Merge "package: version up" into develop
[sdk/emulator/qemu.git] / cpu-all.h
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21
22 #include "qemu-common.h"
23 #include "qemu-tls.h"
24 #include "cpu-common.h"
25
26 /* some important defines:
27  *
28  * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
29  * memory accesses.
30  *
31  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
32  * otherwise little endian.
33  *
34  * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
35  *
36  * TARGET_WORDS_BIGENDIAN : same for target cpu
37  */
38
39 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
40 #define BSWAP_NEEDED
41 #endif
42
43 #ifdef BSWAP_NEEDED
44
45 static inline uint16_t tswap16(uint16_t s)
46 {
47     return bswap16(s);
48 }
49
50 static inline uint32_t tswap32(uint32_t s)
51 {
52     return bswap32(s);
53 }
54
55 static inline uint64_t tswap64(uint64_t s)
56 {
57     return bswap64(s);
58 }
59
60 static inline void tswap16s(uint16_t *s)
61 {
62     *s = bswap16(*s);
63 }
64
65 static inline void tswap32s(uint32_t *s)
66 {
67     *s = bswap32(*s);
68 }
69
70 static inline void tswap64s(uint64_t *s)
71 {
72     *s = bswap64(*s);
73 }
74
75 #else
76
77 static inline uint16_t tswap16(uint16_t s)
78 {
79     return s;
80 }
81
82 static inline uint32_t tswap32(uint32_t s)
83 {
84     return s;
85 }
86
87 static inline uint64_t tswap64(uint64_t s)
88 {
89     return s;
90 }
91
92 static inline void tswap16s(uint16_t *s)
93 {
94 }
95
96 static inline void tswap32s(uint32_t *s)
97 {
98 }
99
100 static inline void tswap64s(uint64_t *s)
101 {
102 }
103
104 #endif
105
106 #if TARGET_LONG_SIZE == 4
107 #define tswapl(s) tswap32(s)
108 #define tswapls(s) tswap32s((uint32_t *)(s))
109 #define bswaptls(s) bswap32s(s)
110 #else
111 #define tswapl(s) tswap64(s)
112 #define tswapls(s) tswap64s((uint64_t *)(s))
113 #define bswaptls(s) bswap64s(s)
114 #endif
115
116 /* CPU memory access without any memory or io remapping */
117
118 /*
119  * the generic syntax for the memory accesses is:
120  *
121  * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
122  *
123  * store: st{type}{size}{endian}_{access_type}(ptr, val)
124  *
125  * type is:
126  * (empty): integer access
127  *   f    : float access
128  *
129  * sign is:
130  * (empty): for floats or 32 bit size
131  *   u    : unsigned
132  *   s    : signed
133  *
134  * size is:
135  *   b: 8 bits
136  *   w: 16 bits
137  *   l: 32 bits
138  *   q: 64 bits
139  *
140  * endian is:
141  * (empty): target cpu endianness or 8 bit access
142  *   r    : reversed target cpu endianness (not implemented yet)
143  *   be   : big endian (not implemented yet)
144  *   le   : little endian (not implemented yet)
145  *
146  * access_type is:
147  *   raw    : host memory access
148  *   user   : user mode access using soft MMU
149  *   kernel : kernel mode access using soft MMU
150  */
151
152 /* target-endianness CPU memory access functions */
153 #if defined(TARGET_WORDS_BIGENDIAN)
154 #define lduw_p(p) lduw_be_p(p)
155 #define ldsw_p(p) ldsw_be_p(p)
156 #define ldl_p(p) ldl_be_p(p)
157 #define ldq_p(p) ldq_be_p(p)
158 #define ldfl_p(p) ldfl_be_p(p)
159 #define ldfq_p(p) ldfq_be_p(p)
160 #define stw_p(p, v) stw_be_p(p, v)
161 #define stl_p(p, v) stl_be_p(p, v)
162 #define stq_p(p, v) stq_be_p(p, v)
163 #define stfl_p(p, v) stfl_be_p(p, v)
164 #define stfq_p(p, v) stfq_be_p(p, v)
165 #else
166 #define lduw_p(p) lduw_le_p(p)
167 #define ldsw_p(p) ldsw_le_p(p)
168 #define ldl_p(p) ldl_le_p(p)
169 #define ldq_p(p) ldq_le_p(p)
170 #define ldfl_p(p) ldfl_le_p(p)
171 #define ldfq_p(p) ldfq_le_p(p)
172 #define stw_p(p, v) stw_le_p(p, v)
173 #define stl_p(p, v) stl_le_p(p, v)
174 #define stq_p(p, v) stq_le_p(p, v)
175 #define stfl_p(p, v) stfl_le_p(p, v)
176 #define stfq_p(p, v) stfq_le_p(p, v)
177 #endif
178
179 /* MMU memory access macros */
180
181 #if defined(CONFIG_USER_ONLY)
182 #include <assert.h>
183 #include "qemu-types.h"
184
185 /* On some host systems the guest address space is reserved on the host.
