Merge with /home/wd/git/u-boot/custodian/u-boot-74xx-7xx
[platform/kernel/u-boot.git] / cpu / ppc4xx / 44x_spd_ddr2.c
1 /*
2  * cpu/ppc4xx/44x_spd_ddr2.c
3  * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
4  * DDR2 controller (non Denali Core). Those are 440SP/SPe.
5  *
6  * (C) Copyright 2007
7  * Stefan Roese, DENX Software Engineering, sr@denx.de.
8  *
9  * COPYRIGHT   AMCC   CORPORATION 2004
10  *
11  * See file CREDITS for list of people who contributed to this
12  * project.
13  *
14  * This program is free software; you can redistribute it and/or
15  * modify it under the terms of the GNU General Public License as
16  * published by the Free Software Foundation; either version 2 of
17  * the License, or (at your option) any later version.
18  *
19  * This program is distributed in the hope that it will be useful,
20  * but WITHOUT ANY WARRANTY; without even the implied warranty of
21  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22  * GNU General Public License for more details.
23  *
24  * You should have received a copy of the GNU General Public License
25  * along with this program; if not, write to the Free Software
26  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
27  * MA 02111-1307 USA
28  *
29  */
30
31 /* define DEBUG for debugging output (obviously ;-)) */
32 #if 0
33 #define DEBUG
34 #endif
35
36 #include <common.h>
37 #include <command.h>
38 #include <ppc4xx.h>
39 #include <i2c.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43
44 #if defined(CONFIG_SPD_EEPROM) &&                               \
45         (defined(CONFIG_440SP) || defined(CONFIG_440SPE))
46
47 /*-----------------------------------------------------------------------------+
48  * Defines
49  *-----------------------------------------------------------------------------*/
50 #ifndef TRUE
51 #define TRUE            1
52 #endif
53 #ifndef FALSE
54 #define FALSE           0
55 #endif
56
57 #define SDRAM_DDR1      1
58 #define SDRAM_DDR2      2
59 #define SDRAM_NONE      0
60
61 #define MAXDIMMS        2
62 #define MAXRANKS        4
63 #define MAXBXCF         4
64 #define MAX_SPD_BYTES   256   /* Max number of bytes on the DIMM's SPD EEPROM */
65
66 #define ONE_BILLION     1000000000
67
68 #define MULDIV64(m1, m2, d)     (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
69
70 #define CMD_NOP         (7 << 19)
71 #define CMD_PRECHARGE   (2 << 19)
72 #define CMD_REFRESH     (1 << 19)
73 #define CMD_EMR         (0 << 19)
74 #define CMD_READ        (5 << 19)
75 #define CMD_WRITE       (4 << 19)
76
77 #define SELECT_MR       (0 << 16)
78 #define SELECT_EMR      (1 << 16)
79 #define SELECT_EMR2     (2 << 16)
80 #define SELECT_EMR3     (3 << 16)
81
82 /* MR */
83 #define DLL_RESET       0x00000100
84
85 #define WRITE_RECOV_2   (1 << 9)
86 #define WRITE_RECOV_3   (2 << 9)
87 #define WRITE_RECOV_4   (3 << 9)
88 #define WRITE_RECOV_5   (4 << 9)
89 #define WRITE_RECOV_6   (5 << 9)
90
91 #define BURST_LEN_4     0x00000002
92
93 /* EMR */
94 #define ODT_0_OHM       0x00000000
95 #define ODT_50_OHM      0x00000044
96 #define ODT_75_OHM      0x00000004
97 #define ODT_150_OHM     0x00000040
98
99 #define ODS_FULL        0x00000000
100 #define ODS_REDUCED     0x00000002
101
102 /* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
103 #define ODT_EB0R        (0x80000000 >> 8)
104 #define ODT_EB0W        (0x80000000 >> 7)
105 #define CALC_ODT_R(n)   (ODT_EB0R << (n << 1))
106 #define CALC_ODT_W(n)   (ODT_EB0W << (n << 1))
107 #define CALC_ODT_RW(n)  (CALC_ODT_R(n) | CALC_ODT_W(n))
108
109 /* Defines for the Read Cycle Delay test */
110 #define NUMMEMTESTS     8
111 #define NUMMEMWORDS     8
112 #define NUMLOOPS        256             /* memory test loops */
113
114 #undef CONFIG_ECC_ERROR_RESET           /* test-only: see description below, at check_ecc() */
115
116 /*
117  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
118  * region. Right now the cache should still be disabled in U-Boot because of the
119  * EMAC driver, that need it's buffer descriptor to be located in non cached
120  * memory.
121  *
122  * If at some time this restriction doesn't apply anymore, just define
123  * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
124  * everything correctly.
125  */
126 #ifdef CFG_ENABLE_SDRAM_CACHE
127 #define MY_TLB_WORD2_I_ENABLE   0                       /* enable caching on SDRAM */
128 #else
129 #define MY_TLB_WORD2_I_ENABLE   TLB_WORD2_I_ENABLE      /* disable caching on SDRAM */
130 #endif
131
132 /* Private Structure Definitions */
133
134 /* enum only to ease code for cas latency setting */
135 typedef enum ddr_cas_id {
136         DDR_CAS_2      = 20,
137         DDR_CAS_2_5    = 25,
138         DDR_CAS_3      = 30,
139         DDR_CAS_4      = 40,
140         DDR_CAS_5      = 50
141 } ddr_cas_id_t;
142
143 /*-----------------------------------------------------------------------------+
144  * Prototypes
145  *-----------------------------------------------------------------------------*/
146 static unsigned long sdram_memsize(void);
147 void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
148 static void get_spd_info(unsigned long *dimm_populated,
149                          unsigned char *iic0_dimm_addr,
150                          unsigned long num_dimm_banks);
151 static void check_mem_type(unsigned long *dimm_populated,
152                            unsigned char *iic0_dimm_addr,
153                            unsigned long num_dimm_banks);
154 static void check_frequency(unsigned long *dimm_populated,
155                             unsigned char *iic0_dimm_addr,
156                             unsigned long num_dimm_banks);
157 static void check_rank_number(unsigned long *dimm_populated,
158                               unsigned char *iic0_dimm_addr,
159                               unsigned long num_dimm_banks);
160 static void check_voltage_type(unsigned long *dimm_populated,
161                                unsigned char *iic0_dimm_addr,
162                                unsigned long num_dimm_banks);
163 static void program_memory_queue(unsigned long *dimm_populated,
164                                  unsigned char *iic0_dimm_addr,
165                                  unsigned long num_dimm_banks);
166 static void program_codt(unsigned long *dimm_populated,
167                          unsigned char *iic0_dimm_addr,
168                          unsigned long num_dimm_banks);
169 static void program_mode(unsigned long *dimm_populated,
170                          unsigned char *iic0_dimm_addr,
171                          unsigned long num_dimm_banks,
172                          ddr_cas_id_t *selected_cas,
173                          int *write_recovery);
174 static void program_tr(unsigned long *dimm_populated,
175                        unsigned char *iic0_dimm_addr,
176                        unsigned long num_dimm_banks);
177 static void program_rtr(unsigned long *dimm_populated,
178                         unsigned char *iic0_dimm_addr,
179                         unsigned long num_dimm_banks);
180 static void program_bxcf(unsigned long *dimm_populated,
181                          unsigned char *iic0_dimm_addr,
182                          unsigned long num_dimm_banks);
183 static void program_copt1(unsigned long *dimm_populated,
184                           unsigned char *iic0_dimm_addr,
185                           unsigned long num_dimm_banks);
186 static void program_initplr(unsigned long *dimm_populated,
187                             unsigned char *iic0_dimm_addr,
188                             unsigned long num_dimm_banks,
189                             ddr_cas_id_t selected_cas,
190                             int write_recovery);
191 static unsigned long is_ecc_enabled(void);
192 #ifdef CONFIG_DDR_ECC
193 static void program_ecc(unsigned long *dimm_populated,
194                         unsigned char *iic0_dimm_addr,
195                         unsigned long num_dimm_banks,
196                         unsigned long tlb_word2_i_value);
197 static void program_ecc_addr(unsigned long start_address,
198                              unsigned long num_bytes,
199                              unsigned long tlb_word2_i_value);
200 #endif
201 static void program_DQS_calibration(unsigned long *dimm_populated,
202                                     unsigned char *iic0_dimm_addr,
203                                     unsigned long num_dimm_banks);
204 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
205 static void     test(void);
206 #else
207 static void     DQS_calibration_process(void);
208 #endif
209 #if defined(DEBUG)
210 static void ppc440sp_sdram_register_dump(void);
211 #endif
212 int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
213 void dcbz_area(u32 start_address, u32 num_bytes);
214 void dflush(void);
215
216 static u32 mfdcr_any(u32 dcr)
217 {
218         u32 val;
219
220         switch (dcr) {
221         case SDRAM_R0BAS + 0:
222                 val = mfdcr(SDRAM_R0BAS + 0);
223                 break;
224         case SDRAM_R0BAS + 1:
225                 val = mfdcr(SDRAM_R0BAS + 1);
226                 break;
227         case SDRAM_R0BAS + 2:
228                 val = mfdcr(SDRAM_R0BAS + 2);
229                 break;
230         case SDRAM_R0BAS + 3:
231                 val = mfdcr(SDRAM_R0BAS + 3);
232                 break;
233         default:
234                 printf("DCR %d not defined in case statement!!!\n", dcr);
235                 val = 0; /* just to satisfy the compiler */
