
532
533 #else
534
535 static inline int lduw_be_p(const void *ptr)
536 {
537     return *(uint16_t *)ptr;
538 }
539
540 static inline int ldsw_be_p(const void *ptr)
541 {
542     return *(int16_t *)ptr;
543 }
544
545 static inline int ldl_be_p(const void *ptr)
546 {
547     return *(uint32_t *)ptr;
548 }
549
550 static inline uint64_t ldq_be_p(const void *ptr)
551 {
552     return *(uint64_t *)ptr;
553 }
554
555 static inline void stw_be_p(void *ptr, int v)
556 {
557     *(uint16_t *)ptr = v;
558 }
559
560 static inline void stl_be_p(void *ptr, int v)
561 {
562     *(uint32_t *)ptr = v;
563 }
564
565 static inline void stq_be_p(void *ptr, uint64_t v)
566 {
567     *(uint64_t *)ptr = v;
568 }
569
570 /* float access */
571
572 static inline float32 ldfl_be_p(const void *ptr)
573 {
574     return *(float32 *)ptr;
575 }
576
577 static inline float64 ldfq_be_p(const void *ptr)
578 {
579     return *(float64 *)ptr;
580 }
581
582 static inline void stfl_be_p(void *ptr, float32 v)
583 {
584     *(float32 *)ptr = v;
585 }
586
587 static inline void stfq_be_p(void *ptr, float64 v)
588 {
589     *(float64 *)ptr = v;
590 }
591
592 #endif
593
594 /* target CPU memory access functions */
595 #if defined(TARGET_WORDS_BIGENDIAN)
596 #define lduw_p(p) lduw_be_p(p)
597 #define ldsw_p(p) ldsw_be_p(p)
598 #define ldl_p(p) ldl_be_p(p)
599 #define ldq_p(p) ldq_be_p(p)
600 #define ldfl_p(p) ldfl_be_p(p)
601 #define ldfq_p(p) ldfq_be_p(p)
602 #define stw_p(p, v) stw_be_p(p, v)
603 #define stl_p(p, v) stl_be_p(p, v)
604 #define stq_p(p, v) stq_be_p(p, v)
605 #define stfl_p(p, v) stfl_be_p(p, v)
606 #define stfq_p(p, v) stfq_be_p(p, v)
607 #else
608 #define lduw_p(p) lduw_le_p(p)
609 #define ldsw_p(p) ldsw_le_p(p)
610 #define ldl_p(p) ldl_le_p(p)
611 #define ldq_p(p) ldq_le_p(p)
612 #define ldfl_p(p) ldfl_le_p(p)
613 #define ldfq_p(p) ldfq_le_p(p)
614 #define stw_p(p, v) stw_le_p(p, v)
615 #define stl_p(p, v) stl_le_p(p, v)
616 #define stq_p(p, v) stq_le_p(p, v)
617 #define stfl_p(p, v) stfl_le_p(p, v)
618 #define stfq_p(p, v) stfq_le_p(p, v)
619 #endif
620
621 /* MMU memory access macros */
622
623 #if defined(CONFIG_USER_ONLY)
624 #include <assert.h>
625 #include "qemu-types.h"
626
627 /* On some host systems the guest address space is reserved on the host.
628  * This allows the guest address space to be offset to a convenient location.