186  * This allows the guest address space to be offset to a convenient location.
187  */
188 #if defined(CONFIG_USE_GUEST_BASE)
189 extern unsigned long guest_base;
190 extern int have_guest_base;
191 extern unsigned long reserved_va;
192 #define GUEST_BASE guest_base
193 #define RESERVED_VA reserved_va
194 #else
195 #define GUEST_BASE 0ul
196 #define RESERVED_VA 0ul
197 #endif
198
199 /* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
200 #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE))
201
202 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
203 #define h2g_valid(x) 1
204 #else
205 #define h2g_valid(x) ({ \
206     unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
207     (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \
208     (!RESERVED_VA || (__guest < RESERVED_VA)); \
209 })
210 #endif
211
212 #define h2g(x) ({ \
213     unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
214     /* Check if given address fits target address space */ \
215     assert(h2g_valid(x)); \
216     (abi_ulong)__ret; \
217 })
218
219 #define saddr(x) g2h(x)
220 #define laddr(x) g2h(x)
221
222 #else /* !CONFIG_USER_ONLY */
223 /* NOTE: we use double casts if pointers and target_ulong have
224    different sizes */
225 #define saddr(x) (uint8_t *)(intptr_t)(x)
226 #define laddr(x) (uint8_t *)(intptr_t)(x)
227 #endif
228
229 #define ldub_raw(p) ldub_p(laddr((p)))
230 #define ldsb_raw(p) ldsb_p(laddr((p)))
231 #define lduw_raw(p) lduw_p(laddr((p)))
232 #define ldsw_raw(p) ldsw_p(laddr((p)))
233 #define ldl_raw(p) ldl_p(laddr((p)))
234 #define ldq_raw(p) ldq_p(laddr((p)))
235 #define ldfl_raw(p) ldfl_p(laddr((p)))
236 #define ldfq_raw(p) ldfq_p(laddr((p)))
237 #define stb_raw(p, v) stb_p(saddr((p)), v)
238 #define stw_raw(p, v) stw_p(saddr((p)), v)
239 #define stl_raw(p, v) stl_p(saddr((p)), v)
240 #define stq_raw(p, v) stq_p(saddr((p)), v)
241 #define stfl_raw(p, v) stfl_p(saddr((p)), v)
242 #define stfq_raw(p, v) stfq_p(saddr((p)), v)
243
244
245 #if defined(CONFIG_USER_ONLY)
246
247 /* if user mode, no other memory access functions */
248 #define ldub(p) ldub_raw(p)
249 #define ldsb(p) ldsb_raw(p)
250 #define lduw(p) lduw_raw(p)
251 #define ldsw(p) ldsw_raw(p)
252 #define ldl(p) ldl_raw(p)
253 #define ldq(p) ldq_raw(p)
254 #define ldfl(p) ldfl_raw(p)
255 #define ldfq(p) ldfq_raw(p)
256 #define stb(p, v) stb_raw(p, v)
257 #define stw(p, v) stw_raw(p, v)
258 #define stl(p, v) stl_raw(p, v)
259 #define stq(p, v) stq_raw(p, v)
260 #define stfl(p, v) stfl_raw(p, v)
261 #define stfq(p, v) stfq_raw(p, v)
262
263 #ifndef CONFIG_TCG_PASS_AREG0
264 #define ldub_code(p) ldub_raw(p)
265 #define ldsb_code(p) ldsb_raw(p)
266 #define lduw_code(p) lduw_raw(p)
267 #define ldsw_code(p) ldsw_raw(p)
268 #define ldl_code(p) ldl_raw(p)
269 #define ldq_code(p) ldq_raw(p)
270 #else
271 #define cpu_ldub_code(env1, p) ldub_raw(p)
272 #define cpu_ldsb_code(env1, p) ldsb_raw(p)
273 #define cpu_lduw_code(env1, p) lduw_raw(p)
274 #define cpu_ldsw_code(env1, p) ldsw_raw(p)
275 #define cpu_ldl_code(env1, p) ldl_raw(p)
276 #define cpu_ldq_code(env1, p) ldq_raw(p)
277
278 #define cpu_ldub_data(env, addr) ldub_raw(addr)
279 #define cpu_lduw_data(env, addr) lduw_raw(addr)
280 #define cpu_ldsw_data(env, addr) ldsw_raw(addr)
281 #define cpu_ldl_data(env, addr) ldl_raw(addr)
282 #define cpu_ldq_data(env, addr) ldq_raw(addr)
283
284 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
285 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
286 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
287 #define cpu_stq_data(env, addr, data) stq_raw(addr, data)
288