236         }
237
238         return val;
239 }
240
241 static void mtdcr_any(u32 dcr, u32 val)
242 {
243         switch (dcr) {
244         case SDRAM_R0BAS + 0:
245                 mtdcr(SDRAM_R0BAS + 0, val);
246                 break;
247         case SDRAM_R0BAS + 1:
248                 mtdcr(SDRAM_R0BAS + 1, val);
249                 break;
250         case SDRAM_R0BAS + 2:
251                 mtdcr(SDRAM_R0BAS + 2, val);
252                 break;
253         case SDRAM_R0BAS + 3:
254                 mtdcr(SDRAM_R0BAS + 3, val);
255                 break;
256         default:
257                 printf("DCR %d not defined in case statement!!!\n", dcr);
258         }
259 }
260
261 static unsigned char spd_read(uchar chip, uint addr)
262 {
263         unsigned char data[2];
264
265         if (i2c_probe(chip) == 0)
266                 if (i2c_read(chip, addr, 1, data, 1) == 0)
267                         return data[0];
268
269         return 0;
270 }
271
272 /*-----------------------------------------------------------------------------+
273  * sdram_memsize
274  *-----------------------------------------------------------------------------*/
275 static unsigned long sdram_memsize(void)
276 {
277         unsigned long mem_size;
278         unsigned long mcopt2;
279         unsigned long mcstat;
280         unsigned long mb0cf;
281         unsigned long sdsz;
282         unsigned long i;
283
284         mem_size = 0;
285
286         mfsdram(SDRAM_MCOPT2, mcopt2);
287         mfsdram(SDRAM_MCSTAT, mcstat);
288
289         /* DDR controller must be enabled and not in self-refresh. */
290         /* Otherwise memsize is zero. */
291         if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
292             && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
293             && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
294                 == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
295                 for (i = 0; i < MAXBXCF; i++) {
296                         mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
297                         /* Banks enabled */
298                         if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
299                                 sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;
300
301                                 switch(sdsz) {
302                                 case SDRAM_RXBAS_SDSZ_8:
303                                         mem_size+=8;
304                                         break;
305                                 case SDRAM_RXBAS_SDSZ_16:
306                                         mem_size+=16;
307                                         break;
308                                 case SDRAM_RXBAS_SDSZ_32:
309                                         mem_size+=32;
310                                         break;
311                                 case SDRAM_RXBAS_SDSZ_64:
312                                         mem_size+=64;
313                                         break;
314                                 case SDRAM_RXBAS_SDSZ_128:
315                                         mem_size+=128;
316                                         break;
317                                 case SDRAM_RXBAS_SDSZ_256:
318                                         mem_size+=256;
319                                         break;
320                                 case SDRAM_RXBAS_SDSZ_512:
321                                         mem_size+=512;
322                                         break;
323                                 case SDRAM_RXBAS_SDSZ_1024:
324                                         mem_size+=1024;
325                                         break;
326                                 case SDRAM_RXBAS_SDSZ_2048:
327                                         mem_size+=2048;
328                                         break;
329                                 case SDRAM_RXBAS_SDSZ_4096:
330                                         mem_size+=4096;
331                                         break;
332                                 default:
333                                         mem_size=0;
334                                         break;
335                                 }
336                         }
337                 }
338         }
339
340         mem_size *= 1024 * 1024;
341         return(mem_size);
342 }
343
344 /*-----------------------------------------------------------------------------+
345  * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
346  * Note: This routine runs from flash with a stack set up in the chip's
347  * sram space.  It is important that the routine does not require .sbss, .bss or
348  * .data sections.  It also cannot call routines that require these sections.
349  *-----------------------------------------------------------------------------*/
350 /*-----------------------------------------------------------------------------
351  * Function:     initdram
352  * Description:  Configures SDRAM memory banks for DDR operation.
353  *               Auto Memory Configuration option reads the DDR SDRAM EEPROMs
354  *               via the IIC bus and then configures the DDR SDRAM memory
355  *               banks appropriately. If Auto Memory Configuration is
356  *               not used, it is assumed that no DIMM is plugged
357  *-----------------------------------------------------------------------------*/
358 long int initdram(int board_type)
359 {
360         unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
361         unsigned char spd0[MAX_SPD_BYTES];
362         unsigned char spd1[MAX_SPD_BYTES];
363         unsigned char *dimm_spd[MAXDIMMS];
364         unsigned long dimm_populated[MAXDIMMS];
365         unsigned long num_dimm_banks;               /* on board dimm banks */
366         unsigned long val;
367         ddr_cas_id_t  selected_cas;
368         int write_recovery;
369         unsigned long dram_size = 0;
370
371         num_dimm_banks = sizeof(iic0_dimm_addr);
372
373         /*------------------------------------------------------------------
374          * Set up an array of SPD matrixes.
375          *-----------------------------------------------------------------*/
376         dimm_spd[0] = spd0;
377         dimm_spd[1] = spd1;
378
379         /*------------------------------------------------------------------
380          * Reset the DDR-SDRAM controller.
381          *-----------------------------------------------------------------*/
382         mtsdr(SDR0_SRST, (0x80000000 >> 10));
383         mtsdr(SDR0_SRST, 0x00000000);
384
385         /*
386          * Make sure I2C controller is initialized
387          * before continuing.
388          */
389
390         /* switch to correct I2C bus */
391         I2C_SET_BUS(CFG_SPD_BUS_NUM);
392         i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
393
394         /*------------------------------------------------------------------
395          * Clear out the serial presence detect buffers.
396          * Perform IIC reads from the dimm.  Fill in the spds.
397          * Check to see if the dimm slots are populated
398          *-----------------------------------------------------------------*/
399         get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);
400
401         /*------------------------------------------------------------------
402          * Check the memory type for the dimms plugged.
403          *-----------------------------------------------------------------*/
404         check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
405
406         /*------------------------------------------------------------------
407          * Check the frequency supported for the dimms plugged.
408          *-----------------------------------------------------------------*/
409         check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);
410
411         /*------------------------------------------------------------------
412          * Check the total rank number.
413          *-----------------------------------------------------------------*/
414         check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);
415
416         /*------------------------------------------------------------------
417          * Check the voltage type for the dimms plugged.
418          *-----------------------------------------------------------------*/
419         check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);
420
421         /*------------------------------------------------------------------
422          * Program SDRAM controller options 2 register
423          * Except Enabling of the memory controller.
424          *-----------------------------------------------------------------*/
425         mfsdram(SDRAM_MCOPT2, val);
426         mtsdram(SDRAM_MCOPT2,
427                 (val &
428                  ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
429                    SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
430                    SDRAM_MCOPT2_ISIE_MASK))
431                 | (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
432                    SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
433                    SDRAM_MCOPT2_ISIE_ENABLE));
434
435         /*------------------------------------------------------------------
436          * Program SDRAM controller options 1 register
437          * Note: Does not enable the memory controller.
