[PCS440EP] upgrade the PCS440EP board:
[platform/kernel/u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4  * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5  *
6  * (C) Copyright 2007
7  * Stefan Roese, DENX Software Engineering, sr@denx.de.
8  *
9  * COPYRIGHT   AMCC   CORPORATION 2004
10  *
11  * See file CREDITS for list of people who contributed to this
12  * project.
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License as
16  * published by the Free Software Foundation; either version 2 of
17  * the License, or (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27  * MA 02111-1307 USA
28  *
29  */
30
31 /* define DEBUG for debugging output (obviously ;-)) */
32 #if 0
33 #define DEBUG
34 #endif
35
36 #include <common.h>
37 #include <command.h>
38 #include <ppc4xx.h>
39 #include <i2c.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43
44 #if defined(CONFIG_SPD_EEPROM) &&                               \
45         (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
47 /*-----------------------------------------------------------------------------+
48  * Defines
49  *-----------------------------------------------------------------------------*/
50 #ifndef TRUE
51 #define TRUE            1
52 #endif
53 #ifndef FALSE
54 #define FALSE           0
55 #endif
56
57 #define SDRAM_DDR1      1
58 #define SDRAM_DDR2      2
59 #define SDRAM_NONE      0
60
61 #define MAXDIMMS        2
62 #define MAXRANKS        4
63 #define MAXBXCF         4
64 #define MAX_SPD_BYTES   256   /* Max number of bytes on the DIMM's SPD EEPROM */
65
66 #define ONE_BILLION     1000000000
67
68 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
70 #define CMD_NOP         (7 << 19)
71 #define CMD_PRECHARGE   (2 << 19)
72 #define CMD_REFRESH     (1 << 19)
73 #define CMD_EMR         (0 << 19)
74 #define CMD_READ        (5 << 19)
75 #define CMD_WRITE       (4 << 19)
76
77 #define SELECT_MR       (0 << 16)
78 #define SELECT_EMR      (1 << 16)
79 #define SELECT_EMR2     (2 << 16)
80 #define SELECT_EMR3     (3 << 16)
81
82 /* MR */
83 #define DLL_RESET       0x00000100
84
85 #define WRITE_RECOV_2   (1 << 9)
86 #define WRITE_RECOV_3   (2 << 9)
87 #define WRITE_RECOV_4   (3 << 9)
88 #define WRITE_RECOV_5   (4 << 9)
89 #define WRITE_RECOV_6   (5 << 9)
90
91 #define BURST_LEN_4     0x00000002
92
93 /* EMR */
94 #define ODT_0_OHM       0x00000000
95 #define ODT_50_OHM      0x00000044
96 #define ODT_75_OHM      0x00000004
97 #define ODT_150_OHM     0x00000040
98
99 #define ODS_FULL        0x00000000
100 #define ODS_REDUCED     0x00000002
101
102 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103 #define ODT_EB0R        (0x80000000 >> 8)
104 #define ODT_EB0W        (0x80000000 >> 7)
105 #define CALC_ODT_R(n)   (ODT_EB0R << (n << 1))
106 #define CALC_ODT_W(n)   (ODT_EB0W << (n << 1))
107 #define CALC_ODT_RW(n)  (CALC_ODT_R(n) | CALC_ODT_W(n))
108
109 /* Defines for the Read Cycle Delay test */
110 #define NUMMEMTESTS     8
111 #define NUMMEMWORDS     8
112 #define NUMLOOPS        256             /* memory test loops */
113
114 #undef CONFIG_ECC_ERROR_RESET           /* test-only: see description below, at check_ecc() */
115
116 /*
117  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
118  * region. Right now the cache should still be disabled in U-Boot because of the
119  * EMAC driver, that need it's buffer descriptor to be located in non cached
120  * memory.
121  *
122  * If at some time this restriction doesn't apply anymore, just define
123  * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
124  * everything correctly.
125  */
126 #ifdef CFG_ENABLE_SDRAM_CACHE
127 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
128 #else
129 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
130 #endif
131
132 #if defined(CONFIG_PPC4xx_USE_SPD_DDR_INIT_HANG)
133 extern void spd_ddr_init_hang (void);
134 #define HANG()  spd_ddr_init_hang()
135 #else
136 #define HANG()  hang()
137 #endif
138
139 /* Private Structure Definitions */
140
141 /* enum only to ease code for cas latency setting */
142 typedef enum ddr_cas_id {
143         DDR_CAS_2      = 20,
144         DDR_CAS_2_5    = 25,
145         DDR_CAS_3      = 30,
146         DDR_CAS_4      = 40,
147         DDR_CAS_5      = 50
148 } ddr_cas_id_t;
149
150 /*-----------------------------------------------------------------------------+
151  * Prototypes
152  *-----------------------------------------------------------------------------*/
153 static unsigned long sdram_memsize(void);
154 void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
155 static void get_spd_info(unsigned long *dimm_populated,
156                          unsigned char *iic0_dimm_addr,
157                          unsigned long num_dimm_banks);
158 static void check_mem_type(unsigned long *dimm_populated,
159                            unsigned char *iic0_dimm_addr,
160                            unsigned long num_dimm_banks);
161 static void check_frequency(unsigned long *dimm_populated,
162                             unsigned char *iic0_dimm_addr,
163                             unsigned long num_dimm_banks);
164 static void check_rank_number(unsigned long *dimm_populated,
165                               unsigned char *iic0_dimm_addr,
166                               unsigned long num_dimm_banks);
167 static void check_voltage_type(unsigned long *dimm_populated,
168                                unsigned char *iic0_dimm_addr,
169                                unsigned long num_dimm_banks);
170 static void program_memory_queue(unsigned long *dimm_populated,
171                                  unsigned char *iic0_dimm_addr,
172                                  unsigned long num_dimm_banks);
173 static void program_codt(unsigned long *dimm_populated,
174                          unsigned char *iic0_dimm_addr,
175                          unsigned long num_dimm_banks);
176 static void program_mode(unsigned long *dimm_populated,
177                          unsigned char *iic0_dimm_addr,
178                          unsigned long num_dimm_banks,
179                          ddr_cas_id_t *selected_cas,
180                          int *write_recovery);
181 static void program_tr(unsigned long *dimm_populated,
182                        unsigned char *iic0_dimm_addr,
183                        unsigned long num_dimm_banks);
184 static void program_rtr(unsigned long *dimm_populated,
185                         unsigned char *iic0_dimm_addr,
186                         unsigned long num_dimm_banks);
187 static void program_bxcf(unsigned long *dimm_populated,
188                          unsigned char *iic0_dimm_addr,
189                          unsigned long num_dimm_banks);
190 static void program_copt1(unsigned long *dimm_populated,
191                           unsigned char *iic0_dimm_addr,
192                           unsigned long num_dimm_banks);
193 static void program_initplr(unsigned long *dimm_populated,
194                             unsigned char *iic0_dimm_addr,
195                             unsigned long num_dimm_banks,
196                             ddr_cas_id_t selected_cas,
197                             int write_recovery);
198 static unsigned long is_ecc_enabled(void);
199 #ifdef CONFIG_DDR_ECC
200 static void program_ecc(unsigned long *dimm_populated,
201                         unsigned char *iic0_dimm_addr,
202                         unsigned long num_dimm_banks,
203                         unsigned long tlb_word2_i_value);
204 static void program_ecc_addr(unsigned long start_address,
205                              unsigned long num_bytes,
206                              unsigned long tlb_word2_i_value);
207 #endif
208 static void program_DQS_calibration(unsigned long *dimm_populated,
209                                     unsigned char *iic0_dimm_addr,
210                                     unsigned long num_dimm_banks);
211 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
212 static void     test(void);
213 #else
214 static void     DQS_calibration_process(void);
215 #endif
216 #if defined(DEBUG)
217 static void ppc440sp_sdram_register_dump(void);
218 #endif
219 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
220 void dcbz_area(u32 start_address, u32 num_bytes);
221 void dflush(void);
222
223 static u32 mfdcr_any(u32 dcr)
224 {
225         u32 val;
226
227         switch (dcr) {
228         case SDRAM_R0BAS + 0:
229                 val = mfdcr(SDRAM_R0BAS + 0);
230                 break;
231         case SDRAM_R0BAS + 1:
232                 val = mfdcr(SDRAM_R0BAS + 1);
233                 break;
234         case SDRAM_R0BAS + 2:
235                 val = mfdcr(SDRAM_R0BAS + 2);
236                 break;
237         case SDRAM_R0BAS + 3:
238                 val = mfdcr(SDRAM_R0BAS + 3);
239                 break;
240         default:
241                 printf("DCR %d not defined in case statement!!!\n", dcr);
242                 val = 0; /* just to satisfy the compiler */
243         }
244
245         return val;
246 }
247
248 static void mtdcr_any(u32 dcr, u32 val)
249 {
250         switch (dcr) {
251         case SDRAM_R0BAS + 0:
252                 mtdcr(SDRAM_R0BAS + 0, val);
253                 break;
254         case SDRAM_R0BAS + 1:
255                 mtdcr(SDRAM_R0BAS + 1, val);
256                 break;
257         case SDRAM_R0BAS + 2:
258                 mtdcr(SDRAM_R0BAS + 2, val);
259                 break;
260         case SDRAM_R0BAS + 3:
261                 mtdcr(SDRAM_R0BAS + 3, val);
262                 break;
263         default:
264                 printf("DCR %d not defined in case statement!!!\n", dcr);
265         }
266 }
267
268 static unsigned char spd_read(uchar chip, uint addr)
269 {
270         unsigned char data[2];
271
272         if (i2c_probe(chip) == 0)
273                 if (i2c_read(chip, addr, 1, data, 1) == 0)
274                         return data[0];
275
276         return 0;
277 }
278
279 /*-----------------------------------------------------------------------------+
280  * sdram_memsize
281  *-----------------------------------------------------------------------------*/
282 static unsigned long sdram_memsize(void)
283 {
284         unsigned long mem_size;
285         unsigned long mcopt2;
286         unsigned long mcstat;
287         unsigned long mb0cf;
288         unsigned long sdsz;
289         unsigned long i;
290
291         mem_size = 0;
292
293         mfsdram(SDRAM_MCOPT2, mcopt2);
294         mfsdram(SDRAM_MCSTAT, mcstat);
295
296         /* DDR controller must be enabled and not in self-refresh. */
297         /* Otherwise memsize is zero. */
298         if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
299             && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
300             && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
301                 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
302                 for (i = 0; i < MAXBXCF; i++) {
303                         mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
304                         /* Banks enabled */
305                         if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
306                                 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
307
308                                 switch(sdsz) {
309                                 case SDRAM_RXBAS_SDSZ_8:
310                                         mem_size+=8;
311                                         break;
312                                 case SDRAM_RXBAS_SDSZ_16:
313                                         mem_size+=16;
314                                         break;
315                                 case SDRAM_RXBAS_SDSZ_32:
316                                         mem_size+=32;
317                                         break;
318                                 case SDRAM_RXBAS_SDSZ_64:
319                                         mem_size+=64;
320                                         break;
321                                 case SDRAM_RXBAS_SDSZ_128:
322                                         mem_size+=128;
323                                         break;
324                                 case SDRAM_RXBAS_SDSZ_256:
325                                         mem_size+=256;
326                                         break;
327                                 case SDRAM_RXBAS_SDSZ_512:
328                                         mem_size+=512;
329                                         break;
330                                 case SDRAM_RXBAS_SDSZ_1024:
331                                         mem_size+=1024;
332                                         break;
333                                 case SDRAM_RXBAS_SDSZ_2048:
334                                         mem_size+=2048;
335                                         break;
336                                 case SDRAM_RXBAS_SDSZ_4096:
337                                         mem_size+=4096;
338                                         break;
339                                 default:
340                                         mem_size=0;
341                                         break;
342                                 }
343                         }
344                 }
345         }
346
347         mem_size *= 1024 * 1024;
348         return(mem_size);
349 }
350
351 /*-----------------------------------------------------------------------------+
352  * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
353  * Note: This routine runs from flash with a stack set up in the chip's
354  * sram space.  It is important that the routine does not require .sbss, .bss or
355  * .data sections.  It also cannot call routines that require these sections.