289 #define cpu_ldub_kernel(env, addr) ldub_raw(addr)
290 #define cpu_lduw_kernel(env, addr) lduw_raw(addr)
291 #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr)
292 #define cpu_ldl_kernel(env, addr) ldl_raw(addr)
293 #define cpu_ldq_kernel(env, addr) ldq_raw(addr)
294
295 #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data)
296 #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data)
297 #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data)
298 #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data)
299 #endif
300
301 #define ldub_kernel(p) ldub_raw(p)
302 #define ldsb_kernel(p) ldsb_raw(p)
303 #define lduw_kernel(p) lduw_raw(p)
304 #define ldsw_kernel(p) ldsw_raw(p)
305 #define ldl_kernel(p) ldl_raw(p)
306 #define ldq_kernel(p) ldq_raw(p)
307 #define ldfl_kernel(p) ldfl_raw(p)
308 #define ldfq_kernel(p) ldfq_raw(p)
309 #define stb_kernel(p, v) stb_raw(p, v)
310 #define stw_kernel(p, v) stw_raw(p, v)
311 #define stl_kernel(p, v) stl_raw(p, v)
312 #define stq_kernel(p, v) stq_raw(p, v)
313 #define stfl_kernel(p, v) stfl_raw(p, v)
314 #define stfq_kernel(p, vt) stfq_raw(p, v)
315
316 #ifdef CONFIG_TCG_PASS_AREG0
317 #define cpu_ldub_data(env, addr) ldub_raw(addr)
318 #define cpu_lduw_data(env, addr) lduw_raw(addr)
319 #define cpu_ldl_data(env, addr) ldl_raw(addr)
320
321 #define cpu_stb_data(env, addr, data) stb_raw(addr, data)
322 #define cpu_stw_data(env, addr, data) stw_raw(addr, data)
323 #define cpu_stl_data(env, addr, data) stl_raw(addr, data)
324 #endif
325 #endif /* defined(CONFIG_USER_ONLY) */
326
327 /* page related stuff */
328
329 #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
330 #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
331 #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
332
333 /* ??? These should be the larger of uintptr_t and target_ulong.  */
334 extern uintptr_t qemu_real_host_page_size;
335 extern uintptr_t qemu_host_page_size;
336 extern uintptr_t qemu_host_page_mask;
337
338 #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
339
340 /* same as PROT_xxx */
341 #define PAGE_READ      0x0001
342 #define PAGE_WRITE     0x0002
343 #define PAGE_EXEC      0x0004
344 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
345 #define PAGE_VALID     0x0008
346 /* original state of the write flag (used when tracking self-modifying
347    code */
348 #define PAGE_WRITE_ORG 0x0010
349 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
350 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
351 #define PAGE_RESERVED  0x0020
352 #endif
353
354 #if defined(CONFIG_USER_ONLY)
355 void page_dump(FILE *f);
356
357 typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
358                                       abi_ulong, unsigned long);
359 int walk_memory_regions(void *, walk_memory_regions_fn);
360
361 int page_get_flags(target_ulong address);
362 void page_set_flags(target_ulong start, target_ulong end, int flags);
363 int page_check_range(target_ulong start, target_ulong len, int flags);
364 #endif
365
366 CPUArchState *cpu_copy(CPUArchState *env);
367 CPUArchState *qemu_get_cpu(int cpu);
368
369 #define CPU_DUMP_CODE 0x00010000
370
371 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
372                     int flags);
373 void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf,
374                          int flags);
375
376 void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...)
377     GCC_FMT_ATTR(2, 3);
378 extern CPUArchState *first_cpu;
379 DECLARE_TLS(CPUArchState *,cpu_single_env);
380 #define cpu_single_env tls_var(cpu_single_env)
381
382 /* Flags for use in ENV->INTERRUPT_PENDING.