438          *-----------------------------------------------------------------*/
439         program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);
440
441         /*------------------------------------------------------------------
442          * Set the SDRAM Controller On Die Termination Register
443          *-----------------------------------------------------------------*/
444         program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);
445
446         /*------------------------------------------------------------------
447          * Program SDRAM refresh register.
448          *-----------------------------------------------------------------*/
449         program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
450
451         /*------------------------------------------------------------------
452          * Program SDRAM mode register.
453          *-----------------------------------------------------------------*/
454         program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
455                      &selected_cas, &write_recovery);
456
457         /*------------------------------------------------------------------
458          * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
459          *-----------------------------------------------------------------*/
460         mfsdram(SDRAM_WRDTR, val);
461         mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
462                 (SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));
463
464         /*------------------------------------------------------------------
465          * Set the SDRAM Clock Timing Register
466          *-----------------------------------------------------------------*/
467         mfsdram(SDRAM_CLKTR, val);
468         mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);
469
470         /*------------------------------------------------------------------
471          * Program the BxCF registers.
472          *-----------------------------------------------------------------*/
473         program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);
474
475         /*------------------------------------------------------------------
476          * Program SDRAM timing registers.
477          *-----------------------------------------------------------------*/
478         program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);
479
480         /*------------------------------------------------------------------
481          * Set the Extended Mode register
482          *-----------------------------------------------------------------*/
483         mfsdram(SDRAM_MEMODE, val);
484         mtsdram(SDRAM_MEMODE,
485                 (val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
486                          SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
487                 (SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
488                  | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));
489
490         /*------------------------------------------------------------------
491          * Program Initialization preload registers.
492          *-----------------------------------------------------------------*/
493         program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
494                         selected_cas, write_recovery);
495
496         /*------------------------------------------------------------------
497          * Delay to ensure 200usec have elapsed since reset.
498          *-----------------------------------------------------------------*/
499         udelay(400);
500
501         /*------------------------------------------------------------------
502          * Set the memory queue core base addr.
503          *-----------------------------------------------------------------*/
504         program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);
505
506         /*------------------------------------------------------------------
507          * Program SDRAM controller options 2 register
508          * Enable the memory controller.
509          *-----------------------------------------------------------------*/
510         mfsdram(SDRAM_MCOPT2, val);
511         mtsdram(SDRAM_MCOPT2,
512                 (val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
513                          SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
514                 (SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));
515
516         /*------------------------------------------------------------------
517          * Wait for SDRAM_CFG0_DC_EN to complete.
518          *-----------------------------------------------------------------*/
519         do {
520                 mfsdram(SDRAM_MCSTAT, val);
521         } while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);
522
523         /* get installed memory size */
524         dram_size = sdram_memsize();
525
526         /* and program tlb entries for this size (dynamic) */
527         program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);
528
529         /*------------------------------------------------------------------
530          * DQS calibration.
531          *-----------------------------------------------------------------*/
532         program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);
533
534 #ifdef CONFIG_DDR_ECC
535         /*------------------------------------------------------------------
536          * If ecc is enabled, initialize the parity bits.
537          *-----------------------------------------------------------------*/
538         program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
539 #endif
540
541 #ifdef DEBUG
542         ppc440sp_sdram_register_dump();
543 #endif
544
545         return dram_size;
546 }
547
548 static void get_spd_info(unsigned long *dimm_populated,
549                          unsigned char *iic0_dimm_addr,
550                          unsigned long num_dimm_banks)
551 {
552         unsigned long dimm_num;
553         unsigned long dimm_found;
554         unsigned char num_of_bytes;
555         unsigned char total_size;
556
557         dimm_found = FALSE;
558         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
559                 num_of_bytes = 0;
560                 total_size = 0;
561
562                 num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
563                 debug("\nspd_read(0x%x) returned %d\n",
564                       iic0_dimm_addr[dimm_num], num_of_bytes);
565                 total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
566                 debug("spd_read(0x%x) returned %d\n",
567                       iic0_dimm_addr[dimm_num], total_size);
568
569                 if ((num_of_bytes != 0) && (total_size != 0)) {
570                         dimm_populated[dimm_num] = TRUE;
571                         dimm_found = TRUE;
572                         debug("DIMM slot %lu: populated\n", dimm_num);
573                 } else {
574                         dimm_populated[dimm_num] = FALSE;
575                         debug("DIMM slot %lu: Not populated\n", dimm_num);
576                 }
577         }
578
579         if (dimm_found == FALSE) {
580                 printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
581                 hang();
582         }
583 }
584
585 #ifdef CONFIG_ADD_RAM_INFO
586 void board_add_ram_info(int use_default)
587 {
588         PPC440_SYS_INFO board_cfg;
589         u32 val;
590
591         if (is_ecc_enabled())
592                 puts(" (ECC");
593         else
594                 puts(" (ECC not");
595
596         get_sys_info(&board_cfg);
597
598         mfsdr(SDR0_DDR0, val);
599         val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1);
600         printf(" enabled, %d MHz", (val * 2) / 1000000);
601
602         mfsdram(SDRAM_MMODE, val);
603         val = (val & SDRAM_MMODE_DCL_MASK) >> 4;
604         printf(", CL%d)", val);
605 }
606 #endif
607
608 /*------------------------------------------------------------------
609  * For the memory DIMMs installed, this routine verifies that they
610  * really are DDR specific DIMMs.
611  *-----------------------------------------------------------------*/
612 static void check_mem_type(unsigned long *dimm_populated,
613                            unsigned char *iic0_dimm_addr,
614                            unsigned long num_dimm_banks)
615 {
616         unsigned long dimm_num;
617         unsigned long dimm_type;
618
619         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
620                 if (dimm_populated[dimm_num] == TRUE) {
621                         dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
622                         switch (dimm_type) {
623                         case 1:
624                                 printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
625                                        "slot %d.\n", (unsigned int)dimm_num);
626                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
627                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
628                                 hang();
629                                 break;
630                         case 2:
631                                 printf("ERROR: EDO DIMM detected in slot %d.\n",
632                                        (unsigned int)dimm_num);
633                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
634                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
635                                 hang();
636                                 break;
637                         case 3:
638                                 printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
639                                        (unsigned int)dimm_num);
640                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
641                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
642                                 hang();
643                                 break;
644                         case 4:
645                                 printf("ERROR: SDRAM DIMM detected in slot %d.\n",
646                                        (unsigned int)dimm_num);
647                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
648                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
649                                 hang();
650                                 break;
651                         case 5:
652                                 printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
653                                        (unsigned int)dimm_num);
654                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
655                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
656                                 hang();
657                                 break;
658                         case 6:
659                                 printf("ERROR: SGRAM DIMM detected in slot %d.\n",
660                                        (unsigned int)dimm_num);
661                                 printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
662                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
663                                 hang();
664                                 break;
665                         case 7:
666                                 debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
667                                 dimm_populated[dimm_num] = SDRAM_DDR1;
668                                 break;
669                         case 8:
670                                 debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
671                                 dimm_populated[dimm_num] = SDRAM_DDR2;
672                                 break;
673                         default:
674                                 printf("ERROR: Unknown DIMM detected in slot %d.\n",
675                                        (unsigned int)dimm_num);
676                                 printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
677                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
678                                 hang();
679                                 break;
680                         }
681                 }
682         }
683         for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
684                 if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
685                     && (dimm_populated[dimm_num]   != SDRAM_NONE)
686                     && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
687                         printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
688                         hang();
689                 }
690         }
691 }
692
693 /*------------------------------------------------------------------
694  * For the memory DIMMs installed, this routine verifies that
695  * frequency previously calculated is supported.
696  *-----------------------------------------------------------------*/
697 static void check_frequency(unsigned long *dimm_populated,
698                             unsigned char *iic0_dimm_addr,
699                             unsigned long num_dimm_banks)
700 {
701         unsigned long dimm_num;
702         unsigned long tcyc_reg;
703         unsigned long cycle_time;
704         unsigned long calc_cycle_time;
705         unsigned long sdram_freq;
706         unsigned long sdr_ddrpll;
707         PPC440_SYS_INFO board_cfg;
708
709         /*------------------------------------------------------------------
710          * Get the board configuration info.