356  *-----------------------------------------------------------------------------*/
357 /*-----------------------------------------------------------------------------
358  * Function:     initdram
359  * Description:  Configures SDRAM memory banks for DDR operation.
360  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
361  *               via the IIC bus and then configures the DDR SDRAM memory
362  *               banks appropriately. If Auto Memory Configuration is
363  *               not used, it is assumed that no DIMM is plugged
364  *-----------------------------------------------------------------------------*/
365 long int initdram(int board_type)
366 {
367         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
368         unsigned char spd0[MAX_SPD_BYTES];
369         unsigned char spd1[MAX_SPD_BYTES];
370         unsigned char *dimm_spd[MAXDIMMS];
371         unsigned long dimm_populated[MAXDIMMS];
372         unsigned long num_dimm_banks;               /* on board dimm banks */
373         unsigned long val;
374         ddr_cas_id_t  selected_cas;
375         int write_recovery;
376         unsigned long dram_size = 0;
377
378         num_dimm_banks = sizeof(iic0_dimm_addr);
379
380         /*------------------------------------------------------------------
381          * Set up an array of SPD matrixes.
382          *-----------------------------------------------------------------*/
383         dimm_spd[0] = spd0;
384         dimm_spd[1] = spd1;
385
386         /*------------------------------------------------------------------
387          * Reset the DDR-SDRAM controller.
388          *-----------------------------------------------------------------*/
389         mtsdr(SDR0_SRST, (0x80000000 >> 10));
390         mtsdr(SDR0_SRST, 0x00000000);
391
392         /*
393          * Make sure I2C controller is initialized
394          * before continuing.
395          */
396
397         /* switch to correct I2C bus */
398         I2C_SET_BUS(CFG_SPD_BUS_NUM);
399         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
400
401         /*------------------------------------------------------------------
402          * Clear out the serial presence detect buffers.
403          * Perform IIC reads from the dimm.  Fill in the spds.
404          * Check to see if the dimm slots are populated
405          *-----------------------------------------------------------------*/
406         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
407
408         /*------------------------------------------------------------------
409          * Check the memory type for the dimms plugged.
410          *-----------------------------------------------------------------*/
411         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
412
413         /*------------------------------------------------------------------
414          * Check the frequency supported for the dimms plugged.
415          *-----------------------------------------------------------------*/
416         check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
417
418         /*------------------------------------------------------------------
419          * Check the total rank number.
420          *-----------------------------------------------------------------*/
421         check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
422
423         /*------------------------------------------------------------------
424          * Check the voltage type for the dimms plugged.
425          *-----------------------------------------------------------------*/
426         check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
427
428         /*------------------------------------------------------------------
429          * Program SDRAM controller options 2 register
430          * Except Enabling of the memory controller.
431          *-----------------------------------------------------------------*/
432         mfsdram(SDRAM_MCOPT2, val);
433         mtsdram(SDRAM_MCOPT2,
434                 (val &
435                  ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
436                    SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
437                    SDRAM_MCOPT2_ISIE_MASK))
438                 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
439                    SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
440                    SDRAM_MCOPT2_ISIE_ENABLE));
441
442         /*------------------------------------------------------------------
443          * Program SDRAM controller options 1 register
444          * Note: Does not enable the memory controller.
445          *-----------------------------------------------------------------*/
446         program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
447
448         /*------------------------------------------------------------------
449          * Set the SDRAM Controller On Die Termination Register
450          *-----------------------------------------------------------------*/
451         program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
452
453         /*------------------------------------------------------------------
454          * Program SDRAM refresh register.
455          *-----------------------------------------------------------------*/
456         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
457
458         /*------------------------------------------------------------------
459          * Program SDRAM mode register.
460          *-----------------------------------------------------------------*/
461         program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
462                      &selected_cas, &write_recovery);
463
464         /*------------------------------------------------------------------
465          * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
466          *-----------------------------------------------------------------*/
467         mfsdram(SDRAM_WRDTR, val);
468         mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
469                 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
470
471         /*------------------------------------------------------------------
472          * Set the SDRAM Clock Timing Register
473          *-----------------------------------------------------------------*/
474         mfsdram(SDRAM_CLKTR, val);
475 #ifdef CFG_44x_DDR2_CKTR_180
476         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_180_DEG_ADV);
477 #else
478         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
479 #endif
480
481         /*------------------------------------------------------------------
482          * Program the BxCF registers.
483          *-----------------------------------------------------------------*/
484         program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
485
486         /*------------------------------------------------------------------
487          * Program SDRAM timing registers.
488          *-----------------------------------------------------------------*/
489         program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
490
491         /*------------------------------------------------------------------
492          * Set the Extended Mode register
493          *-----------------------------------------------------------------*/
494         mfsdram(SDRAM_MEMODE, val);
495         mtsdram(SDRAM_MEMODE,
496                 (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
497                          SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
498                 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
499                  | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
500
501         /*------------------------------------------------------------------
502          * Program Initialization preload registers.
503          *-----------------------------------------------------------------*/
504         program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
505                         selected_cas, write_recovery);
506
507         /*------------------------------------------------------------------
508          * Delay to ensure 200usec have elapsed since reset.
509          *-----------------------------------------------------------------*/
510         udelay(400);
511
512         /*------------------------------------------------------------------
513          * Set the memory queue core base addr.
514          *-----------------------------------------------------------------*/
515         program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
516
517         /*------------------------------------------------------------------
518          * Program SDRAM controller options 2 register
519          * Enable the memory controller.
520          *-----------------------------------------------------------------*/
521         mfsdram(SDRAM_MCOPT2, val);
522         mtsdram(SDRAM_MCOPT2,
523                 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
524                          SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
525                 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
526
527         /*------------------------------------------------------------------
528          * Wait for SDRAM_CFG0_DC_EN to complete.
529          *-----------------------------------------------------------------*/
530         do {
531                 mfsdram(SDRAM_MCSTAT, val);
532         } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
533
534         /* get installed memory size */
535         dram_size = sdram_memsize();
536
537         /* and program tlb entries for this size (dynamic) */
538         program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
539
540         /*------------------------------------------------------------------
541          * DQS calibration.
542          *-----------------------------------------------------------------*/
543         program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
544
545 #ifdef CONFIG_DDR_ECC
546         /*------------------------------------------------------------------
547          * If ecc is enabled, initialize the parity bits.
548          *-----------------------------------------------------------------*/
549         program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
550 #endif
551
552 #ifdef DEBUG
553         ppc440sp_sdram_register_dump();
554 #endif
555
556         return dram_size;
557 }
558
559 static void get_spd_info(unsigned long *dimm_populated,
560                          unsigned char *iic0_dimm_addr,
561                          unsigned long num_dimm_banks)
562 {
563         unsigned long dimm_num;
564         unsigned long dimm_found;
565         unsigned char num_of_bytes;
566         unsigned char total_size;
567
568         dimm_found = FALSE;
569         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
570                 num_of_bytes = 0;
571                 total_size = 0;
572
573                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
574                 debug("\nspd_read(0x%x) returned %d\n",
575                       iic0_dimm_addr[dimm_num], num_of_bytes);
576                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
577                 debug("spd_read(0x%x) returned %d\n",
578                       iic0_dimm_addr[dimm_num], total_size);
579
580                 if ((num_of_bytes != 0) && (total_size != 0)) {
581                         dimm_populated[dimm_num] = TRUE;
582                         dimm_found = TRUE;
583                         debug("DIMM slot %lu: populated\n", dimm_num);
584                 } else {
585                         dimm_populated[dimm_num] = FALSE;
586                         debug("DIMM slot %lu: Not populated\n", dimm_num);
587                 }
588         }
589
590         if (dimm_found == FALSE) {
591                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
592                 HANG();
593         }
594 }
595
596 #ifdef CONFIG_ADD_RAM_INFO
597 void board_add_ram_info(int use_default)
598 {
599         PPC440_SYS_INFO board_cfg;
600         u32 val;
601
602         if (is_ecc_enabled())
603                 puts(" (ECC");
604         else
605                 puts(" (ECC not");
606
607         get_sys_info(&board_cfg);
608
609         mfsdr(SDR0_DDR0, val);
610         val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
611         printf(" enabled, %d MHz", (val * 2) / 1000000);
612
613         mfsdram(SDRAM_MMODE, val);
614         val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
615         printf(", CL%d)", val);
616 }
617 #endif
618
619 /*------------------------------------------------------------------
620  * For the memory DIMMs installed, this routine verifies that they
621  * really are DDR specific DIMMs.
622  *-----------------------------------------------------------------*/
623 static void check_mem_type(unsigned long *dimm_populated,
624                            unsigned char *iic0_dimm_addr,
625                            unsigned long num_dimm_banks)
626 {
627         unsigned long dimm_num;
628         unsigned long dimm_type;
629
630         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
631                 if (dimm_populated[dimm_num] == TRUE) {
632                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
633                         switch (dimm_type) {
634                         case 1:
635                                 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
636                                        "slot %d.\n", (unsigned int)dimm_num);
637                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
638                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
639                                 HANG();
640                                 break;
641                         case 2:
642                                 printf("ERROR: EDO DIMM detected in slot %d.\n",
643                                        (unsigned int)dimm_num);
644                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
645                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
646                                 HANG();
647                                 break;
648                         case 3:
649                                 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
650                                        (unsigned int)dimm_num);
651                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
652                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
653                                 HANG();
654                                 break;
655                         case 4:
656                                 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
657                                        (unsigned int)dimm_num);
658                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
659                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
660                                 HANG();
661                                 break;
662                         case 5:
663                                 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
664                                        (unsigned int)dimm_num);
665                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
666                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
667                                 HANG();
668                                 break;
669                         case 6:
670                                 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
671                                        (unsigned int)dimm_num);
672                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
673                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
674                                 HANG();
675                                 break;
676                         case 7:
677                                 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
678                                 dimm_populated[dimm_num] = SDRAM_DDR1;
679                                 break;
680                         case 8:
681                                 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
682                                 dimm_populated[dimm_num] = SDRAM_DDR2;
683                                 break;
684                         default:
685                                 printf("ERROR: Unknown DIMM detected in slot %d.\n",
686                                        (unsigned int)dimm_num);
687                                 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
688                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
689                                 HANG();
690                                 break;
691                         }
692                 }
693         }
694         for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
695                 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
696                     && (dimm_populated[dimm_num]   != SDRAM_NONE)
697                     && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
698                         printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
699                         HANG();
700                 }
701         }
702 }
703
704 /*------------------------------------------------------------------
705  * For the memory DIMMs installed, this routine verifies that
706  * frequency previously calculated is supported.
707  *-----------------------------------------------------------------*/
708 static void check_frequency(unsigned long *dimm_populated,
709                             unsigned char *iic0_dimm_addr,
710                             unsigned long num_dimm_banks)
711 {
712         unsigned long dimm_num;
713         unsigned long tcyc_reg;
714         unsigned long cycle_time;
715         unsigned long calc_cycle_time;
716         unsigned long sdram_freq;
717         unsigned long sdr_ddrpll;
718         PPC440_SYS_INFO board_cfg;
719
720         /*------------------------------------------------------------------
721          * Get the board configuration info.
722          *-----------------------------------------------------------------*/
723         get_sys_info(&board_cfg);
724
725         mfsdr(SDR0_DDR0, sdr_ddrpll);
726         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
727
728         /*
729          * calc_cycle_time is calculated from DDR frequency set by board/chip
730          * and is expressed in multiple of 10 picoseconds
731          * to match the way DIMM cycle time is calculated below.
732          */
733         calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
734
735         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
736                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
737                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
738                         /*
739                          * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
740                          * the higher order nibble (bits 4-7) designates the cycle time
741                          * to a granularity of 1ns;
742                          * the value presented by the lower order nibble (bits 0-3)
743                          * has a granularity of .1ns and is added to the value designated
744                          * by the higher nibble. In addition, four lines of the lower order
745                          * nibble are assigned to support +.25,+.33, +.66 and +.75.