629  */
630 //#define GUEST_BASE 0x20000000
631 #define GUEST_BASE 0
632
633 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
634 #define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
635 #define h2g(x) ({ \
636     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
637     /* Check if given address fits target address space */ \
638     assert(__ret == (abi_ulong)__ret); \
639     (abi_ulong)__ret; \
640 })
641 #define h2g_valid(x) ({ \
642     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
643     (__guest == (abi_ulong)__guest); \
644 })
645
646 #define saddr(x) g2h(x)
647 #define laddr(x) g2h(x)
648
649 #else /* !CONFIG_USER_ONLY */
650 /* NOTE: we use double casts if pointers and target_ulong have
651    different sizes */
652 #define saddr(x) (uint8_t *)(long)(x)
653 #define laddr(x) (uint8_t *)(long)(x)
654 #endif
655
656 #define ldub_raw(p) ldub_p(laddr((p)))
657 #define ldsb_raw(p) ldsb_p(laddr((p)))
658 #define lduw_raw(p) lduw_p(laddr((p)))
659 #define ldsw_raw(p) ldsw_p(laddr((p)))
660 #define ldl_raw(p) ldl_p(laddr((p)))
661 #define ldq_raw(p) ldq_p(laddr((p)))
662 #define ldfl_raw(p) ldfl_p(laddr((p)))
663 #define ldfq_raw(p) ldfq_p(laddr((p)))
664 #define stb_raw(p, v) stb_p(saddr((p)), v)
665 #define stw_raw(p, v) stw_p(saddr((p)), v)
666 #define stl_raw(p, v) stl_p(saddr((p)), v)
667 #define stq_raw(p, v) stq_p(saddr((p)), v)
668 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
669 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
670
671
672 #if defined(CONFIG_USER_ONLY)
673
674 /* if user mode, no other memory access functions */
675 #define ldub(p) ldub_raw(p)
676 #define ldsb(p) ldsb_raw(p)
677 #define lduw(p) lduw_raw(p)
678 #define ldsw(p) ldsw_raw(p)
679 #define ldl(p) ldl_raw(p)
680 #define ldq(p) ldq_raw(p)
681 #define ldfl(p) ldfl_raw(p)
682 #define ldfq(p) ldfq_raw(p)
683 #define stb(p, v) stb_raw(p, v)
684 #define stw(p, v) stw_raw(p, v)
685 #define stl(p, v) stl_raw(p, v)
686 #define stq(p, v) stq_raw(p, v)
687 #define stfl(p, v) stfl_raw(p, v)
688 #define stfq(p, v) stfq_raw(p, v)
689
690 #define ldub_code(p) ldub_raw(p)
691 #define ldsb_code(p) ldsb_raw(p)
692 #define lduw_code(p) lduw_raw(p)
693 #define ldsw_code(p) ldsw_raw(p)
694 #define ldl_code(p) ldl_raw(p)
695 #define ldq_code(p) ldq_raw(p)
696
697 #define ldub_kernel(p) ldub_raw(p)
698 #define ldsb_kernel(p) ldsb_raw(p)
699 #define lduw_kernel(p) lduw_raw(p)
700 #define ldsw_kernel(p) ldsw_raw(p)
701 #define ldl_kernel(p) ldl_raw(p)
702 #define ldq_kernel(p) ldq_raw(p)
703 #define ldfl_kernel(p) ldfl_raw(p)
704 #define ldfq_kernel(p) ldfq_raw(p)
705 #define stb_kernel(p, v) stb_raw(p, v)
706 #define stw_kernel(p, v) stw_raw(p, v)
707 #define stl_kernel(p, v) stl_raw(p, v)
708 #define stq_kernel(p, v) stq_raw(p, v)
709 #define stfl_kernel(p, v) stfl_raw(p, v)
710 #define stfq_kernel(p, vt) stfq_raw(p, v)
711
712 #endif /* defined(CONFIG_USER_ONLY) */
713
714 /* page related stuff */
715
716 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
717 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
718 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
719
720 /* ??? These should be the larger of unsigned long and target_ulong.  */
721 extern unsigned long qemu_real_host_page_size;
722 extern unsigned long qemu_host_page_bits;
723 extern unsigned long qemu_host_page_size;
724 extern unsigned long qemu_host_page_mask;
725
726 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
727
728 /* same as PROT_xxx */
729 #define PAGE_READ      0x0001
730 #define PAGE_WRITE     0x0002
731 #define PAGE_EXEC      0x0004
732 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
733 #define PAGE_VALID     0x0008
734 /* original state of the write flag (used when tracking self-modifying
735    code */
736 #define PAGE_WRITE_ORG 0x0010
737 #define PAGE_RESERVED  0x0020
738
739 void page_dump(FILE *f);
740 int page_get_flags(target_ulong address);
741 void page_set_flags(target_ulong start, target_ulong end, int flags);
742 int page_check_range(target_ulong start, target_ulong len, int flags);
743
744 void cpu_exec_init_all(unsigned long tb_size);
745 CPUState *cpu_copy(CPUState *env);
746
747 void cpu_dump_state(CPUState *env, FILE *f,
748                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
749                     int flags);
750 void cpu_dump_statistics (CPUState *env, FILE *f,
751                           int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
752                           int flags);
753
754 void cpu_abort(CPUState *env, const char *fmt, ...)