711          *-----------------------------------------------------------------*/
712         get_sys_info(&board_cfg);
713
714         mfsdr(SDR0_DDR0, sdr_ddrpll);
715         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
716
717         /*
718          * calc_cycle_time is calculated from DDR frequency set by board/chip
719          * and is expressed in multiple of 10 picoseconds
720          * to match the way DIMM cycle time is calculated below.
721          */
722         calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);
723
724         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
725                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
726                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
727                         /*
728                          * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
729                          * the higher order nibble (bits 4-7) designates the cycle time
730                          * to a granularity of 1ns;
731                          * the value presented by the lower order nibble (bits 0-3)
732                          * has a granularity of .1ns and is added to the value designated
733                          * by the higher nibble. In addition, four lines of the lower order
734                          * nibble are assigned to support +.25,+.33, +.66 and +.75.
735                          */
736                          /* Convert from hex to decimal */
737                         if ((tcyc_reg & 0x0F) == 0x0D)
738                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
739                         else if ((tcyc_reg & 0x0F) == 0x0C)
740                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
741                         else if ((tcyc_reg & 0x0F) == 0x0B)
742                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
743                         else if ((tcyc_reg & 0x0F) == 0x0A)
744                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
745                         else
746                                 cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
747                                         ((tcyc_reg & 0x0F)*10);
748                         debug("cycle_time=%d [10 picoseconds]\n", cycle_time);
749
750                         if  (cycle_time > (calc_cycle_time + 10)) {
751                                 /*
752                                  * the provided sdram cycle_time is too small
753                                  * for the available DIMM cycle_time.
754                                  * The additionnal 100ps is here to accept a small incertainty.
755                                  */
756                                 printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
757                                        "slot %d \n while calculated cycle time is %d ps.\n",
758                                        (unsigned int)(cycle_time*10),
759                                        (unsigned int)dimm_num,
760                                        (unsigned int)(calc_cycle_time*10));
761                                 printf("Replace the DIMM, or change DDR frequency via "
762                                        "strapping bits.\n\n");
763                                 hang();
764                         }
765                 }
766         }
767 }
768
769 /*------------------------------------------------------------------
770  * For the memory DIMMs installed, this routine verifies two
771  * ranks/banks maximum are availables.
772  *-----------------------------------------------------------------*/
773 static void check_rank_number(unsigned long *dimm_populated,
774                               unsigned char *iic0_dimm_addr,
775                               unsigned long num_dimm_banks)
776 {
777         unsigned long dimm_num;
778         unsigned long dimm_rank;
779         unsigned long total_rank = 0;
780
781         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
782                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
783                         dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
784                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
785                                 dimm_rank = (dimm_rank & 0x0F) +1;
786                         else
787                                 dimm_rank = dimm_rank & 0x0F;
788
789
790                         if (dimm_rank > MAXRANKS) {
791                                 printf("ERROR: DRAM DIMM detected with %d ranks in "
792                                        "slot %d is not supported.\n", dimm_rank, dimm_num);
793                                 printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
794                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
795                                 hang();
796                         } else
797                                 total_rank += dimm_rank;
798                 }
799                 if (total_rank > MAXRANKS) {
800                         printf("ERROR: DRAM DIMM detected with a total of %d ranks "
801                                "for all slots.\n", (unsigned int)total_rank);
802                         printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
803                         printf("Remove one of the DIMM modules.\n\n");
804                         hang();
805                 }
806         }
807 }
808
809 /*------------------------------------------------------------------
810  * only support 2.5V modules.
811  * This routine verifies this.
812  *-----------------------------------------------------------------*/
813 static void check_voltage_type(unsigned long *dimm_populated,
814                                unsigned char *iic0_dimm_addr,
815                                unsigned long num_dimm_banks)
816 {
817         unsigned long dimm_num;
818         unsigned long voltage_type;
819
820         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
821                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
822                         voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
823                         switch (voltage_type) {
824                         case 0x00:
825                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
826                                 printf("This DIMM is 5.0 Volt/TTL.\n");
827                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
828                                        (unsigned int)dimm_num);
829                                 hang();
830                                 break;
831                         case 0x01:
832                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
833                                 printf("This DIMM is LVTTL.\n");
834                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
835                                        (unsigned int)dimm_num);
836                                 hang();
837                                 break;
838                         case 0x02:
839                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
840                                 printf("This DIMM is 1.5 Volt.\n");
841                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
842                                        (unsigned int)dimm_num);
843                                 hang();
844                                 break;
845                         case 0x03:
846                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
847                                 printf("This DIMM is 3.3 Volt/TTL.\n");
848                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
849                                        (unsigned int)dimm_num);
850                                 hang();
851                                 break;
852                         case 0x04:
853                                 /* 2.5 Voltage only for DDR1 */
854                                 break;
855                         case 0x05:
856                                 /* 1.8 Voltage only for DDR2 */
857                                 break;
858                         default:
859                                 printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
860                                 printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
861                                        (unsigned int)dimm_num);
862                                 hang();
863                                 break;
864                         }
865                 }
866         }
867 }
868
869 /*-----------------------------------------------------------------------------+
870  * program_copt1.
871  *-----------------------------------------------------------------------------*/
872 static void program_copt1(unsigned long *dimm_populated,
873                           unsigned char *iic0_dimm_addr,
874                           unsigned long num_dimm_banks)
875 {
876         unsigned long dimm_num;
877         unsigned long mcopt1;
878         unsigned long ecc_enabled;
879         unsigned long ecc = 0;
880         unsigned long data_width = 0;
881         unsigned long dimm_32bit;
882         unsigned long dimm_64bit;
883         unsigned long registered = 0;
884         unsigned long attribute = 0;
885         unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
886         unsigned long bankcount;
887         unsigned long ddrtype;
888         unsigned long val;
889
890 #ifdef CONFIG_DDR_ECC
891         ecc_enabled = TRUE;
892 #else
893         ecc_enabled = FALSE;
894 #endif
895         dimm_32bit = FALSE;
896         dimm_64bit = FALSE;
897         buf0 = FALSE;
898         buf1 = FALSE;
899
900         /*------------------------------------------------------------------
901          * Set memory controller options reg 1, SDRAM_MCOPT1.