746                          */
747                          /* Convert from hex to decimal */
748                         if ((tcyc_reg & 0x0F) == 0x0D)
749                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
750                         else if ((tcyc_reg & 0x0F) == 0x0C)
751                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
752                         else if ((tcyc_reg & 0x0F) == 0x0B)
753                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
754                         else if ((tcyc_reg & 0x0F) == 0x0A)
755                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
756                         else
757                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
758                                         ((tcyc_reg & 0x0F)*10);
759                         debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
760
761                         if  (cycle_time > (calc_cycle_time + 10)) {
762                                 /*
763                                  * the provided sdram cycle_time is too small
764                                  * for the available DIMM cycle_time.
765                                  * The additionnal 100ps is here to accept a small incertainty.
766                                  */
767                                 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
768                                        "slot %d \n while calculated cycle time is %d ps.\n",
769                                        (unsigned int)(cycle_time*10),
770                                        (unsigned int)dimm_num,
771                                        (unsigned int)(calc_cycle_time*10));
772                                 printf("Replace the DIMM, or change DDR frequency via "
773                                        "strapping bits.\n\n");
774                                 HANG();
775                         }
776                 }
777         }
778 }
779
780 /*------------------------------------------------------------------
781  * For the memory DIMMs installed, this routine verifies two
782  * ranks/banks maximum are availables.
783  *-----------------------------------------------------------------*/
784 static void check_rank_number(unsigned long *dimm_populated,
785                               unsigned char *iic0_dimm_addr,
786                               unsigned long num_dimm_banks)
787 {
788         unsigned long dimm_num;
789         unsigned long dimm_rank;
790         unsigned long total_rank = 0;
791
792         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
793                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
794                         dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
795                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
796                                 dimm_rank = (dimm_rank & 0x0F) +1;
797                         else
798                                 dimm_rank = dimm_rank & 0x0F;
799
800
801                         if (dimm_rank > MAXRANKS) {
802                                 printf("ERROR: DRAM DIMM detected with %d ranks in "
803                                        "slot %d is not supported.\n", dimm_rank, dimm_num);
804                                 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
805                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
806                                 HANG();
807                         } else
808                                 total_rank += dimm_rank;
809                 }
810                 if (total_rank > MAXRANKS) {
811                         printf("ERROR: DRAM DIMM detected with a total of %d ranks "
812                                "for all slots.\n", (unsigned int)total_rank);
813                         printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
814                         printf("Remove one of the DIMM modules.\n\n");
815                         HANG();
816                 }
817         }
818 }
819
820 /*------------------------------------------------------------------
821  * only support 2.5V modules.
822  * This routine verifies this.
823  *-----------------------------------------------------------------*/
824 static void check_voltage_type(unsigned long *dimm_populated,
825                                unsigned char *iic0_dimm_addr,
826                                unsigned long num_dimm_banks)
827 {
828         unsigned long dimm_num;
829         unsigned long voltage_type;
830
831         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
832                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
833                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
834                         switch (voltage_type) {
835                         case 0x00:
836                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
837                                 printf("This DIMM is 5.0 Volt/TTL.\n");
838                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
839                                        (unsigned int)dimm_num);
840                                 HANG();
841                                 break;
842                         case 0x01:
843                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
844                                 printf("This DIMM is LVTTL.\n");
845                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
846                                        (unsigned int)dimm_num);
847                                 HANG();
848                                 break;
849                         case 0x02:
850                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
851                                 printf("This DIMM is 1.5 Volt.\n");
852                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
853                                        (unsigned int)dimm_num);
854                                 HANG();
855                                 break;
856                         case 0x03:
857                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
858                                 printf("This DIMM is 3.3 Volt/TTL.\n");
859                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
860                                        (unsigned int)dimm_num);
861                                 HANG();
862                                 break;
863                         case 0x04:
864                                 /* 2.5 Voltage only for DDR1 */
865                                 break;
866                         case 0x05:
867                                 /* 1.8 Voltage only for DDR2 */
868                                 break;
869                         default:
870                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
871                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
872                                        (unsigned int)dimm_num);
873                                 HANG();
874                                 break;
875                         }
876                 }
877         }
878 }
879
880 /*-----------------------------------------------------------------------------+
881  * program_copt1.
882  *-----------------------------------------------------------------------------*/
883 static void program_copt1(unsigned long *dimm_populated,
884                           unsigned char *iic0_dimm_addr,
885                           unsigned long num_dimm_banks)
886 {
887         unsigned long dimm_num;
888         unsigned long mcopt1;
889         unsigned long ecc_enabled;
890         unsigned long ecc = 0;
891         unsigned long data_width = 0;
892         unsigned long dimm_32bit;
893         unsigned long dimm_64bit;
894         unsigned long registered = 0;
895         unsigned long attribute = 0;
896         unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
897         unsigned long bankcount;
898         unsigned long ddrtype;
899         unsigned long val;
900
901 #ifdef CONFIG_DDR_ECC
902         ecc_enabled = TRUE;
903 #else
904         ecc_enabled = FALSE;
905 #endif
906         dimm_32bit = FALSE;
907         dimm_64bit = FALSE;
908         buf0 = FALSE;
909         buf1 = FALSE;
910
911         /*------------------------------------------------------------------
912          * Set memory controller options reg 1, SDRAM_MCOPT1.
913          *-----------------------------------------------------------------*/
914         mfsdram(SDRAM_MCOPT1, val);
915         mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
916                          SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
917                          SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
918                          SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
919                          SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
920                          SDRAM_MCOPT1_DREF_MASK);
921
922         mcopt1 |= SDRAM_MCOPT1_QDEP;
923         mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
924         mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
925         mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
926         mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
927         mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
928
929         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
930                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
931                         /* test ecc support */
932                         ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
933                         if (ecc != 0x02) /* ecc not supported */
934                                 ecc_enabled = FALSE;
935
936                         /* test bank count */
937                         bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
938                         if (bankcount == 0x04) /* bank count = 4 */
939                                 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
940                         else /* bank count = 8 */
941                                 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
942
943                         /* test DDR type */
944                         ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
945                         /* test for buffered/unbuffered, registered, differential clocks */
946                         registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
947                         attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
948
949                         /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
950                         if (dimm_num == 0) {
951                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
952                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
953                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
954                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
955                                 if (registered == 1) { /* DDR2 always buffered */
956                                         /* TODO: what about above  comments ? */
957                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
958                                         buf0 = TRUE;
959                                 } else {
960                                         /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
961                                         if ((attribute & 0x02) == 0x00) {
962                                                 /* buffered not supported */
963                                                 buf0 = FALSE;
964                                         } else {
965                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
966                                                 buf0 = TRUE;
967                                         }
968                                 }
969                         }
970                         else if (dimm_num == 1) {
971                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
972                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
973                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
974                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
975                                 if (registered == 1) {
976                                         /* DDR2 always buffered */
977                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
978                                         buf1 = TRUE;
979                                 } else {
980                                         if ((attribute & 0x02) == 0x00) {
981                                                 /* buffered not supported */
982                                                 buf1 = FALSE;
983                                         } else {
984                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
985                                                 buf1 = TRUE;
986                                         }
987                                 }
988                         }
989
990                         /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
991                         data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
992                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
993
994                         switch (data_width) {
995                         case 72:
996                         case 64:
997                                 dimm_64bit = TRUE;
998                                 break;
999                         case 40:
1000                         case 32:
1001                                 dimm_32bit = TRUE;
1002                                 break;
1003                         default:
1004                                 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
1005                                        data_width);
1006                                 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
1007                                 break;
1008                         }
1009                 }
1010         }
1011
1012         /* verify matching properties */
1013         if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1014                 if (buf0 != buf1) {
1015                         printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1016                         HANG();
1017                 }
1018         }
1019
1020         if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1021                 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1022                 HANG();
1023         }
1024         else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1025                 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1026         } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1027                 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1028         } else {
1029                 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1030                 HANG();
1031         }
1032
1033         if (ecc_enabled == TRUE)
1034                 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1035         else
1036                 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1037
1038         mtsdram(SDRAM_MCOPT1, mcopt1);
1039 }
1040
1041 /*-----------------------------------------------------------------------------+
1042  * program_codt.
1043  *-----------------------------------------------------------------------------*/
1044 static void program_codt(unsigned long *dimm_populated,
1045                          unsigned char *iic0_dimm_addr,
1046                          unsigned long num_dimm_banks)
1047 {
1048         unsigned long codt;
1049         unsigned long modt0 = 0;
1050         unsigned long modt1 = 0;
1051         unsigned long modt2 = 0;
1052         unsigned long modt3 = 0;
1053         unsigned char dimm_num;
1054         unsigned char dimm_rank;
1055         unsigned char total_rank = 0;
1056         unsigned char total_dimm = 0;
1057         unsigned char dimm_type = 0;
1058         unsigned char firstSlot = 0;
1059
1060         /*------------------------------------------------------------------
1061          * Set the SDRAM Controller On Die Termination Register
1062          *-----------------------------------------------------------------*/
1063         mfsdram(SDRAM_CODT, codt);
1064         codt |= (SDRAM_CODT_IO_NMODE
1065                  & (~SDRAM_CODT_DQS_SINGLE_END
1066                     & ~SDRAM_CODT_CKSE_SINGLE_END
1067                     & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1068                     & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1069
1070         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1071                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1072                         dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1073                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1074                                 dimm_rank = (dimm_rank & 0x0F) + 1;
1075                                 dimm_type = SDRAM_DDR2;
1076                         } else {
1077                                 dimm_rank = dimm_rank & 0x0F;
1078                                 dimm_type = SDRAM_DDR1;
1079                         }
1080
1081                         total_rank += dimm_rank;
1082                         total_dimm++;
1083                         if ((dimm_num == 0) && (total_dimm == 1))
1084                                 firstSlot = TRUE;
1085                         else
1086                                 firstSlot = FALSE;
1087                 }
1088         }
1089         if (dimm_type == SDRAM_DDR2) {
1090                 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1091                 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1092                         if (total_rank == 1) {
1093                                 codt |= CALC_ODT_R(0);
1094                                 modt0 = CALC_ODT_W(0);
1095                                 modt1 = 0x00000000;
1096                                 modt2 = 0x00000000;
1097                                 modt3 = 0x00000000;
1098                         }
1099                         if (total_rank == 2) {
1100                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1101                                 modt0 = CALC_ODT_W(0);
1102                                 modt1 = CALC_ODT_W(0);
1103                                 modt2 = 0x00000000;
1104                                 modt3 = 0x00000000;
1105                         }
1106                 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1107                         if (total_rank == 1) {
1108                                 codt |= CALC_ODT_R(2);
1109                                 modt0 = 0x00000000;
1110                                 modt1 = 0x00000000;
1111                                 modt2 = CALC_ODT_W(2);
1112                                 modt3 = 0x00000000;
1113                         }
1114                         if (total_rank == 2) {
1115                                 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1116                                 modt0 = 0x00000000;
1117                                 modt1 = 0x00000000;
1118                                 modt2 = CALC_ODT_W(2);
1119                                 modt3 = CALC_ODT_W(2);
1120                         }
1121                 }
1122                 if (total_dimm == 2) {
1123                         if (total_rank == 2) {
1124                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1125                                 modt0 = CALC_ODT_RW(2);
1126                                 modt1 = 0x00000000;
1127                                 modt2 = CALC_ODT_RW(0);
1128                                 modt3 = 0x00000000;
1129                         }
1130                         if (total_rank == 4) {
1131                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) |
1132                                         CALC_ODT_R(2) | CALC_ODT_R(3);
1133                                 modt0 = CALC_ODT_RW(2);
1134                                 modt1 = 0x00000000;
1135                                 modt2 = CALC_ODT_RW(0);
1136                                 modt3 = 0x00000000;
1137                         }
1138                 }
1139         } else {
1140                 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1141                 modt0 = 0x00000000;
1142                 modt1 = 0x00000000;
1143                 modt2 = 0x00000000;
1144                 modt3 = 0x00000000;
1145
1146                 if (total_dimm == 1) {
1147                         if (total_rank == 1)
1148                                 codt |= 0x00800000;
1149                         if (total_rank == 2)
1150                                 codt |= 0x02800000;
1151                 }
1152                 if (total_dimm == 2) {
1153                         if (total_rank == 2)
1154                                 codt |= 0x08800000;
1155                         if (total_rank == 4)
1156                                 codt |= 0x2a800000;
1157                 }
1158         }
1159
1160         debug("nb of dimm %d\n", total_dimm);
1161         debug("nb of rank %d\n", total_rank);
1162         if (total_dimm == 1)
1163                 debug("dimm in slot %d\n", firstSlot);
1164
1165         mtsdram(SDRAM_CODT, codt);
1166         mtsdram(SDRAM_MODT0, modt0);
1167         mtsdram(SDRAM_MODT1, modt1);
1168         mtsdram(SDRAM_MODT2, modt2);
1169         mtsdram(SDRAM_MODT3, modt3);
1170 }
1171
1172 /*-----------------------------------------------------------------------------+
1173  * program_initplr.