755     __attribute__ ((__format__ (__printf__, 2, 3)))
756     __attribute__ ((__noreturn__));
757 extern CPUState *first_cpu;
758 extern CPUState *cpu_single_env;
759 extern int64_t qemu_icount;
760 extern int use_icount;
761
762 #define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
763 #define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
764 #define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
765 #define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
766 #define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
767 #define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
768 #define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
769 #define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
770 #define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
771 #define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
772
773 void cpu_interrupt(CPUState *s, int mask);
774 void cpu_reset_interrupt(CPUState *env, int mask);
775
776 /* Breakpoint/watchpoint flags */
777 #define BP_MEM_READ           0x01
778 #define BP_MEM_WRITE          0x02
779 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
780 #define BP_STOP_BEFORE_ACCESS 0x04
781 #define BP_WATCHPOINT_HIT     0x08
782 #define BP_GDB                0x10
783 #define BP_CPU                0x20
784
785 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
786                           CPUBreakpoint **breakpoint);
787 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
788 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
789 void cpu_breakpoint_remove_all(CPUState *env, int mask);
790 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
791                           int flags, CPUWatchpoint **watchpoint);
792 int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
793                           target_ulong len, int flags);
794 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
795 void cpu_watchpoint_remove_all(CPUState *env, int mask);
796
797 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
798 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
799 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
800
801 void cpu_single_step(CPUState *env, int enabled);
802 void cpu_reset(CPUState *s);
803
804 /* Return the physical page corresponding to a virtual one. Use it
805    only for debugging because no protection checks are done. Return -1
806    if no page found. */
807 target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
808
809 #define CPU_LOG_TB_OUT_ASM (1 << 0)
810 #define CPU_LOG_TB_IN_ASM  (1 << 1)
811 #define CPU_LOG_TB_OP      (1 << 2)
812 #define CPU_LOG_TB_OP_OPT  (1 << 3)
813 #define CPU_LOG_INT        (1 << 4)
814 #define CPU_LOG_EXEC       (1 << 5)
815 #define CPU_LOG_PCALL      (1 << 6)
816 #define CPU_LOG_IOPORT     (1 << 7)
817 #define CPU_LOG_TB_CPU     (1 << 8)
818
819 /* define log items */
820 typedef struct CPULogItem {
821     int mask;
822     const char *name;
823     const char *help;
824 } CPULogItem;
825
826 extern const CPULogItem cpu_log_items[];
827
828 void cpu_set_log(int log_flags);
829 void cpu_set_log_filename(const char *filename);
830 int cpu_str_to_log_mask(const char *str);
831
832 /* IO ports API */
833
834 /* NOTE: as these functions may be even used when there is an isa
835    brige on non x86 targets, we always defined them */
836 #ifndef NO_CPU_IO_DEFS
837 void cpu_outb(CPUState *env, int addr, int val);
838 void cpu_outw(CPUState *env, int addr, int val);
839 void cpu_outl(CPUState *env, int addr, int val);
840 int cpu_inb(CPUState *env, int addr);
841 int cpu_inw(CPUState *env, int addr);
842 int cpu_inl(CPUState *env, int addr);
843 #endif
844
845 /* address in the RAM (different from a physical address) */
846 #ifdef USE_KQEMU
847 typedef uint32_t ram_addr_t;
848 #else
849 typedef unsigned long ram_addr_t;
850 #endif
851
852 /* memory API */
853
854 extern ram_addr_t phys_ram_size;
855 extern int phys_ram_fd;
856 extern uint8_t *phys_ram_base;
857 extern uint8_t *phys_ram_dirty;
858 extern ram_addr_t ram_size;
859
860 /* physical memory access */
861
862 /* MMIO pages are identified by a combination of an IO device index and
863    3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
864    so only a limited number of ids are avaiable.  */
865
866 #define IO_MEM_SHIFT       3
867 #define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
868
869 #define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
870 #define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
871 #define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