902          *-----------------------------------------------------------------*/
903         mfsdram(SDRAM_MCOPT1, val);
904         mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
905                          SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
906                          SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
907                          SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
908                          SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
909                          SDRAM_MCOPT1_DREF_MASK);
910
911         mcopt1 |= SDRAM_MCOPT1_QDEP;
912         mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
913         mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
914         mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
915         mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
916         mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;
917
918         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
919                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
920                         /* test ecc support */
921                         ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
922                         if (ecc != 0x02) /* ecc not supported */
923                                 ecc_enabled = FALSE;
924
925                         /* test bank count */
926                         bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
927                         if (bankcount == 0x04) /* bank count = 4 */
928                                 mcopt1 |= SDRAM_MCOPT1_4_BANKS;
929                         else /* bank count = 8 */
930                                 mcopt1 |= SDRAM_MCOPT1_8_BANKS;
931
932                         /* test DDR type */
933                         ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
934                         /* test for buffered/unbuffered, registered, differential clocks */
935                         registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
936                         attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);
937
938                         /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
939                         if (dimm_num == 0) {
940                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
941                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
942                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
943                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
944                                 if (registered == 1) { /* DDR2 always buffered */
945                                         /* TODO: what about above  comments ? */
946                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
947                                         buf0 = TRUE;
948                                 } else {
949                                         /* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
950                                         if ((attribute & 0x02) == 0x00) {
951                                                 /* buffered not supported */
952                                                 buf0 = FALSE;
953                                         } else {
954                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
955                                                 buf0 = TRUE;
956                                         }
957                                 }
958                         }
959                         else if (dimm_num == 1) {
960                                 if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
961                                         mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
962                                 if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
963                                         mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
964                                 if (registered == 1) {
965                                         /* DDR2 always buffered */
966                                         mcopt1 |= SDRAM_MCOPT1_RDEN;
967                                         buf1 = TRUE;
968                                 } else {
969                                         if ((attribute & 0x02) == 0x00) {
970                                                 /* buffered not supported */
971                                                 buf1 = FALSE;
972                                         } else {
973                                                 mcopt1 |= SDRAM_MCOPT1_RDEN;
974                                                 buf1 = TRUE;
975                                         }
976                                 }
977                         }
978
979                         /* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
980                         data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
981                                 (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);
982
983                         switch (data_width) {
984                         case 72:
985                         case 64:
986                                 dimm_64bit = TRUE;
987                                 break;
988                         case 40:
989                         case 32:
990                                 dimm_32bit = TRUE;
991                                 break;
992                         default:
993                                 printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
994                                        data_width);
995                                 printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
996                                 break;
997                         }
998                 }
999         }
1000
1001         /* verify matching properties */
1002         if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
1003                 if (buf0 != buf1) {
1004                         printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
1005                         hang();
1006                 }
1007         }
1008
1009         if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
1010                 printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
1011                 hang();
1012         }
1013         else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
1014                 mcopt1 |= SDRAM_MCOPT1_DMWD_64;
1015         } else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
1016                 mcopt1 |= SDRAM_MCOPT1_DMWD_32;
1017         } else {
1018                 printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
1019                 hang();
1020         }
1021
1022         if (ecc_enabled == TRUE)
1023                 mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
1024         else
1025                 mcopt1 |= SDRAM_MCOPT1_MCHK_NON;
1026
1027         mtsdram(SDRAM_MCOPT1, mcopt1);
1028 }
1029
1030 /*-----------------------------------------------------------------------------+
1031  * program_codt.
1032  *-----------------------------------------------------------------------------*/
1033 static void program_codt(unsigned long *dimm_populated,
1034                          unsigned char *iic0_dimm_addr,
1035                          unsigned long num_dimm_banks)
1036 {
1037         unsigned long codt;
1038         unsigned long modt0 = 0;
1039         unsigned long modt1 = 0;
1040         unsigned long modt2 = 0;
1041         unsigned long modt3 = 0;
1042         unsigned char dimm_num;
1043         unsigned char dimm_rank;
1044         unsigned char total_rank = 0;
1045         unsigned char total_dimm = 0;
1046         unsigned char dimm_type = 0;
1047         unsigned char firstSlot = 0;
1048
1049         /*------------------------------------------------------------------
1050          * Set the SDRAM Controller On Die Termination Register
1051          *-----------------------------------------------------------------*/
1052         mfsdram(SDRAM_CODT, codt);
1053         codt |= (SDRAM_CODT_IO_NMODE
1054                  & (~SDRAM_CODT_DQS_SINGLE_END
1055                     & ~SDRAM_CODT_CKSE_SINGLE_END
1056                     & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
1057                     & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));
1058
1059         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1060                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1061                         dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
1062                         if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
1063                                 dimm_rank = (dimm_rank & 0x0F) + 1;
1064                                 dimm_type = SDRAM_DDR2;
1065                         } else {
1066                                 dimm_rank = dimm_rank & 0x0F;
1067                                 dimm_type = SDRAM_DDR1;
1068                         }
1069
1070                         total_rank += dimm_rank;
1071                         total_dimm++;
1072                         if ((dimm_num == 0) && (total_dimm == 1))
1073                                 firstSlot = TRUE;
1074                         else
1075                                 firstSlot = FALSE;
1076                 }
1077         }
1078         if (dimm_type == SDRAM_DDR2) {
1079                 codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
1080                 if ((total_dimm == 1) && (firstSlot == TRUE)) {
1081                         if (total_rank == 1) {
1082                                 codt |= CALC_ODT_R(0);
1083                                 modt0 = CALC_ODT_W(0);
1084                                 modt1 = 0x00000000;
1085                                 modt2 = 0x00000000;
1086                                 modt3 = 0x00000000;
1087                         }
1088                         if (total_rank == 2) {
1089                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
1090                                 modt0 = CALC_ODT_W(0);
1091                                 modt1 = CALC_ODT_W(0);
1092                                 modt2 = 0x00000000;
1093                                 modt3 = 0x00000000;
1094                         }
1095                 } else if ((total_dimm == 1) && (firstSlot != TRUE)) {
1096                         if (total_rank == 1) {
1097                                 codt |= CALC_ODT_R(2);
1098                                 modt0 = 0x00000000;
1099                                 modt1 = 0x00000000;
1100                                 modt2 = CALC_ODT_W(2);
1101                                 modt3 = 0x00000000;
1102                         }
1103                         if (total_rank == 2) {
1104                                 codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
1105                                 modt0 = 0x00000000;
1106                                 modt1 = 0x00000000;
1107                                 modt2 = CALC_ODT_W(2);
1108                                 modt3 = CALC_ODT_W(2);
1109                         }
1110                 }
1111                 if (total_dimm == 2) {
1112                         if (total_rank == 2) {
1113                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
1114                                 modt0 = CALC_ODT_RW(2);
1115                                 modt1 = 0x00000000;
1116                                 modt2 = CALC_ODT_RW(0);
1117                                 modt3 = 0x00000000;
1118                         }
1119                         if (total_rank == 4) {
1120                                 codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
1121                                 modt0 = CALC_ODT_RW(2);
1122                                 modt1 = 0x00000000;
1123                                 modt2 = CALC_ODT_RW(0);
1124                                 modt3 = 0x00000000;
1125                         }
1126                 }
1127         } else {
1128                 codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
1129                 modt0 = 0x00000000;
1130                 modt1 = 0x00000000;
1131                 modt2 = 0x00000000;
1132                 modt3 = 0x00000000;
1133
1134                 if (total_dimm == 1) {
1135                         if (total_rank == 1)
1136                                 codt |= 0x00800000;
1137                         if (total_rank == 2)
1138                                 codt |= 0x02800000;
1139                 }
1140                 if (total_dimm == 2) {
1141                         if (total_rank == 2)
1142                                 codt |= 0x08800000;
1143                         if (total_rank == 4)
1144                                 codt |= 0x2a800000;
1145                 }
1146         }
1147
1148         debug("nb of dimm %d\n", total_dimm);
1149         debug("nb of rank %d\n", total_rank);
1150         if (total_dimm == 1)
1151                 debug("dimm in slot %d\n", firstSlot);
1152
1153         mtsdram(SDRAM_CODT, codt);
1154         mtsdram(SDRAM_MODT0, modt0);
1155         mtsdram(SDRAM_MODT1, modt1);
1156         mtsdram(SDRAM_MODT2, modt2);
1157         mtsdram(SDRAM_MODT3, modt3);
1158 }
1159
1160 /*-----------------------------------------------------------------------------+
1161  * program_initplr.
1162  *-----------------------------------------------------------------------------*/
1163 static void program_initplr(unsigned long *dimm_populated,
1164                             unsigned char *iic0_dimm_addr,
1165                             unsigned long num_dimm_banks,
1166                             ddr_cas_id_t selected_cas,
1167                             int write_recovery)
1168 {
1169         u32 cas = 0;
1170         u32 odt = 0;
1171         u32 ods = 0;
1172         u32 mr;
1173         u32 wr;
1174         u32 emr;
1175         u32 emr2;
1176         u32 emr3;
1177         int dimm_num;
1178         int total_dimm = 0;
1179
1180         /******************************************************
1181          ** Assumption: if more than one DIMM, all DIMMs are the same
1182          **             as already checked in check_memory_type
1183          ******************************************************/
1184
1185         if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
1186                 mtsdram(SDRAM_INITPLR0, 0x81B80000);
1187                 mtsdram(SDRAM_INITPLR1, 0x81900400);
1188                 mtsdram(SDRAM_INITPLR2, 0x81810000);
1189                 mtsdram(SDRAM_INITPLR3, 0xff800162);
1190                 mtsdram(SDRAM_INITPLR4, 0x81900400);
1191                 mtsdram(SDRAM_INITPLR5, 0x86080000);
1192                 mtsdram(SDRAM_INITPLR6, 0x86080000);
1193                 mtsdram(SDRAM_INITPLR7, 0x81000062);
1194         } else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
1195                 switch (selected_cas) {
1196                 case DDR_CAS_3:
1197                         cas = 3 << 4;
1198                         break;
1199                 case DDR_CAS_4:
1200                         cas = 4 << 4;
1201                         break;
1202                 case DDR_CAS_5:
1203                         cas = 5 << 4;
1204                         break;
1205                 default:
1206                         printf("ERROR: ucode error on selected_cas value %d", selected_cas);
1207                         hang();
1208                         break;
1209                 }
1210
1211 #if 0
1212                 /*
1213                  * ToDo - Still a problem with the write recovery:
1214                  * On the Corsair CM2X512-5400C4 module, setting write recovery
1215                  * in the INITPLR reg to the value calculated in program_mode()
1216                  * results in not correctly working DDR2 memory (crash after
1217                  * relocation).