1174  *-----------------------------------------------------------------------------*/
1175 static void program_initplr(unsigned long *dimm_populated,
1176                             unsigned char *iic0_dimm_addr,
1177                             unsigned long num_dimm_banks,
1178                             ddr_cas_id_t selected_cas,
1179                             int write_recovery)
1180 {
1181         u32 cas = 0;
1182         u32 odt = 0;
1183         u32 ods = 0;
1184         u32 mr;
1185         u32 wr;
1186         u32 emr;
1187         u32 emr2;
1188         u32 emr3;
1189         int dimm_num;
1190         int total_dimm = 0;
1191
1192         /******************************************************
1193          ** Assumption: if more than one DIMM, all DIMMs are the same
1194          **             as already checked in check_memory_type
1195          ******************************************************/
1196
1197         if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1198                 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1199                 mtsdram(SDRAM_INITPLR1, 0x81900400);
1200                 mtsdram(SDRAM_INITPLR2, 0x81810000);
1201                 mtsdram(SDRAM_INITPLR3, 0xff800162);
1202                 mtsdram(SDRAM_INITPLR4, 0x81900400);
1203                 mtsdram(SDRAM_INITPLR5, 0x86080000);
1204                 mtsdram(SDRAM_INITPLR6, 0x86080000);
1205                 mtsdram(SDRAM_INITPLR7, 0x81000062);
1206         } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1207                 switch (selected_cas) {
1208                 case DDR_CAS_3:
1209                         cas = 3 << 4;
1210                         break;
1211                 case DDR_CAS_4:
1212                         cas = 4 << 4;
1213                         break;
1214                 case DDR_CAS_5:
1215                         cas = 5 << 4;
1216                         break;
1217                 default:
1218                         printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1219                         HANG();
1220                         break;
1221                 }
1222
1223 #if 0
1224                 /*
1225                  * ToDo - Still a problem with the write recovery:
1226                  * On the Corsair CM2X512-5400C4 module, setting write recovery
1227                  * in the INITPLR reg to the value calculated in program_mode()
1228                  * results in not correctly working DDR2 memory (crash after
1229                  * relocation).
1230                  *
1231                  * So for now, set the write recovery to 3. This seems to work
1232                  * on the Corair module too.
1233                  *
1234                  * 2007-03-01, sr
1235                  */
1236                 switch (write_recovery) {
1237                 case 3:
1238                         wr = WRITE_RECOV_3;
1239                         break;
1240                 case 4:
1241                         wr = WRITE_RECOV_4;
1242                         break;
1243                 case 5:
1244                         wr = WRITE_RECOV_5;
1245                         break;
1246                 case 6:
1247                         wr = WRITE_RECOV_6;
1248                         break;
1249                 default:
1250                         printf("ERROR: write recovery not support (%d)", write_recovery);
1251                         HANG();
1252                         break;
1253                 }
1254 #else
1255                 wr = WRITE_RECOV_3; /* test-only, see description above */
1256 #endif
1257
1258                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1259                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1260                                 total_dimm++;
1261                 if (total_dimm == 1) {
1262                         odt = ODT_150_OHM;
1263                         ods = ODS_FULL;
1264                 } else if (total_dimm == 2) {
1265                         odt = ODT_75_OHM;
1266                         ods = ODS_REDUCED;
1267                 } else {
1268                         printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1269                         HANG();
1270                 }
1271
1272                 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1273                 emr = CMD_EMR | SELECT_EMR | odt | ods;
1274                 emr2 = CMD_EMR | SELECT_EMR2;
1275                 emr3 = CMD_EMR | SELECT_EMR3;
1276                 mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);         /* NOP */
1277                 udelay(1000);
1278                 mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1279                 mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);            /* EMR2 */
1280                 mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);            /* EMR3 */
1281                 mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);             /* EMR DLL ENABLE */
1282                 mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);  /* MR w/ DLL reset */
1283                 udelay(1000);
1284                 mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1285                 mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1286                 mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1287                 mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1288                 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1289                 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);              /* MR w/o DLL reset */
1290                 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);             /* EMR OCD Default */
1291                 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);             /* EMR OCD Exit */
1292         } else {
1293                 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1294                 HANG();
1295         }
1296 }
1297
1298 /*------------------------------------------------------------------
1299  * This routine programs the SDRAM_MMODE register.
1300  * the selected_cas is an output parameter, that will be passed
1301  * by caller to call the above program_initplr( )
1302  *-----------------------------------------------------------------*/
1303 static void program_mode(unsigned long *dimm_populated,
1304                          unsigned char *iic0_dimm_addr,
1305                          unsigned long num_dimm_banks,
1306                          ddr_cas_id_t *selected_cas,
1307                          int *write_recovery)
1308 {
1309         unsigned long dimm_num;
1310         unsigned long sdram_ddr1;
1311         unsigned long t_wr_ns;
1312         unsigned long t_wr_clk;
1313         unsigned long cas_bit;
1314         unsigned long cas_index;
1315         unsigned long sdram_freq;
1316         unsigned long ddr_check;
1317         unsigned long mmode;
1318         unsigned long tcyc_reg;
1319         unsigned long cycle_2_0_clk;
1320         unsigned long cycle_2_5_clk;
1321         unsigned long cycle_3_0_clk;
1322         unsigned long cycle_4_0_clk;
1323         unsigned long cycle_5_0_clk;
1324         unsigned long max_2_0_tcyc_ns_x_100;
1325         unsigned long max_2_5_tcyc_ns_x_100;
1326         unsigned long max_3_0_tcyc_ns_x_100;
1327         unsigned long max_4_0_tcyc_ns_x_100;
1328         unsigned long max_5_0_tcyc_ns_x_100;
1329         unsigned long cycle_time_ns_x_100[3];
1330         PPC440_SYS_INFO board_cfg;
1331         unsigned char cas_2_0_available;
1332         unsigned char cas_2_5_available;
1333         unsigned char cas_3_0_available;
1334         unsigned char cas_4_0_available;
1335         unsigned char cas_5_0_available;
1336         unsigned long sdr_ddrpll;
1337
1338         /*------------------------------------------------------------------
1339          * Get the board configuration info.
1340          *-----------------------------------------------------------------*/
1341         get_sys_info(&board_cfg);
1342
1343         mfsdr(SDR0_DDR0, sdr_ddrpll);
1344         sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1345         debug("sdram_freq=%d\n", sdram_freq);
1346
1347         /*------------------------------------------------------------------
1348          * Handle the timing.  We need to find the worst case timing of all
1349          * the dimm modules installed.
1350          *-----------------------------------------------------------------*/
1351         t_wr_ns = 0;
1352         cas_2_0_available = TRUE;
1353         cas_2_5_available = TRUE;
1354         cas_3_0_available = TRUE;
1355         cas_4_0_available = TRUE;
1356         cas_5_0_available = TRUE;
1357         max_2_0_tcyc_ns_x_100 = 10;
1358         max_2_5_tcyc_ns_x_100 = 10;
1359         max_3_0_tcyc_ns_x_100 = 10;
1360         max_4_0_tcyc_ns_x_100 = 10;
1361         max_5_0_tcyc_ns_x_100 = 10;
1362         sdram_ddr1 = TRUE;
1363
1364         /* loop through all the DIMM slots on the board */
1365         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1366                 /* If a dimm is installed in a particular slot ... */
1367                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1368                         if (dimm_populated[dimm_num] == SDRAM_DDR1)
1369                                 sdram_ddr1 = TRUE;
1370                         else
1371                                 sdram_ddr1 = FALSE;
1372
1373                         /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
1374                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1375                         debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
1376
1377                         /* For a particular DIMM, grab the three CAS values it supports */
1378                         for (cas_index = 0; cas_index < 3; cas_index++) {
1379                                 switch (cas_index) {
1380                                 case 0:
1381                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1382                                         break;
1383                                 case 1:
1384                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1385                                         break;
1386                                 default:
1387                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1388                                         break;
1389                                 }
1390
1391                                 if ((tcyc_reg & 0x0F) >= 10) {
1392                                         if ((tcyc_reg & 0x0F) == 0x0D) {
1393                                                 /* Convert from hex to decimal */
1394                                                 cycle_time_ns_x_100[cas_index] =
1395                                                         (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1396                                         } else {
1397                                                 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1398                                                        "in slot %d\n", (unsigned int)dimm_num);
1399                                                 HANG();
1400                                         }
1401                                 } else {
1402                                         /* Convert from hex to decimal */
1403                                         cycle_time_ns_x_100[cas_index] =
1404                                                 (((tcyc_reg & 0xF0) >> 4) * 100) +
1405                                                 ((tcyc_reg & 0x0F)*10);
1406                                 }
1407                                 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1408                                       cycle_time_ns_x_100[cas_index]);
1409                         }
1410
1411                         /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1412                         /* supported for a particular DIMM. */
1413                         cas_index = 0;
1414
1415                         if (sdram_ddr1) {
1416                                 /*
1417                                  * DDR devices use the following bitmask for CAS latency:
1418                                  *  Bit   7    6    5    4    3    2    1    0
1419                                  *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
1420                                  */
1421                                 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1422                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1423                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1424                                                                     cycle_time_ns_x_100[cas_index]);
1425                                         cas_index++;
1426                                 } else {
1427                                         if (cas_index != 0)
1428                                                 cas_index++;
1429                                         cas_4_0_available = FALSE;
1430                                 }
1431
1432                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1433                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1434                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1435                                                                     cycle_time_ns_x_100[cas_index]);
1436                                         cas_index++;
1437                                 } else {
1438                                         if (cas_index != 0)
1439                                                 cas_index++;
1440                                         cas_3_0_available = FALSE;
1441                                 }
1442
1443                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1444                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1445                                         max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1446                                                                     cycle_time_ns_x_100[cas_index]);
1447                                         cas_index++;
1448                                 } else {
1449                                         if (cas_index != 0)
1450                                                 cas_index++;
1451                                         cas_2_5_available = FALSE;
1452                                 }
1453
1454                                 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1455                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1456                                         max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1457                                                                     cycle_time_ns_x_100[cas_index]);
1458                                         cas_index++;
1459                                 } else {
1460                                         if (cas_index != 0)
1461                                                 cas_index++;
1462                                         cas_2_0_available = FALSE;
1463                                 }
1464                         } else {
1465                                 /*
1466                                  * DDR2 devices use the following bitmask for CAS latency:
1467                                  *  Bit   7    6    5    4    3    2    1    0
1468                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
1469                                  */
1470                                 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1471                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1472                                         max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1473                                                                     cycle_time_ns_x_100[cas_index]);
1474                                         cas_index++;
1475                                 } else {
1476                                         if (cas_index != 0)
1477                                                 cas_index++;
1478                                         cas_5_0_available = FALSE;
1479                                 }
1480
1481                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1482                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1483                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1484                                                                     cycle_time_ns_x_100[cas_index]);
1485                                         cas_index++;
1486                                 } else {
1487                                         if (cas_index != 0)
1488                                                 cas_index++;
1489                                         cas_4_0_available = FALSE;
1490                                 }
1491
1492                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1493                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1494                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1495                                                                     cycle_time_ns_x_100[cas_index]);
1496                                         cas_index++;
1497                                 } else {
1498                                         if (cas_index != 0)
1499                                                 cas_index++;
1500                                         cas_3_0_available = FALSE;
1501                                 }
1502                         }
1503                 }
1504         }
1505
1506         /*------------------------------------------------------------------
1507          * Set the SDRAM mode, SDRAM_MMODE
1508          *-----------------------------------------------------------------*/
1509         mfsdram(SDRAM_MMODE, mmode);
1510         mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1511
1512         /* add 10 here because of rounding problems */
1513         cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1514         cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1515         cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1516         cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1517         cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1518         debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1519         debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1520         debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
1521
1522         if (sdram_ddr1 == TRUE) { /* DDR1 */
1523                 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1524                         mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1525                         *selected_cas = DDR_CAS_2;
1526                 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1527                         mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1528                         *selected_cas = DDR_CAS_2_5;
1529                 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1530                         mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1531                         *selected_cas = DDR_CAS_3;
1532                 } else {
1533                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1534                         printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1535                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1536                         HANG();
1537                 }
1538         } else { /* DDR2 */
1539                 debug("cas_3_0_available=%d\n", cas_3_0_available);
1540                 debug("cas_4_0_available=%d\n", cas_4_0_available);
1541                 debug("cas_5_0_available=%d\n", cas_5_0_available);
1542                 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1543                         mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1544                         *selected_cas = DDR_CAS_3;