872 #define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
873
874 /* Acts like a ROM when read and like a device when written.  */
875 #define IO_MEM_ROMD        (1)
876 #define IO_MEM_SUBPAGE     (2)
877 #define IO_MEM_SUBWIDTH    (4)
878
879 /* Flags stored in the low bits of the TLB virtual address.  These are
880    defined so that fast path ram access is all zeros.  */
881 /* Zero if TLB entry is valid.  */
882 #define TLB_INVALID_MASK   (1 << 3)
883 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
884    contain the page physical address.  */
885 #define TLB_NOTDIRTY    (1 << 4)
886 /* Set if TLB entry is an IO callback.  */
887 #define TLB_MMIO        (1 << 5)
888
889 typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
890 typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
891
892 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
893                                          ram_addr_t size,
894                                          ram_addr_t phys_offset,
895                                          ram_addr_t region_offset);
896 static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
897                                                 ram_addr_t size,
898                                                 ram_addr_t phys_offset)
899 {
900     cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
901 }
902
903 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
904 ram_addr_t qemu_ram_alloc(ram_addr_t);
905 void qemu_ram_free(ram_addr_t addr);
906 int cpu_register_io_memory(int io_index,
907                            CPUReadMemoryFunc **mem_read,
908                            CPUWriteMemoryFunc **mem_write,
909                            void *opaque);
910 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
911 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
912
913 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
914                             int len, int is_write);
915 static inline void cpu_physical_memory_read(target_phys_addr_t addr,
916                                             uint8_t *buf, int len)
917 {
918     cpu_physical_memory_rw(addr, buf, len, 0);
919 }
920 static inline void cpu_physical_memory_write(target_phys_addr_t addr,
921                                              const uint8_t *buf, int len)
922 {
923     cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
924 }
925 uint32_t ldub_phys(target_phys_addr_t addr);
926 uint32_t lduw_phys(target_phys_addr_t addr);
927 uint32_t ldl_phys(target_phys_addr_t addr);
928 uint64_t ldq_phys(target_phys_addr_t addr);
929 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
930 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
931 void stb_phys(target_phys_addr_t addr, uint32_t val);
932 void stw_phys(target_phys_addr_t addr, uint32_t val);
933 void stl_phys(target_phys_addr_t addr, uint32_t val);
934 void stq_phys(target_phys_addr_t addr, uint64_t val);
935
936 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
937                                    const uint8_t *buf, int len);
938 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
939                         uint8_t *buf, int len, int is_write);
940
941 #define VGA_DIRTY_FLAG       0x01
942 #define CODE_DIRTY_FLAG      0x02
943 #define KQEMU_DIRTY_FLAG     0x04
944 #define MIGRATION_DIRTY_FLAG 0x08
945
946 /* read dirty bit (return 0 or 1) */
947 static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
948 {
949     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
950 }
951
952 static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
953                                                 int dirty_flags)
954 {
955     return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
956 }
957
958 static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
959 {
960     phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
961 }
962
963 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
964                                      int dirty_flags);
965 void cpu_tlb_update_dirty(CPUState *env);
966
967 int cpu_physical_memory_set_dirty_tracking(int enable);
968
969 int cpu_physical_memory_get_dirty_tracking(void);
970
971 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
972
973 void dump_exec_info(FILE *f,
974                     int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
975
976 /* Coalesced MMIO regions are areas where write operations can be reordered.
977  * This usually implies that write operations are side-effect free.  This allows
978  * batching which can make a major impact on performance when using
979  * virtualization.