1218                  *
1219                  * So for now, set the write recovery to 3. This seems to work
1220                  * on the Corair module too.
1221                  *
1222                  * 2007-03-01, sr
1223                  */
1224                 switch (write_recovery) {
1225                 case 3:
1226                         wr = WRITE_RECOV_3;
1227                         break;
1228                 case 4:
1229                         wr = WRITE_RECOV_4;
1230                         break;
1231                 case 5:
1232                         wr = WRITE_RECOV_5;
1233                         break;
1234                 case 6:
1235                         wr = WRITE_RECOV_6;
1236                         break;
1237                 default:
1238                         printf("ERROR: write recovery not support (%d)", write_recovery);
1239                         hang();
1240                         break;
1241                 }
1242 #else
1243                 wr = WRITE_RECOV_3; /* test-only, see description above */
1244 #endif
1245
1246                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
1247                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1248                                 total_dimm++;
1249                 if (total_dimm == 1) {
1250                         odt = ODT_150_OHM;
1251                         ods = ODS_FULL;
1252                 } else if (total_dimm == 2) {
1253                         odt = ODT_75_OHM;
1254                         ods = ODS_REDUCED;
1255                 } else {
1256                         printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
1257                         hang();
1258                 }
1259
1260                 mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
1261                 emr = CMD_EMR | SELECT_EMR | odt | ods;
1262                 emr2 = CMD_EMR | SELECT_EMR2;
1263                 emr3 = CMD_EMR | SELECT_EMR3;
1264                 mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);         /* NOP */
1265                 udelay(1000);
1266                 mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1267                 mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);            /* EMR2 */
1268                 mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);            /* EMR3 */
1269                 mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);             /* EMR DLL ENABLE */
1270                 mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);  /* MR w/ DLL reset */
1271                 udelay(1000);
1272                 mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);   /* precharge 8 DDR clock cycle */
1273                 mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1274                 mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1275                 mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1276                 mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);     /* Refresh  50 DDR clock cycle */
1277                 mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);              /* MR w/o DLL reset */
1278                 mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);             /* EMR OCD Default */
1279                 mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);             /* EMR OCD Exit */
1280         } else {
1281                 printf("ERROR: ucode error as unknown DDR type in program_initplr");
1282                 hang();
1283         }
1284 }
1285
1286 /*------------------------------------------------------------------
1287  * This routine programs the SDRAM_MMODE register.
1288  * the selected_cas is an output parameter, that will be passed
1289  * by caller to call the above program_initplr( )
1290  *-----------------------------------------------------------------*/
1291 static void program_mode(unsigned long *dimm_populated,
1292                          unsigned char *iic0_dimm_addr,
1293                          unsigned long num_dimm_banks,
1294                          ddr_cas_id_t *selected_cas,
1295                          int *write_recovery)
1296 {
1297         unsigned long dimm_num;
1298         unsigned long sdram_ddr1;
1299         unsigned long t_wr_ns;
1300         unsigned long t_wr_clk;
1301         unsigned long cas_bit;
1302         unsigned long cas_index;
1303         unsigned long sdram_freq;
1304         unsigned long ddr_check;
1305         unsigned long mmode;
1306         unsigned long tcyc_reg;
1307         unsigned long cycle_2_0_clk;
1308         unsigned long cycle_2_5_clk;
1309         unsigned long cycle_3_0_clk;
1310         unsigned long cycle_4_0_clk;
1311         unsigned long cycle_5_0_clk;
1312         unsigned long max_2_0_tcyc_ns_x_100;
1313         unsigned long max_2_5_tcyc_ns_x_100;
1314         unsigned long max_3_0_tcyc_ns_x_100;
1315         unsigned long max_4_0_tcyc_ns_x_100;
1316         unsigned long max_5_0_tcyc_ns_x_100;
1317         unsigned long cycle_time_ns_x_100[3];
1318         PPC440_SYS_INFO board_cfg;
1319         unsigned char cas_2_0_available;
1320         unsigned char cas_2_5_available;
1321         unsigned char cas_3_0_available;
1322         unsigned char cas_4_0_available;
1323         unsigned char cas_5_0_available;
1324         unsigned long sdr_ddrpll;
1325
1326         /*------------------------------------------------------------------
1327          * Get the board configuration info.
1328          *-----------------------------------------------------------------*/
1329         get_sys_info(&board_cfg);
1330
1331         mfsdr(SDR0_DDR0, sdr_ddrpll);
1332         sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);
1333         debug("sdram_freq=%d\n", sdram_freq);
1334
1335         /*------------------------------------------------------------------
1336          * Handle the timing.  We need to find the worst case timing of all
1337          * the dimm modules installed.
1338          *-----------------------------------------------------------------*/
1339         t_wr_ns = 0;
1340         cas_2_0_available = TRUE;
1341         cas_2_5_available = TRUE;
1342         cas_3_0_available = TRUE;
1343         cas_4_0_available = TRUE;
1344         cas_5_0_available = TRUE;
1345         max_2_0_tcyc_ns_x_100 = 10;
1346         max_2_5_tcyc_ns_x_100 = 10;
1347         max_3_0_tcyc_ns_x_100 = 10;
1348         max_4_0_tcyc_ns_x_100 = 10;
1349         max_5_0_tcyc_ns_x_100 = 10;
1350         sdram_ddr1 = TRUE;
1351
1352         /* loop through all the DIMM slots on the board */
1353         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1354                 /* If a dimm is installed in a particular slot ... */
1355                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1356                         if (dimm_populated[dimm_num] == SDRAM_DDR1)
1357                                 sdram_ddr1 = TRUE;
1358                         else
1359                                 sdram_ddr1 = FALSE;
1360
1361                         /* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
1362                         cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);
1363                         debug("cas_bit[SPD byte 18]=%02x\n", cas_bit);
1364
1365                         /* For a particular DIMM, grab the three CAS values it supports */
1366                         for (cas_index = 0; cas_index < 3; cas_index++) {
1367                                 switch (cas_index) {
1368                                 case 0:
1369                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
1370                                         break;
1371                                 case 1:
1372                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
1373                                         break;
1374                                 default:
1375                                         tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
1376                                         break;
1377                                 }
1378
1379                                 if ((tcyc_reg & 0x0F) >= 10) {
1380                                         if ((tcyc_reg & 0x0F) == 0x0D) {
1381                                                 /* Convert from hex to decimal */
1382                                                 cycle_time_ns_x_100[cas_index] =
1383                                                         (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
1384                                         } else {
1385                                                 printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
1386                                                        "in slot %d\n", (unsigned int)dimm_num);
1387                                                 hang();
1388                                         }
1389                                 } else {
1390                                         /* Convert from hex to decimal */
1391                                         cycle_time_ns_x_100[cas_index] =
1392                                                 (((tcyc_reg & 0xF0) >> 4) * 100) +
1393                                                 ((tcyc_reg & 0x0F)*10);
1394                                 }
1395                                 debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index,
1396                                       cycle_time_ns_x_100[cas_index]);
1397                         }
1398
1399                         /* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
1400                         /* supported for a particular DIMM. */
1401                         cas_index = 0;
1402
1403                         if (sdram_ddr1) {
1404                                 /*
1405                                  * DDR devices use the following bitmask for CAS latency:
1406                                  *  Bit   7    6    5    4    3    2    1    0
1407                                  *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
1408                                  */
1409                                 if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) &&
1410                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1411                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1412                                                                     cycle_time_ns_x_100[cas_index]);
1413                                         cas_index++;
1414                                 } else {
1415                                         if (cas_index != 0)
1416                                                 cas_index++;
1417                                         cas_4_0_available = FALSE;
1418                                 }
1419
1420                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1421                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1422                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1423                                                                     cycle_time_ns_x_100[cas_index]);
1424                                         cas_index++;
1425                                 } else {
1426                                         if (cas_index != 0)
1427                                                 cas_index++;
1428                                         cas_3_0_available = FALSE;
1429                                 }
1430
1431                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1432                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1433                                         max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100,
1434                                                                     cycle_time_ns_x_100[cas_index]);
1435                                         cas_index++;
1436                                 } else {
1437                                         if (cas_index != 0)
1438                                                 cas_index++;
1439                                         cas_2_5_available = FALSE;
1440                                 }
1441
1442                                 if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) &&