1545                 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1546                         mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1547                         *selected_cas = DDR_CAS_4;
1548                 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1549                         mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1550                         *selected_cas = DDR_CAS_5;
1551                 } else {
1552                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1553                         printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1554                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1555                         printf("cas3=%d cas4=%d cas5=%d\n",
1556                                cas_3_0_available, cas_4_0_available, cas_5_0_available);
1557                         printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1558                                sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1559                         HANG();
1560                 }
1561         }
1562
1563         if (sdram_ddr1 == TRUE)
1564                 mmode |= SDRAM_MMODE_WR_DDR1;
1565         else {
1566
1567                 /* loop through all the DIMM slots on the board */
1568                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1569                         /* If a dimm is installed in a particular slot ... */
1570                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1571                                 t_wr_ns = max(t_wr_ns,
1572                                               spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1573                 }
1574
1575                 /*
1576                  * convert from nanoseconds to ddr clocks
1577                  * round up if necessary
1578                  */
1579                 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1580                 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1581                 if (sdram_freq != ddr_check)
1582                         t_wr_clk++;
1583
1584                 switch (t_wr_clk) {
1585                 case 0:
1586                 case 1:
1587                 case 2:
1588                 case 3:
1589                         mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1590                         break;
1591                 case 4:
1592                         mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1593                         break;
1594                 case 5:
1595                         mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1596                         break;
1597                 default:
1598                         mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1599                         break;
1600                 }
1601                 *write_recovery = t_wr_clk;
1602         }
1603
1604         debug("CAS latency = %d\n", *selected_cas);
1605         debug("Write recovery = %d\n", *write_recovery);
1606
1607         mtsdram(SDRAM_MMODE, mmode);
1608 }
1609
1610 /*-----------------------------------------------------------------------------+
1611  * program_rtr.
1612  *-----------------------------------------------------------------------------*/
1613 static void program_rtr(unsigned long *dimm_populated,
1614                         unsigned char *iic0_dimm_addr,
1615                         unsigned long num_dimm_banks)
1616 {
1617         PPC440_SYS_INFO board_cfg;
1618         unsigned long max_refresh_rate;
1619         unsigned long dimm_num;
1620         unsigned long refresh_rate_type;
1621         unsigned long refresh_rate;
1622         unsigned long rint;
1623         unsigned long sdram_freq;
1624         unsigned long sdr_ddrpll;
1625         unsigned long val;
1626
1627         /*------------------------------------------------------------------
1628          * Get the board configuration info.
1629          *-----------------------------------------------------------------*/
1630         get_sys_info(&board_cfg);
1631
1632         /*------------------------------------------------------------------
1633          * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1634          *-----------------------------------------------------------------*/
1635         mfsdr(SDR0_DDR0, sdr_ddrpll);
1636         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1637
1638         max_refresh_rate = 0;
1639         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1640                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1641
1642                         refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1643                         refresh_rate_type &= 0x7F;
1644                         switch (refresh_rate_type) {
1645                         case 0:
1646                                 refresh_rate =  15625;
1647                                 break;
1648                         case 1:
1649                                 refresh_rate =   3906;
1650                                 break;
1651                         case 2:
1652                                 refresh_rate =   7812;
1653                                 break;
1654                         case 3:
1655                                 refresh_rate =  31250;
1656                                 break;
1657                         case 4:
1658                                 refresh_rate =  62500;
1659                                 break;
1660                         case 5:
1661                                 refresh_rate = 125000;
1662                                 break;
1663                         default:
1664                                 refresh_rate = 0;
1665                                 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1666                                        (unsigned int)dimm_num);
1667                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1668                                 HANG();
1669                                 break;
1670                         }
1671
1672                         max_refresh_rate = max(max_refresh_rate, refresh_rate);
1673                 }
1674         }
1675
1676         rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1677         mfsdram(SDRAM_RTR, val);
1678         mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1679                 (SDRAM_RTR_RINT_ENCODE(rint)));
1680 }
1681
1682 /*------------------------------------------------------------------
1683  * This routine programs the SDRAM_TRx registers.
1684  *-----------------------------------------------------------------*/
1685 static void program_tr(unsigned long *dimm_populated,
1686                        unsigned char *iic0_dimm_addr,
1687                        unsigned long num_dimm_banks)
1688 {
1689         unsigned long dimm_num;
1690         unsigned long sdram_ddr1;
1691         unsigned long t_rp_ns;
1692         unsigned long t_rcd_ns;
1693         unsigned long t_rrd_ns;
1694         unsigned long t_ras_ns;
1695         unsigned long t_rc_ns;
1696         unsigned long t_rfc_ns;
1697         unsigned long t_wpc_ns;
1698         unsigned long t_wtr_ns;
1699         unsigned long t_rpc_ns;
1700         unsigned long t_rp_clk;
1701         unsigned long t_rcd_clk;
1702         unsigned long t_rrd_clk;
1703         unsigned long t_ras_clk;
1704         unsigned long t_rc_clk;
1705         unsigned long t_rfc_clk;
1706         unsigned long t_wpc_clk;
1707         unsigned long t_wtr_clk;
1708         unsigned long t_rpc_clk;
1709         unsigned long sdtr1, sdtr2, sdtr3;
1710         unsigned long ddr_check;
1711         unsigned long sdram_freq;
1712         unsigned long sdr_ddrpll;
1713
1714         PPC440_SYS_INFO board_cfg;
1715
1716         /*------------------------------------------------------------------
1717          * Get the board configuration info.
1718          *-----------------------------------------------------------------*/
1719         get_sys_info(&board_cfg);
1720
1721         mfsdr(SDR0_DDR0, sdr_ddrpll);
1722         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1723
1724         /*------------------------------------------------------------------
1725          * Handle the timing.  We need to find the worst case timing of all
1726          * the dimm modules installed.
1727          *-----------------------------------------------------------------*/
1728         t_rp_ns = 0;
1729         t_rrd_ns = 0;
1730         t_rcd_ns = 0;
1731         t_ras_ns = 0;
1732         t_rc_ns = 0;
1733         t_rfc_ns = 0;
1734         t_wpc_ns = 0;
1735         t_wtr_ns = 0;
1736         t_rpc_ns = 0;
1737         sdram_ddr1 = TRUE;
1738
1739         /* loop through all the DIMM slots on the board */
1740         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1741                 /* If a dimm is installed in a particular slot ... */
1742                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1743                         if (dimm_populated[dimm_num] == SDRAM_DDR2)
1744                                 sdram_ddr1 = TRUE;
1745                         else
1746                                 sdram_ddr1 = FALSE;
1747
1748                         t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1749                         t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1750                         t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1751                         t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1752                         t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
1753                         t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1754                 }
1755         }
1756
1757         /*------------------------------------------------------------------
1758          * Set the SDRAM Timing Reg 1, SDRAM_TR1
1759          *-----------------------------------------------------------------*/
1760         mfsdram(SDRAM_SDTR1, sdtr1);
1761         sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1762                    SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1763
1764         /* default values */
1765         sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1766         sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1767
1768         /* normal operations */
1769         sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1770         sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1771
1772         mtsdram(SDRAM_SDTR1, sdtr1);
1773
1774         /*------------------------------------------------------------------
1775          * Set the SDRAM Timing Reg 2, SDRAM_TR2
1776          *-----------------------------------------------------------------*/
1777         mfsdram(SDRAM_SDTR2, sdtr2);
1778         sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
1779                    SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1780                    SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
1781                    SDRAM_SDTR2_RRD_MASK);
1782
1783         /*
1784          * convert t_rcd from nanoseconds to ddr clocks
1785          * round up if necessary
1786          */
1787         t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1788         ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1789         if (sdram_freq != ddr_check)
1790                 t_rcd_clk++;
1791
1792         switch (t_rcd_clk) {
1793         case 0:
1794         case 1:
1795                 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1796                 break;
1797         case 2:
1798                 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1799                 break;
1800         case 3:
1801                 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1802                 break;
1803         case 4:
1804                 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1805                 break;
1806         default:
1807                 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1808                 break;
1809         }
1810
1811         if (sdram_ddr1 == TRUE) { /* DDR1 */
1812                 if (sdram_freq < 200000000) {
1813                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1814                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1815                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1816                 } else {
1817                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1818                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1819                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1820                 }
1821         } else { /* DDR2 */
1822                 /* loop through all the DIMM slots on the board */
1823                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1824                         /* If a dimm is installed in a particular slot ... */
1825                         if (dimm_populated[dimm_num] != SDRAM_NONE) {
1826                                 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1827                                 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1828                                 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1829                         }
1830                 }
1831
1832                 /*
1833                  * convert from nanoseconds to ddr clocks
1834                  * round up if necessary
1835                  */
1836                 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1837                 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1838                 if (sdram_freq != ddr_check)
1839                         t_wpc_clk++;
1840
1841                 switch (t_wpc_clk) {
1842                 case 0:
1843                 case 1:
1844                 case 2:
1845                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1846                         break;
1847                 case 3:
1848                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1849                         break;
1850                 case 4:
1851                         sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1852                         break;
1853                 case 5:
1854                         sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1855                         break;
1856                 default:
1857                         sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1858                         break;
1859                 }
1860
1861                 /*
1862                  * convert from nanoseconds to ddr clocks
1863                  * round up if necessary
1864                  */
1865                 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1866                 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1867                 if (sdram_freq != ddr_check)
1868                         t_wtr_clk++;
1869
1870                 switch (t_wtr_clk) {
1871                 case 0:
1872                 case 1:
1873                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1874                         break;
1875                 case 2:
1876                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1877                         break;
1878                 case 3:
1879                         sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1880                         break;
1881                 default:
1882                         sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1883                         break;
1884                 }
1885
1886                 /*
1887                  * convert from nanoseconds to ddr clocks
1888                  * round up if necessary
1889                  */
1890                 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1891                 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1892                 if (sdram_freq != ddr_check)
1893                         t_rpc_clk++;
1894
1895                 switch (t_rpc_clk) {
1896                 case 0:
1897                 case 1:
1898                 case 2:
1899                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1900                         break;
1901                 case 3:
1902                         sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1903                         break;
1904                 default:
1905                         sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1906                         break;
1907                 }
1908         }
1909
1910         /* default value */
1911         sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1912
1913         /*
1914          * convert t_rrd from nanoseconds to ddr clocks
1915          * round up if necessary
1916          */
1917         t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1918         ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1919         if (sdram_freq != ddr_check)
1920                 t_rrd_clk++;
1921
1922         if (t_rrd_clk == 3)
1923                 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1924         else
1925                 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1926
1927         /*
1928          * convert t_rp from nanoseconds to ddr clocks
1929          * round up if necessary
1930          */
1931         t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1932         ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1933         if (sdram_freq != ddr_check)
1934                 t_rp_clk++;
1935
1936         switch (t_rp_clk) {
1937         case 0:
1938         case 1:
1939         case 2:
1940         case 3:
1941                 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1942                 break;
1943         case 4:
1944                 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1945                 break;
1946         case 5:
1947                 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1948                 break;
1949         case 6:
1950                 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1951                 break;
1952         default:
1953                 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1954                 break;
1955         }
1956
1957         mtsdram(SDRAM_SDTR2, sdtr2);
1958
1959         /*------------------------------------------------------------------
1960          * Set the SDRAM Timing Reg 3, SDRAM_TR3
1961          *-----------------------------------------------------------------*/
1962         mfsdram(SDRAM_SDTR3, sdtr3);
1963         sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
1964                    SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1965
1966         /*
1967          * convert t_ras from nanoseconds to ddr clocks
1968          * round up if necessary
1969          */
1970         t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1971         ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1972         if (sdram_freq != ddr_check)
1973                 t_ras_clk++;
1974
1975         sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1976
1977         /*
1978          * convert t_rc from nanoseconds to ddr clocks
1979          * round up if necessary
1980          */
1981         t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1982         ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1983         if (sdram_freq != ddr_check)
1984                 t_rc_clk++;
1985
1986         sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1987
1988         /* default xcs value */
1989         sdtr3 |= SDRAM_SDTR3_XCS;
1990
1991         /*
1992          * convert t_rfc from nanoseconds to ddr clocks
1993          * round up if necessary
1994          */
1995         t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1996         ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1997         if (sdram_freq != ddr_check)
1998                 t_rfc_clk++;
1999
2000         sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
2001
2002         mtsdram(SDRAM_SDTR3, sdtr3);
2003 }
2004
2005 /*-----------------------------------------------------------------------------+
2006  * program_bxcf.