383
384    The numbers assigned here are non-sequential in order to preserve
385    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
386    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
387    the vmstate dump.  */
388
389 /* External hardware interrupt pending.  This is typically used for
390    interrupts from devices.  */
391 #define CPU_INTERRUPT_HARD        0x0002
392
393 /* Exit the current TB.  This is typically used when some system-level device
394    makes some change to the memory mapping.  E.g. the a20 line change.  */
395 #define CPU_INTERRUPT_EXITTB      0x0004
396
397 /* Halt the CPU.  */
398 #define CPU_INTERRUPT_HALT        0x0020
399
400 /* Debug event pending.  */
401 #define CPU_INTERRUPT_DEBUG       0x0080
402
403 /* Several target-specific external hardware interrupts.  Each target/cpu.h
404    should define proper names based on these defines.  */
405 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
406 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
407 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
408 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
409 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
410
411 /* Several target-specific internal interrupts.  These differ from the
412    preceding target-specific interrupts in that they are intended to
413    originate from within the cpu itself, typically in response to some
414    instruction being executed.  These, therefore, are not masked while
415    single-stepping within the debugger.  */
416 #define CPU_INTERRUPT_TGT_INT_0   0x0100
417 #define CPU_INTERRUPT_TGT_INT_1   0x0400
418 #define CPU_INTERRUPT_TGT_INT_2   0x0800
419 #define CPU_INTERRUPT_TGT_INT_3   0x2000
420
421 /* First unused bit: 0x4000.  */
422
423 /* The set of all bits that should be masked when single-stepping.  */
424 #define CPU_INTERRUPT_SSTEP_MASK \
425     (CPU_INTERRUPT_HARD          \
426      | CPU_INTERRUPT_TGT_EXT_0   \
427      | CPU_INTERRUPT_TGT_EXT_1   \
428      | CPU_INTERRUPT_TGT_EXT_2   \
429      | CPU_INTERRUPT_TGT_EXT_3   \
430      | CPU_INTERRUPT_TGT_EXT_4)
431
432 #ifndef CONFIG_USER_ONLY
433 typedef void (*CPUInterruptHandler)(CPUArchState *, int);
434
435 extern CPUInterruptHandler cpu_interrupt_handler;
436
437 static inline void cpu_interrupt(CPUArchState *s, int mask)
438 {
439     cpu_interrupt_handler(s, mask);
440 }
441 #else /* USER_ONLY */
442 void cpu_interrupt(CPUArchState *env, int mask);
443 #endif /* USER_ONLY */
444
445 void cpu_reset_interrupt(CPUArchState *env, int mask);
446
447 void cpu_exit(CPUArchState *s);
448
449 bool qemu_cpu_has_work(CPUArchState *env);
450
451 /* Breakpoint/watchpoint flags */
452 #define BP_MEM_READ           0x01
453 #define BP_MEM_WRITE          0x02
454 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
455 #define BP_STOP_BEFORE_ACCESS 0x04
456 #define BP_WATCHPOINT_HIT     0x08
457 #define BP_GDB                0x10
458 #define BP_CPU                0x20
459
460 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
461                           CPUBreakpoint **breakpoint);
462 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags);
463 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint);
464 void cpu_breakpoint_remove_all(CPUArchState *env, int mask);
465 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
466                           int flags, CPUWatchpoint **watchpoint);
467 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr,
468                           target_ulong len, int flags);
469 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint);
470 void cpu_watchpoint_remove_all(CPUArchState *env, int mask);
471
472 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
473 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
474 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
475
476 void cpu_single_step(CPUArchState *env, int enabled);
477 int cpu_is_stopped(CPUArchState *env);
478 void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data);
479
480 #if !defined(CONFIG_USER_ONLY)
481
482 /* Return the physical page corresponding to a virtual one. Use it
483    only for debugging because no protection checks are done. Return -1
484    if no page found. */
485 target_phys_addr_t cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr);
486
487 /* memory API */
488
489 extern int phys_ram_fd;
490 extern ram_addr_t ram_size;
491
492 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
493 #define RAM_PREALLOC_MASK   (1 << 0)
494
495 typedef struct RAMBlock {
496     struct MemoryRegion *mr;
497     uint8_t *host;
498     ram_addr_t offset;
499     ram_addr_t length;
500     uint32_t flags;
501     char idstr[256];
502     QLIST_ENTRY(RAMBlock) next;
503 #if defined(__linux__) && !defined(TARGET_S390X)
504     int fd;
505 #endif
506 } RAMBlock;
507
508 typedef struct RAMList {
509     uint8_t *phys_dirty;
510     QLIST_HEAD(, RAMBlock) blocks;
511     uint64_t dirty_pages;
512 } RAMList;
513 extern RAMList ram_list;
514
515 extern const char *mem_path;
516 extern int mem_prealloc;
517
518 /* Flags stored in the low bits of the TLB virtual address.  These are
519    defined so that fast path ram access is all zeros.  */
520 /* Zero if TLB entry is valid.  */
521 #define TLB_INVALID_MASK   (1 << 3)
522 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
523    contain the page physical address.  */
524 #define TLB_NOTDIRTY    (1 << 4)
525 /* Set if TLB entry is an IO callback.  */
526 #define TLB_MMIO        (1 << 5)
527
528 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
529 #endif /* !CONFIG_USER_ONLY */
530
531 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
532                         uint8_t *buf, int len, int is_write);
533
534 #endif /* CPU_ALL_H */