1443                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1444                                         max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100,
1445                                                                     cycle_time_ns_x_100[cas_index]);
1446                                         cas_index++;
1447                                 } else {
1448                                         if (cas_index != 0)
1449                                                 cas_index++;
1450                                         cas_2_0_available = FALSE;
1451                                 }
1452                         } else {
1453                                 /*
1454                                  * DDR2 devices use the following bitmask for CAS latency:
1455                                  *  Bit   7    6    5    4    3    2    1    0
1456                                  *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
1457                                  */
1458                                 if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) &&
1459                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1460                                         max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100,
1461                                                                     cycle_time_ns_x_100[cas_index]);
1462                                         cas_index++;
1463                                 } else {
1464                                         if (cas_index != 0)
1465                                                 cas_index++;
1466                                         cas_5_0_available = FALSE;
1467                                 }
1468
1469                                 if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) &&
1470                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1471                                         max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100,
1472                                                                     cycle_time_ns_x_100[cas_index]);
1473                                         cas_index++;
1474                                 } else {
1475                                         if (cas_index != 0)
1476                                                 cas_index++;
1477                                         cas_4_0_available = FALSE;
1478                                 }
1479
1480                                 if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) &&
1481                                     (cycle_time_ns_x_100[cas_index] != 0)) {
1482                                         max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100,
1483                                                                     cycle_time_ns_x_100[cas_index]);
1484                                         cas_index++;
1485                                 } else {
1486                                         if (cas_index != 0)
1487                                                 cas_index++;
1488                                         cas_3_0_available = FALSE;
1489                                 }
1490                         }
1491                 }
1492         }
1493
1494         /*------------------------------------------------------------------
1495          * Set the SDRAM mode, SDRAM_MMODE
1496          *-----------------------------------------------------------------*/
1497         mfsdram(SDRAM_MMODE, mmode);
1498         mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);
1499
1500         /* add 10 here because of rounding problems */
1501         cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
1502         cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
1503         cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
1504         cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
1505         cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;
1506         debug("cycle_3_0_clk=%d\n", cycle_3_0_clk);
1507         debug("cycle_4_0_clk=%d\n", cycle_4_0_clk);
1508         debug("cycle_5_0_clk=%d\n", cycle_5_0_clk);
1509
1510         if (sdram_ddr1 == TRUE) { /* DDR1 */
1511                 if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
1512                         mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
1513                         *selected_cas = DDR_CAS_2;
1514                 } else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
1515                         mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
1516                         *selected_cas = DDR_CAS_2_5;
1517                 } else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1518                         mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
1519                         *selected_cas = DDR_CAS_3;
1520                 } else {
1521                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1522                         printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
1523                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
1524                         hang();
1525                 }
1526         } else { /* DDR2 */
1527                 debug("cas_3_0_available=%d\n", cas_3_0_available);
1528                 debug("cas_4_0_available=%d\n", cas_4_0_available);
1529                 debug("cas_5_0_available=%d\n", cas_5_0_available);
1530                 if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
1531                         mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
1532                         *selected_cas = DDR_CAS_3;
1533                 } else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
1534                         mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
1535                         *selected_cas = DDR_CAS_4;
1536                 } else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
1537                         mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
1538                         *selected_cas = DDR_CAS_5;
1539                 } else {
1540                         printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
1541                         printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
1542                         printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
1543                         printf("cas3=%d cas4=%d cas5=%d\n",
1544                                cas_3_0_available, cas_4_0_available, cas_5_0_available);
1545                         printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
1546                                sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
1547                         hang();
1548                 }
1549         }
1550
1551         if (sdram_ddr1 == TRUE)
1552                 mmode |= SDRAM_MMODE_WR_DDR1;
1553         else {
1554
1555                 /* loop through all the DIMM slots on the board */
1556                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1557                         /* If a dimm is installed in a particular slot ... */
1558                         if (dimm_populated[dimm_num] != SDRAM_NONE)
1559                                 t_wr_ns = max(t_wr_ns,
1560                                               spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1561                 }
1562
1563                 /*
1564                  * convert from nanoseconds to ddr clocks
1565                  * round up if necessary
1566                  */
1567                 t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
1568                 ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
1569                 if (sdram_freq != ddr_check)
1570                         t_wr_clk++;
1571
1572                 switch (t_wr_clk) {
1573                 case 0:
1574                 case 1:
1575                 case 2:
1576                 case 3:
1577                         mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
1578                         break;
1579                 case 4:
1580                         mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
1581                         break;
1582                 case 5:
1583                         mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
1584                         break;
1585                 default:
1586                         mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
1587                         break;
1588                 }
1589                 *write_recovery = t_wr_clk;
1590         }
1591
1592         debug("CAS latency = %d\n", *selected_cas);
1593         debug("Write recovery = %d\n", *write_recovery);
1594
1595         mtsdram(SDRAM_MMODE, mmode);
1596 }
1597
1598 /*-----------------------------------------------------------------------------+
1599  * program_rtr.
1600  *-----------------------------------------------------------------------------*/
1601 static void program_rtr(unsigned long *dimm_populated,
1602                         unsigned char *iic0_dimm_addr,
1603                         unsigned long num_dimm_banks)
1604 {
1605         PPC440_SYS_INFO board_cfg;
1606         unsigned long max_refresh_rate;
1607         unsigned long dimm_num;
1608         unsigned long refresh_rate_type;
1609         unsigned long refresh_rate;
1610         unsigned long rint;
1611         unsigned long sdram_freq;
1612         unsigned long sdr_ddrpll;
1613         unsigned long val;
1614
1615         /*------------------------------------------------------------------
1616          * Get the board configuration info.
1617          *-----------------------------------------------------------------*/
1618         get_sys_info(&board_cfg);
1619
1620         /*------------------------------------------------------------------
1621          * Set the SDRAM Refresh Timing Register, SDRAM_RTR
1622          *-----------------------------------------------------------------*/
1623         mfsdr(SDR0_DDR0, sdr_ddrpll);
1624         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1625
1626         max_refresh_rate = 0;
1627         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1628                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1629
1630                         refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
1631                         refresh_rate_type &= 0x7F;
1632                         switch (refresh_rate_type) {
1633                         case 0:
1634                                 refresh_rate =  15625;
1635                                 break;
1636                         case 1:
1637                                 refresh_rate =   3906;
1638                                 break;
1639                         case 2:
1640                                 refresh_rate =   7812;
1641                                 break;
1642                         case 3:
1643                                 refresh_rate =  31250;
1644                                 break;
1645                         case 4:
1646                                 refresh_rate =  62500;
1647                                 break;
1648                         case 5:
1649                                 refresh_rate = 125000;
1650                                 break;
1651                         default:
1652                                 refresh_rate = 0;
1653                                 printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
1654                                        (unsigned int)dimm_num);
1655                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
1656                                 hang();
1657                                 break;
1658                         }
1659
1660                         max_refresh_rate = max(max_refresh_rate, refresh_rate);
1661                 }
1662         }
1663
1664         rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
1665         mfsdram(SDRAM_RTR, val);
1666         mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
1667                 (SDRAM_RTR_RINT_ENCODE(rint)));
1668 }
1669
1670 /*------------------------------------------------------------------
1671  * This routine programs the SDRAM_TRx registers.