2007  *-----------------------------------------------------------------------------*/
2008 static void program_bxcf(unsigned long *dimm_populated,
2009                          unsigned char *iic0_dimm_addr,
2010                          unsigned long num_dimm_banks)
2011 {
2012         unsigned long dimm_num;
2013         unsigned long num_col_addr;
2014         unsigned long num_ranks;
2015         unsigned long num_banks;
2016         unsigned long mode;
2017         unsigned long ind_rank;
2018         unsigned long ind;
2019         unsigned long ind_bank;
2020         unsigned long bank_0_populated;
2021
2022         /*------------------------------------------------------------------
2023          * Set the BxCF regs.  First, wipe out the bank config registers.
2024          *-----------------------------------------------------------------*/
2025         mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
2026         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2027         mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
2028         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2029         mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
2030         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2031         mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
2032         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2033
2034         mode = SDRAM_BXCF_M_BE_ENABLE;
2035
2036         bank_0_populated = 0;
2037
2038         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2039                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2040                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2041                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2042                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2043                                 num_ranks = (num_ranks & 0x0F) +1;
2044                         else
2045                                 num_ranks = num_ranks & 0x0F;
2046
2047                         num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2048
2049                         for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2050                                 if (num_banks == 4)
2051                                         ind = 0;
2052                                 else
2053                                         ind = 5;
2054                                 switch (num_col_addr) {
2055                                 case 0x08:
2056                                         mode |= (SDRAM_BXCF_M_AM_0 + ind);
2057                                         break;
2058                                 case 0x09:
2059                                         mode |= (SDRAM_BXCF_M_AM_1 + ind);
2060                                         break;
2061                                 case 0x0A:
2062                                         mode |= (SDRAM_BXCF_M_AM_2 + ind);
2063                                         break;
2064                                 case 0x0B:
2065                                         mode |= (SDRAM_BXCF_M_AM_3 + ind);
2066                                         break;
2067                                 case 0x0C:
2068                                         mode |= (SDRAM_BXCF_M_AM_4 + ind);
2069                                         break;
2070                                 default:
2071                                         printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2072                                                (unsigned int)dimm_num);
2073                                         printf("ERROR: Unsupported value for number of "
2074                                                "column addresses: %d.\n", (unsigned int)num_col_addr);
2075                                         printf("Replace the DIMM module with a supported DIMM.\n\n");
2076                                         HANG();
2077                                 }
2078                         }
2079
2080                         if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2081                                 bank_0_populated = 1;
2082
2083                         for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2084                                 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2085                                 mtdcr(SDRAMC_CFGDATA, mode);
2086                         }
2087                 }
2088         }
2089 }
2090
2091 /*------------------------------------------------------------------
2092  * program memory queue.
2093  *-----------------------------------------------------------------*/
2094 static void program_memory_queue(unsigned long *dimm_populated,
2095                                  unsigned char *iic0_dimm_addr,
2096                                  unsigned long num_dimm_banks)
2097 {
2098         unsigned long dimm_num;
2099         unsigned long rank_base_addr;
2100         unsigned long rank_reg;
2101         unsigned long rank_size_bytes;
2102         unsigned long rank_size_id;
2103         unsigned long num_ranks;
2104         unsigned long baseadd_size;
2105         unsigned long i;
2106         unsigned long bank_0_populated = 0;
2107
2108         /*------------------------------------------------------------------
2109          * Reset the rank_base_address.
2110          *-----------------------------------------------------------------*/
2111         rank_reg   = SDRAM_R0BAS;
2112
2113         rank_base_addr = 0x00000000;
2114
2115         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2116                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2117                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2118                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2119                                 num_ranks = (num_ranks & 0x0F) + 1;
2120                         else
2121                                 num_ranks = num_ranks & 0x0F;
2122
2123                         rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2124
2125                         /*------------------------------------------------------------------
2126                          * Set the sizes
2127                          *-----------------------------------------------------------------*/
2128                         baseadd_size = 0;
2129                         rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
2130                         switch (rank_size_id) {
2131                         case 0x02:
2132                                 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2133                                 break;
2134                         case 0x04:
2135                                 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2136                                 break;
2137                         case 0x08:
2138                                 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2139                                 break;
2140                         case 0x10:
2141                                 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2142                                 break;
2143                         case 0x20:
2144                                 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2145                                 break;
2146                         case 0x40:
2147                                 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2148                                 break;
2149                         case 0x80:
2150                                 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2151                                 break;
2152                         default:
2153                                 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2154                                        (unsigned int)dimm_num);
2155                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
2156                                        (unsigned int)rank_size_id);
2157                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
2158                                 HANG();
2159                         }
2160
2161                         if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2162                                 bank_0_populated = 1;
2163
2164                         for (i = 0; i < num_ranks; i++) {
2165                                 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2166                                           (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2167                                            baseadd_size));
2168                                 rank_base_addr += rank_size_bytes;
2169                         }
2170                 }
2171         }
2172 }
2173
2174 /*-----------------------------------------------------------------------------+
2175  * is_ecc_enabled.
2176  *-----------------------------------------------------------------------------*/
2177 static unsigned long is_ecc_enabled(void)
2178 {
2179         unsigned long dimm_num;
2180         unsigned long ecc;
2181         unsigned long val;
2182
2183         ecc = 0;
2184         /* loop through all the DIMM slots on the board */
2185         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2186                 mfsdram(SDRAM_MCOPT1, val);
2187                 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2188         }
2189
2190         return ecc;
2191 }
2192
2193 static void blank_string(int size)
2194 {
2195         int i;
2196
2197         for (i=0; i<size; i++)
2198                 putc('\b');
2199         for (i=0; i<size; i++)
2200                 putc(' ');
2201         for (i=0; i<size; i++)
2202                 putc('\b');
2203 }
2204
2205 #ifdef CONFIG_DDR_ECC
2206 /*-----------------------------------------------------------------------------+
2207  * program_ecc.
2208  *-----------------------------------------------------------------------------*/
2209 static void program_ecc(unsigned long *dimm_populated,
2210                         unsigned char *iic0_dimm_addr,
2211                         unsigned long num_dimm_banks,
2212                         unsigned long tlb_word2_i_value)
2213 {
2214         unsigned long mcopt1;
2215         unsigned long mcopt2;
2216         unsigned long mcstat;
2217         unsigned long dimm_num;
2218         unsigned long ecc;
2219
2220         ecc = 0;
2221         /* loop through all the DIMM slots on the board */
2222         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2223                 /* If a dimm is installed in a particular slot ... */
2224                 if (dimm_populated[dimm_num] != SDRAM_NONE)
2225                         ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2226         }
2227         if (ecc == 0)
2228                 return;
2229
2230         mfsdram(SDRAM_MCOPT1, mcopt1);
2231         mfsdram(SDRAM_MCOPT2, mcopt2);
2232
2233         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2234                 /* DDR controller must be enabled and not in self-refresh. */
2235                 mfsdram(SDRAM_MCSTAT, mcstat);
2236                 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2237                     && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2238                     && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2239                         == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2240
2241                         program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2242                 }
2243         }
2244
2245         return;
2246 }
2247
2248 #ifdef CONFIG_ECC_ERROR_RESET
2249 /*
2250  * Check for ECC errors and reset board upon any error here
2251  *
2252  * On the Katmai 440SPe eval board, from time to time, the first
2253  * lword write access after DDR2 initializazion with ECC checking
2254  * enabled, leads to an ECC error. I couldn't find a configuration
2255  * without this happening. On my board with the current setup it
2256  * happens about 1 from 10 times.
2257  *
2258  * The ECC modules used for testing are:
2259  * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2260  *
2261  * This has to get fixed for the Katmai and tested for the other
2262  * board (440SP/440SPe) that will eventually use this code in the
2263  * future.
2264  *
2265  * 2007-03-01, sr
2266  */
2267 static void check_ecc(void)
2268 {
2269         u32 val;
2270
2271         mfsdram(SDRAM_ECCCR, val);
2272         if (val != 0) {
2273                 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2274                        val, mfdcr(0x4c), mfdcr(0x4e));
2275                 printf("ECC error occured, resetting board...\n");
2276                 do_reset(NULL, 0, 0, NULL);
2277         }
2278 }
2279 #endif
2280
2281 static void wait_ddr_idle(void)
2282 {
2283         u32 val;
2284
2285         do {
2286                 mfsdram(SDRAM_MCSTAT, val);
2287         } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2288 }
2289
2290 /*-----------------------------------------------------------------------------+
2291  * program_ecc_addr.