980  */
981 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
982
983 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
984
985 /*******************************************/
986 /* host CPU ticks (if available) */
987
988 #if defined(__powerpc__)
989
990 static inline uint32_t get_tbl(void)
991 {
992     uint32_t tbl;
993     asm volatile("mftb %0" : "=r" (tbl));
994     return tbl;
995 }
996
997 static inline uint32_t get_tbu(void)
998 {
999         uint32_t tbl;
1000         asm volatile("mftbu %0" : "=r" (tbl));
1001         return tbl;
1002 }
1003
1004 static inline int64_t cpu_get_real_ticks(void)
1005 {
1006     uint32_t l, h, h1;
1007     /* NOTE: we test if wrapping has occurred */
1008     do {
1009         h = get_tbu();
1010         l = get_tbl();
1011         h1 = get_tbu();
1012     } while (h != h1);
1013     return ((int64_t)h << 32) | l;
1014 }
1015
1016 #elif defined(__i386__)
1017
1018 static inline int64_t cpu_get_real_ticks(void)
1019 {
1020     int64_t val;
1021     asm volatile ("rdtsc" : "=A" (val));
1022     return val;
1023 }
1024
1025 #elif defined(__x86_64__)
1026
1027 static inline int64_t cpu_get_real_ticks(void)
1028 {
1029     uint32_t low,high;
1030     int64_t val;
1031     asm volatile("rdtsc" : "=a" (low), "=d" (high));
1032     val = high;
1033     val <<= 32;
1034     val |= low;
1035     return val;
1036 }
1037
1038 #elif defined(__hppa__)
1039
1040 static inline int64_t cpu_get_real_ticks(void)
1041 {
1042     int val;
1043     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1044     return val;
1045 }
1046
1047 #elif defined(__ia64)
1048
1049 static inline int64_t cpu_get_real_ticks(void)
1050 {
1051         int64_t val;
1052         asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1053         return val;
1054 }
1055
1056 #elif defined(__s390__)
1057
1058 static inline int64_t cpu_get_real_ticks(void)
1059 {
1060     int64_t val;
1061     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1062     return val;
1063 }
1064
1065 #elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1066
1067 static inline int64_t cpu_get_real_ticks (void)
1068 {
1069 #if     defined(_LP64)
1070         uint64_t        rval;
1071         asm volatile("rd %%tick,%0" : "=r"(rval));
1072         return rval;
1073 #else
1074         union {
1075                 uint64_t i64;
1076                 struct {
1077                         uint32_t high;
1078                         uint32_t low;
1079                 }       i32;
1080         } rval;
1081         asm volatile("rd %%tick,%1; srlx %1,32,%0"
1082                 : "=r"(rval.i32.high), "=r"(rval.i32.low));
1083         return rval.i64;
1084 #endif
1085 }
1086
1087 #elif defined(__mips__)
1088
1089 static inline int64_t cpu_get_real_ticks(void)
1090 {
1091 #if __mips_isa_rev >= 2
1092     uint32_t count;
1093     static uint32_t cyc_per_count = 0;
1094
1095     if (!cyc_per_count)
1096         __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1097
1098     __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1099     return (int64_t)(count * cyc_per_count);
1100 #else
1101     /* FIXME */
1102     static int64_t ticks = 0;
1103     return ticks++;
1104 #endif
1105 }
1106
1107 #else
1108 /* The host CPU doesn't have an easily accessible cycle counter.
1109    Just return a monotonically increasing value.  This will be
1110    totally wrong, but hopefully better than nothing.  */
1111 static inline int64_t cpu_get_real_ticks (void)
1112 {
1113     static int64_t ticks = 0;
1114     return ticks++;
1115 }
1116 #endif
1117
1118 /* profiling */
1119 #ifdef CONFIG_PROFILER
1120 static inline int64_t profile_getclock(void)
1121 {
1122     return cpu_get_real_ticks();
1123 }
1124
1125 extern int64_t kqemu_time, kqemu_time_start;
1126 extern int64_t qemu_time, qemu_time_start;
1127 extern int64_t tlb_flush_time;
1128 extern int64_t kqemu_exec_count;
1129 extern int64_t dev_time;
1130 extern int64_t kqemu_ret_int_count;
1131 extern int64_t kqemu_ret_excp_count;
1132 extern int64_t kqemu_ret_intr_count;
1133 #endif
1134
1135 #endif /* CPU_ALL_H */