2292  *-----------------------------------------------------------------------------*/
2293 static void program_ecc_addr(unsigned long start_address,
2294                              unsigned long num_bytes,
2295                              unsigned long tlb_word2_i_value)
2296 {
2297         unsigned long current_address;
2298         unsigned long end_address;
2299         unsigned long address_increment;
2300         unsigned long mcopt1;
2301         char str[] = "ECC generation -";
2302         char slash[] = "\\|/-\\|/-";
2303         int loop = 0;
2304         int loopi = 0;
2305
2306         current_address = start_address;
2307         mfsdram(SDRAM_MCOPT1, mcopt1);
2308         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2309                 mtsdram(SDRAM_MCOPT1,
2310                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2311                 sync();
2312                 eieio();
2313                 wait_ddr_idle();
2314
2315                 puts(str);
2316                 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2317                         /* ECC bit set method for non-cached memory */
2318                         if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2319                                 address_increment = 4;
2320                         else
2321                                 address_increment = 8;
2322                         end_address = current_address + num_bytes;
2323
2324                         while (current_address < end_address) {
2325                                 *((unsigned long *)current_address) = 0x00000000;
2326                                 current_address += address_increment;
2327
2328                                 if ((loop++ % (2 << 20)) == 0) {
2329                                         putc('\b');
2330                                         putc(slash[loopi++ % 8]);
2331                                 }
2332                         }
2333
2334                 } else {
2335                         /* ECC bit set method for cached memory */
2336                         dcbz_area(start_address, num_bytes);
2337                         dflush();
2338                 }
2339
2340                 blank_string(strlen(str));
2341
2342                 sync();
2343                 eieio();
2344                 wait_ddr_idle();
2345
2346                 /* clear ECC error repoting registers */
2347                 mtsdram(SDRAM_ECCCR, 0xffffffff);
2348                 mtdcr(0x4c, 0xffffffff);
2349
2350                 mtsdram(SDRAM_MCOPT1,
2351                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2352                 sync();
2353                 eieio();
2354                 wait_ddr_idle();
2355
2356 #ifdef CONFIG_ECC_ERROR_RESET
2357                 /*
2358                  * One write to 0 is enough to trigger this ECC error
2359                  * (see description above)
2360                  */
2361                 out_be32(0, 0x12345678);
2362                 check_ecc();
2363 #endif
2364         }
2365 }
2366 #endif
2367
2368 /*-----------------------------------------------------------------------------+
2369  * program_DQS_calibration.
2370  *-----------------------------------------------------------------------------*/
2371 static void program_DQS_calibration(unsigned long *dimm_populated,
2372                                     unsigned char *iic0_dimm_addr,
2373                                     unsigned long num_dimm_banks)
2374 {
2375         unsigned long val;
2376
2377 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2378         mtsdram(SDRAM_RQDC, 0x80000037);
2379         mtsdram(SDRAM_RDCC, 0x40000000);
2380         mtsdram(SDRAM_RFDC, 0x000001DF);
2381
2382         test();
2383 #else
2384         /*------------------------------------------------------------------
2385          * Program RDCC register
2386          * Read sample cycle auto-update enable
2387          *-----------------------------------------------------------------*/
2388
2389         /*
2390          * Modified for the Katmai platform:  with some DIMMs, the DDR2
2391          * controller automatically selects the T2 read cycle, but this
2392          * proves unreliable.  Go ahead and force the DDR2 controller
2393          * to use the T4 sample and disable the automatic update of the
2394          * RDSS field.
2395          */
2396         mfsdram(SDRAM_RDCC, val);
2397         mtsdram(SDRAM_RDCC,
2398                 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2399                 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2400
2401         /*------------------------------------------------------------------
2402          * Program RQDC register
2403          * Internal DQS delay mechanism enable
2404          *-----------------------------------------------------------------*/
2405         mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2406
2407         /*------------------------------------------------------------------
2408          * Program RFDC register
2409          * Set Feedback Fractional Oversample
2410          * Auto-detect read sample cycle enable
2411          *-----------------------------------------------------------------*/
2412         mfsdram(SDRAM_RFDC, val);
2413         mtsdram(SDRAM_RFDC,
2414                 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2415                          SDRAM_RFDC_RFFD_MASK))
2416                 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2417                    SDRAM_RFDC_RFFD_ENCODE(0)));
2418
2419         DQS_calibration_process();
2420 #endif
2421 }
2422
2423 static int short_mem_test(void)
2424 {
2425         u32 *membase;
2426         u32 bxcr_num;
2427         u32 bxcf;
2428         int i;
2429         int j;
2430         u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2431                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2432                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2433                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2434                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2435                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2436                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2437                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2438                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2439                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2440                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2441                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2442                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2443                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2444                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2445                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2446                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2447         int l;
2448
2449         for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2450                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2451
2452                 /* Banks enabled */
2453                 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2454                         /* Bank is enabled */
2455
2456                         /*------------------------------------------------------------------
2457                          * Run the short memory test.
2458                          *-----------------------------------------------------------------*/
2459                         membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2460
2461                         for (i = 0; i < NUMMEMTESTS; i++) {
2462                                 for (j = 0; j < NUMMEMWORDS; j++) {
2463                                         membase[j] = test[i][j];
2464                                         ppcDcbf((u32)&(membase[j]));
2465                                 }
2466                                 sync();
2467                                 for (l=0; l<NUMLOOPS; l++) {
2468                                         for (j = 0; j < NUMMEMWORDS; j++) {
2469                                                 if (membase[j] != test[i][j]) {
2470                                                         ppcDcbf((u32)&(membase[j]));
2471                                                         return 0;
2472                                                 }
2473                                                 ppcDcbf((u32)&(membase[j]));
2474                                         }
2475                                         sync();
2476                                 }
2477                         }
2478                 }       /* if bank enabled */
2479         }               /* for bxcf_num */
2480
2481         return 1;
2482 }
2483
2484 #ifndef HARD_CODED_DQS
2485 /*-----------------------------------------------------------------------------+
2486  * DQS_calibration_process.
2487  *-----------------------------------------------------------------------------*/
2488 static void DQS_calibration_process(void)
2489 {
2490         unsigned long rfdc_reg;
2491         unsigned long rffd;
2492         unsigned long rqdc_reg;
2493         unsigned long rqfd;
2494         unsigned long val;
2495         long rqfd_average;
2496         long rffd_average;
2497         long max_start;
2498         long min_end;
2499         unsigned long begin_rqfd[MAXRANKS];
2500         unsigned long begin_rffd[MAXRANKS];
2501         unsigned long end_rqfd[MAXRANKS];
2502         unsigned long end_rffd[MAXRANKS];
2503         char window_found;
2504         unsigned long dlycal;
2505         unsigned long dly_val;
2506         unsigned long max_pass_length;
2507         unsigned long current_pass_length;
2508         unsigned long current_fail_length;
2509         unsigned long current_start;
2510         long max_end;
2511         unsigned char fail_found;
2512         unsigned char pass_found;
2513         u32 rqfd_start;
2514         char str[] = "Auto calibration -";
2515         char slash[] = "\\|/-\\|/-";
2516         int loopi = 0;
2517
2518         /*------------------------------------------------------------------
2519          * Test to determine the best read clock delay tuning bits.
2520          *
2521          * Before the DDR controller can be used, the read clock delay needs to be
2522          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2523          * This value cannot be hardcoded into the program because it changes
2524          * depending on the board's setup and environment.
2525          * To do this, all delay values are tested to see if they
2526          * work or not.  By doing this, you get groups of fails with groups of
2527          * passing values.  The idea is to find the start and end of a passing
2528          * window and take the center of it to use as the read clock delay.
2529          *
2530          * A failure has to be seen first so that when we hit a pass, we know
2531          * that it is truely the start of the window.  If we get passing values
2532          * to start off with, we don't know if we are at the start of the window.
2533          *
2534          * The code assumes that a failure will always be found.
2535          * If a failure is not found, there is no easy way to get the middle
2536          * of the passing window.  I guess we can pretty much pick any value
2537          * but some values will be better than others.  Since the lowest speed
2538          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2539          * from experimentation it is safe to say you will always have a failure.
2540          *-----------------------------------------------------------------*/
2541
2542         /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2543         rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2544
2545         puts(str);
2546
2547 calibration_loop:
2548         mfsdram(SDRAM_RQDC, rqdc_reg);
2549         mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2550                 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
2551
2552         max_start = 0;
2553         min_end = 0;
2554         begin_rqfd[0] = 0;
2555         begin_rffd[0] = 0;
2556         begin_rqfd[1] = 0;
2557         begin_rffd[1] = 0;
2558         end_rqfd[0] = 0;
2559         end_rffd[0] = 0;
2560         end_rqfd[1] = 0;
2561         end_rffd[1] = 0;
2562         window_found = FALSE;
2563
2564         max_pass_length = 0;
2565         max_start = 0;
2566         max_end = 0;
2567         current_pass_length = 0;
2568         current_fail_length = 0;
2569         current_start = 0;
2570         window_found = FALSE;
2571         fail_found = FALSE;
2572         pass_found = FALSE;
2573
2574         /*
2575          * get the delay line calibration register value
2576          */
2577         mfsdram(SDRAM_DLCR, dlycal);
2578         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2579
2580         for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2581                 mfsdram(SDRAM_RFDC, rfdc_reg);
2582                 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2583
2584                 /*------------------------------------------------------------------
2585                  * Set the timing reg for the test.
2586                  *-----------------------------------------------------------------*/
2587                 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2588
2589                 /*------------------------------------------------------------------
2590                  * See if the rffd value passed.
2591                  *-----------------------------------------------------------------*/
2592                 if (short_mem_test()) {
2593                         if (fail_found == TRUE) {
2594                                 pass_found = TRUE;
2595                                 if (current_pass_length == 0)
2596                                         current_start = rffd;
2597
2598                                 current_fail_length = 0;
2599                                 current_pass_length++;
2600
2601                                 if (current_pass_length > max_pass_length) {
2602                                         max_pass_length = current_pass_length;
2603                                         max_start = current_start;
2604                                         max_end = rffd;
2605                                 }
2606                         }
2607                 } else {
2608                         current_pass_length = 0;
2609                         current_fail_length++;
2610
2611                         if (current_fail_length >= (dly_val >> 2)) {
2612                                 if (fail_found == FALSE) {
2613                                         fail_found = TRUE;
2614                                 } else if (pass_found == TRUE) {
2615                                         window_found = TRUE;
2616                                         break;
2617                                 }
2618                         }
2619                 }
2620         }               /* for rffd */
2621
2622         /*------------------------------------------------------------------
2623          * Set the average RFFD value
2624          *-----------------------------------------------------------------*/
2625         rffd_average = ((max_start + max_end) >> 1);
2626
2627         if (rffd_average < 0)
2628                 rffd_average = 0;
2629
2630         if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2631                 rffd_average = SDRAM_RFDC_RFFD_MAX;
2632         /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2633         mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2634
2635         max_pass_length = 0;
2636         max_start = 0;
2637         max_end = 0;
2638         current_pass_length = 0;
2639         current_fail_length = 0;
2640         current_start = 0;
2641         window_found = FALSE;
2642         fail_found = FALSE;
2643         pass_found = FALSE;
2644
2645         for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2646                 mfsdram(SDRAM_RQDC, rqdc_reg);
2647                 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2648
2649                 /*------------------------------------------------------------------
2650                  * Set the timing reg for the test.
2651                  *-----------------------------------------------------------------*/
2652                 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2653
2654                 /*------------------------------------------------------------------
2655                  * See if the rffd value passed.
2656                  *-----------------------------------------------------------------*/
2657                 if (short_mem_test()) {
2658                         if (fail_found == TRUE) {
2659                                 pass_found = TRUE;
2660                                 if (current_pass_length == 0)
2661                                         current_start = rqfd;
2662
2663                                 current_fail_length = 0;
2664                                 current_pass_length++;
2665
2666                                 if (current_pass_length > max_pass_length) {
2667                                         max_pass_length = current_pass_length;
2668                                         max_start = current_start;
2669                                         max_end = rqfd;
2670                                 }
2671                         }
2672                 } else {
2673                         current_pass_length = 0;
2674                         current_fail_length++;
2675
2676                         if (fail_found == FALSE) {
2677                                 fail_found = TRUE;
2678                         } else if (pass_found == TRUE) {
2679                                 window_found = TRUE;
2680                                 break;
2681                         }
2682                 }
2683         }
2684
2685         rqfd_average = ((max_start + max_end) >> 1);
2686
2687         /*------------------------------------------------------------------
2688          * Make sure we found the valid read passing window.  Halt if not
2689          *-----------------------------------------------------------------*/
2690         if (window_found == FALSE) {
2691                 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2692                         putc('\b');
2693                         putc(slash[loopi++ % 8]);
2694
2695                         /* try again from with a different RQFD start value */
2696                         rqfd_start++;
2697                         goto calibration_loop;
2698                 }
2699
2700                 printf("\nERROR: Cannot determine a common read delay for the "
2701                        "DIMM(s) installed.\n");
2702                 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2703                 HANG();
2704         }
2705
2706         blank_string(strlen(str));
2707
2708         if (rqfd_average < 0)
2709                 rqfd_average = 0;
2710
2711         if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2712                 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2713
2714         mtsdram(SDRAM_RQDC,
2715                 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2716                 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2717
2718         mfsdram(SDRAM_DLCR, val);
2719         debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2720         mfsdram(SDRAM_RQDC, val);
2721         debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2722         mfsdram(SDRAM_RFDC, val);
2723         debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2724 }
2725 #else /* calibration test with hardvalues */
2726 /*-----------------------------------------------------------------------------+
2727  * DQS_calibration_process.
2728  *-----------------------------------------------------------------------------*/
2729 static void test(void)
2730 {
2731         unsigned long dimm_num;
2732         unsigned long ecc_temp;
2733         unsigned long i, j;
2734         unsigned long *membase;
2735         unsigned long bxcf[MAXRANKS];
2736         unsigned long val;
2737         char window_found;
2738         char begin_found[MAXDIMMS];
2739         char end_found[MAXDIMMS];
2740         char search_end[MAXDIMMS];
2741         unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2742                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2743                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2744                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2745                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2746                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2747                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2748                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2749                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2750                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2751                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2752                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2753                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2754                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2755                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2756                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2757                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2758
2759         /*------------------------------------------------------------------
2760          * Test to determine the best read clock delay tuning bits.
2761          *
2762          * Before the DDR controller can be used, the read clock delay needs to be
2763          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2764          * This value cannot be hardcoded into the program because it changes
2765          * depending on the board's setup and environment.
2766          * To do this, all delay values are tested to see if they
2767          * work or not.  By doing this, you get groups of fails with groups of
2768          * passing values.  The idea is to find the start and end of a passing
2769          * window and take the center of it to use as the read clock delay.
2770          *
2771          * A failure has to be seen first so that when we hit a pass, we know
2772          * that it is truely the start of the window.  If we get passing values
2773          * to start off with, we don't know if we are at the start of the window.
2774          *
2775          * The code assumes that a failure will always be found.
2776          * If a failure is not found, there is no easy way to get the middle
2777          * of the passing window.  I guess we can pretty much pick any value
2778          * but some values will be better than others.  Since the lowest speed
2779          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2780          * from experimentation it is safe to say you will always have a failure.
2781          *-----------------------------------------------------------------*/
2782         mfsdram(SDRAM_MCOPT1, ecc_temp);
2783         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2784         mfsdram(SDRAM_MCOPT1, val);
2785         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2786                 SDRAM_MCOPT1_MCHK_NON);
2787
2788         window_found = FALSE;
2789         begin_found[0] = FALSE;
2790         end_found[0] = FALSE;
2791         search_end[0] = FALSE;
2792         begin_found[1] = FALSE;
2793         end_found[1] = FALSE;
2794         search_end[1] = FALSE;
2795
2796         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2797                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2798
2799                 /* Banks enabled */
2800                 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2801
2802                         /* Bank is enabled */
2803                         membase =
2804                                 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2805
2806                         /*------------------------------------------------------------------
2807                          * Run the short memory test.
2808                          *-----------------------------------------------------------------*/
2809                         for (i = 0; i < NUMMEMTESTS; i++) {
2810                                 for (j = 0; j < NUMMEMWORDS; j++) {
2811                                         membase[j] = test[i][j];
2812                                         ppcDcbf((u32)&(membase[j]));
2813                                 }
2814                                 sync();
2815                                 for (j = 0; j < NUMMEMWORDS; j++) {
2816                                         if (membase[j] != test[i][j]) {
2817                                                 ppcDcbf((u32)&(membase[j]));
2818                                                 break;
2819                                         }
2820                                         ppcDcbf((u32)&(membase[j]));
2821                                 }
2822                                 sync();
2823                                 if (j < NUMMEMWORDS)
2824                                         break;
2825                         }
2826
2827                         /*------------------------------------------------------------------
2828                          * See if the rffd value passed.
2829                          *-----------------------------------------------------------------*/
2830                         if (i < NUMMEMTESTS) {
2831                                 if ((end_found[dimm_num] == FALSE) &&
2832                                     (search_end[dimm_num] == TRUE)) {
2833                                         end_found[dimm_num] = TRUE;
2834                                 }
2835                                 if ((end_found[0] == TRUE) &&
2836                                     (end_found[1] == TRUE))
2837                                         break;
2838                         } else {
2839                                 if (begin_found[dimm_num] == FALSE) {
2840                                         begin_found[dimm_num] = TRUE;
2841                                         search_end[dimm_num] = TRUE;
2842                                 }
2843                         }
2844                 } else {
2845                         begin_found[dimm_num] = TRUE;
2846                         end_found[dimm_num] = TRUE;
2847                 }
2848         }
2849
2850         if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2851                 window_found = TRUE;
2852
2853         /*------------------------------------------------------------------
2854          * Make sure we found the valid read passing window.  Halt if not
2855          *-----------------------------------------------------------------*/
2856         if (window_found == FALSE) {
2857                 printf("ERROR: Cannot determine a common read delay for the "
2858                        "DIMM(s) installed.\n");
2859                 HANG();
2860         }
2861
2862         /*------------------------------------------------------------------
2863          * Restore the ECC variable to what it originally was
2864          *-----------------------------------------------------------------*/
2865         mtsdram(SDRAM_MCOPT1,
2866                 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2867                 | ecc_temp);
2868 }
2869 #endif
2870
2871 #if defined(DEBUG)
2872 static void ppc440sp_sdram_register_dump(void)
2873 {
2874         unsigned int sdram_reg;
2875         unsigned int sdram_data;
2876         unsigned int dcr_data;
2877
2878         printf("\n  Register Dump:\n");
2879         sdram_reg = SDRAM_MCSTAT;
2880         mfsdram(sdram_reg, sdram_data);
2881         printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
2882         sdram_reg = SDRAM_MCOPT1;
2883         mfsdram(sdram_reg, sdram_data);
2884         printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
2885         sdram_reg = SDRAM_MCOPT2;
2886         mfsdram(sdram_reg, sdram_data);
2887         printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
2888         sdram_reg = SDRAM_MODT0;
2889         mfsdram(sdram_reg, sdram_data);
2890         printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
2891         sdram_reg = SDRAM_MODT1;
2892         mfsdram(sdram_reg, sdram_data);
2893         printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
2894         sdram_reg = SDRAM_MODT2;
2895         mfsdram(sdram_reg, sdram_data);
2896         printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
2897         sdram_reg = SDRAM_MODT3;
2898         mfsdram(sdram_reg, sdram_data);
2899         printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
2900         sdram_reg = SDRAM_CODT;
2901         mfsdram(sdram_reg, sdram_data);
2902         printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
2903         sdram_reg = SDRAM_VVPR;
2904         mfsdram(sdram_reg, sdram_data);
2905         printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
2906         sdram_reg = SDRAM_OPARS;
2907         mfsdram(sdram_reg, sdram_data);
2908         printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
2909         /*
2910          * OPAR2 is only used as a trigger register.
2911          * No data is contained in this register, and reading or writing
2912          * to is can cause bad things to happen (hangs).  Just skip it
2913          * and report NA
2914          * sdram_reg = SDRAM_OPAR2;
2915          * mfsdram(sdram_reg, sdram_data);
2916          * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
2917          */
2918         printf("        SDRAM_OPART     = N/A       ");
2919         sdram_reg = SDRAM_RTR;
2920         mfsdram(sdram_reg, sdram_data);
2921         printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
2922         sdram_reg = SDRAM_MB0CF;
2923         mfsdram(sdram_reg, sdram_data);
2924         printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
2925         sdram_reg = SDRAM_MB1CF;
2926         mfsdram(sdram_reg, sdram_data);
2927         printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
2928         sdram_reg = SDRAM_MB2CF;
2929         mfsdram(sdram_reg, sdram_data);
2930         printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
2931         sdram_reg = SDRAM_MB3CF;
2932         mfsdram(sdram_reg, sdram_data);
2933         printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
2934         sdram_reg = SDRAM_INITPLR0;
2935         mfsdram(sdram_reg, sdram_data);
2936         printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
2937         sdram_reg = SDRAM_INITPLR1;
2938         mfsdram(sdram_reg, sdram_data);
2939         printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
2940         sdram_reg = SDRAM_INITPLR2;
2941         mfsdram(sdram_reg, sdram_data);
2942         printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
2943         sdram_reg = SDRAM_INITPLR3;
2944         mfsdram(sdram_reg, sdram_data);
2945         printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
2946         sdram_reg = SDRAM_INITPLR4;
2947         mfsdram(sdram_reg, sdram_data);
2948         printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
2949         sdram_reg = SDRAM_INITPLR5;
2950         mfsdram(sdram_reg, sdram_data);
2951         printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
2952         sdram_reg = SDRAM_INITPLR6;
2953         mfsdram(sdram_reg, sdram_data);
2954         printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
2955         sdram_reg = SDRAM_INITPLR7;
2956         mfsdram(sdram_reg, sdram_data);
2957         printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
2958         sdram_reg = SDRAM_INITPLR8;
2959         mfsdram(sdram_reg, sdram_data);
2960         printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
2961         sdram_reg = SDRAM_INITPLR9;
2962         mfsdram(sdram_reg, sdram_data);
2963         printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
2964         sdram_reg = SDRAM_INITPLR10;
2965         mfsdram(sdram_reg, sdram_data);
2966         printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
2967         sdram_reg = SDRAM_INITPLR11;
2968         mfsdram(sdram_reg, sdram_data);
2969         printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2970         sdram_reg = SDRAM_INITPLR12;
2971         mfsdram(sdram_reg, sdram_data);
2972         printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
2973         sdram_reg = SDRAM_INITPLR13;
2974         mfsdram(sdram_reg, sdram_data);
2975         printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2976         sdram_reg = SDRAM_INITPLR14;
2977         mfsdram(sdram_reg, sdram_data);
2978         printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
2979         sdram_reg = SDRAM_INITPLR15;
2980         mfsdram(sdram_reg, sdram_data);
2981         printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2982         sdram_reg = SDRAM_RQDC;
2983         mfsdram(sdram_reg, sdram_data);
2984         printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
2985         sdram_reg = SDRAM_RFDC;
2986         mfsdram(sdram_reg, sdram_data);
2987         printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
2988         sdram_reg = SDRAM_RDCC;
2989         mfsdram(sdram_reg, sdram_data);
2990         printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
2991         sdram_reg = SDRAM_DLCR;
2992         mfsdram(sdram_reg, sdram_data);
2993         printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
2994         sdram_reg = SDRAM_CLKTR;
2995         mfsdram(sdram_reg, sdram_data);
2996         printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
2997         sdram_reg = SDRAM_WRDTR;
2998         mfsdram(sdram_reg, sdram_data);
2999         printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
3000         sdram_reg = SDRAM_SDTR1;
3001         mfsdram(sdram_reg, sdram_data);
3002         printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
3003         sdram_reg = SDRAM_SDTR2;
3004         mfsdram(sdram_reg, sdram_data);
3005         printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
3006         sdram_reg = SDRAM_SDTR3;
3007         mfsdram(sdram_reg, sdram_data);
3008         printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
3009         sdram_reg = SDRAM_MMODE;
3010         mfsdram(sdram_reg, sdram_data);
3011         printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
3012         sdram_reg = SDRAM_MEMODE;
3013         mfsdram(sdram_reg, sdram_data);
3014         printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
3015         sdram_reg = SDRAM_ECCCR;
3016         mfsdram(sdram_reg, sdram_data);
3017         printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
3018
3019         dcr_data = mfdcr(SDRAM_R0BAS);
3020         printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
3021         dcr_data = mfdcr(SDRAM_R1BAS);
3022         printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
3023         dcr_data = mfdcr(SDRAM_R2BAS);
3024         printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
3025         dcr_data = mfdcr(SDRAM_R3BAS);
3026         printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
3027 }
3028 #endif
3029 #endif /* CONFIG_SPD_EEPROM */