1672  *-----------------------------------------------------------------*/
1673 static void program_tr(unsigned long *dimm_populated,
1674                        unsigned char *iic0_dimm_addr,
1675                        unsigned long num_dimm_banks)
1676 {
1677         unsigned long dimm_num;
1678         unsigned long sdram_ddr1;
1679         unsigned long t_rp_ns;
1680         unsigned long t_rcd_ns;
1681         unsigned long t_rrd_ns;
1682         unsigned long t_ras_ns;
1683         unsigned long t_rc_ns;
1684         unsigned long t_rfc_ns;
1685         unsigned long t_wpc_ns;
1686         unsigned long t_wtr_ns;
1687         unsigned long t_rpc_ns;
1688         unsigned long t_rp_clk;
1689         unsigned long t_rcd_clk;
1690         unsigned long t_rrd_clk;
1691         unsigned long t_ras_clk;
1692         unsigned long t_rc_clk;
1693         unsigned long t_rfc_clk;
1694         unsigned long t_wpc_clk;
1695         unsigned long t_wtr_clk;
1696         unsigned long t_rpc_clk;
1697         unsigned long sdtr1, sdtr2, sdtr3;
1698         unsigned long ddr_check;
1699         unsigned long sdram_freq;
1700         unsigned long sdr_ddrpll;
1701
1702         PPC440_SYS_INFO board_cfg;
1703
1704         /*------------------------------------------------------------------
1705          * Get the board configuration info.
1706          *-----------------------------------------------------------------*/
1707         get_sys_info(&board_cfg);
1708
1709         mfsdr(SDR0_DDR0, sdr_ddrpll);
1710         sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));
1711
1712         /*------------------------------------------------------------------
1713          * Handle the timing.  We need to find the worst case timing of all
1714          * the dimm modules installed.
1715          *-----------------------------------------------------------------*/
1716         t_rp_ns = 0;
1717         t_rrd_ns = 0;
1718         t_rcd_ns = 0;
1719         t_ras_ns = 0;
1720         t_rc_ns = 0;
1721         t_rfc_ns = 0;
1722         t_wpc_ns = 0;
1723         t_wtr_ns = 0;
1724         t_rpc_ns = 0;
1725         sdram_ddr1 = TRUE;
1726
1727         /* loop through all the DIMM slots on the board */
1728         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1729                 /* If a dimm is installed in a particular slot ... */
1730                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
1731                         if (dimm_populated[dimm_num] == SDRAM_DDR2)
1732                                 sdram_ddr1 = TRUE;
1733                         else
1734                                 sdram_ddr1 = FALSE;
1735
1736                         t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
1737                         t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
1738                         t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
1739                         t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
1740                         t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
1741                         t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
1742                 }
1743         }
1744
1745         /*------------------------------------------------------------------
1746          * Set the SDRAM Timing Reg 1, SDRAM_TR1
1747          *-----------------------------------------------------------------*/
1748         mfsdram(SDRAM_SDTR1, sdtr1);
1749         sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
1750                    SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);
1751
1752         /* default values */
1753         sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
1754         sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;
1755
1756         /* normal operations */
1757         sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
1758         sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;
1759
1760         mtsdram(SDRAM_SDTR1, sdtr1);
1761
1762         /*------------------------------------------------------------------
1763          * Set the SDRAM Timing Reg 2, SDRAM_TR2
1764          *-----------------------------------------------------------------*/
1765         mfsdram(SDRAM_SDTR2, sdtr2);
1766         sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
1767                    SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
1768                    SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
1769                    SDRAM_SDTR2_RRD_MASK);
1770
1771         /*
1772          * convert t_rcd from nanoseconds to ddr clocks
1773          * round up if necessary
1774          */
1775         t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
1776         ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
1777         if (sdram_freq != ddr_check)
1778                 t_rcd_clk++;
1779
1780         switch (t_rcd_clk) {
1781         case 0:
1782         case 1:
1783                 sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
1784                 break;
1785         case 2:
1786                 sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
1787                 break;
1788         case 3:
1789                 sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
1790                 break;
1791         case 4:
1792                 sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
1793                 break;
1794         default:
1795                 sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
1796                 break;
1797         }
1798
1799         if (sdram_ddr1 == TRUE) { /* DDR1 */
1800                 if (sdram_freq < 200000000) {
1801                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1802                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1803                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1804                 } else {
1805                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1806                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1807                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1808                 }
1809         } else { /* DDR2 */
1810                 /* loop through all the DIMM slots on the board */
1811                 for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
1812                         /* If a dimm is installed in a particular slot ... */
1813                         if (dimm_populated[dimm_num] != SDRAM_NONE) {
1814                                 t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
1815                                 t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
1816                                 t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
1817                         }
1818                 }
1819
1820                 /*
1821                  * convert from nanoseconds to ddr clocks
1822                  * round up if necessary
1823                  */
1824                 t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
1825                 ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
1826                 if (sdram_freq != ddr_check)
1827                         t_wpc_clk++;
1828
1829                 switch (t_wpc_clk) {
1830                 case 0:
1831                 case 1:
1832                 case 2:
1833                         sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
1834                         break;
1835                 case 3:
1836                         sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
1837                         break;
1838                 case 4:
1839                         sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
1840                         break;
1841                 case 5:
1842                         sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
1843                         break;
1844                 default:
1845                         sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
1846                         break;
1847                 }
1848
1849                 /*
1850                  * convert from nanoseconds to ddr clocks
1851                  * round up if necessary
1852                  */
1853                 t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
1854                 ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
1855                 if (sdram_freq != ddr_check)
1856                         t_wtr_clk++;
1857
1858                 switch (t_wtr_clk) {
1859                 case 0:
1860                 case 1:
1861                         sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
1862                         break;
1863                 case 2:
1864                         sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
1865                         break;
1866                 case 3:
1867                         sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
1868                         break;
1869                 default:
1870                         sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
1871                         break;
1872                 }
1873
1874                 /*
1875                  * convert from nanoseconds to ddr clocks
1876                  * round up if necessary
1877                  */
1878                 t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
1879                 ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
1880                 if (sdram_freq != ddr_check)
1881                         t_rpc_clk++;
1882
1883                 switch (t_rpc_clk) {
1884                 case 0:
1885                 case 1:
1886                 case 2:
1887                         sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
1888                         break;
1889                 case 3:
1890                         sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
1891                         break;
1892                 default:
1893                         sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
1894                         break;
1895                 }
1896         }
1897
1898         /* default value */
1899         sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;
1900
1901         /*
1902          * convert t_rrd from nanoseconds to ddr clocks
1903          * round up if necessary
1904          */
1905         t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
1906         ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
1907         if (sdram_freq != ddr_check)
1908                 t_rrd_clk++;
1909
1910         if (t_rrd_clk == 3)
1911                 sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
1912         else
1913                 sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;
1914
1915         /*
1916          * convert t_rp from nanoseconds to ddr clocks
1917          * round up if necessary
1918          */
1919         t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
1920         ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
1921         if (sdram_freq != ddr_check)
1922                 t_rp_clk++;
1923
1924         switch (t_rp_clk) {
1925         case 0:
1926         case 1:
1927         case 2:
1928         case 3:
1929                 sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
1930                 break;
1931         case 4:
1932                 sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
1933                 break;
1934         case 5:
1935                 sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
1936                 break;
1937         case 6:
1938                 sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
1939                 break;
1940         default:
1941                 sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
1942                 break;
1943         }
1944
1945         mtsdram(SDRAM_SDTR2, sdtr2);
1946
1947         /*------------------------------------------------------------------
1948          * Set the SDRAM Timing Reg 3, SDRAM_TR3
1949          *-----------------------------------------------------------------*/
1950         mfsdram(SDRAM_SDTR3, sdtr3);
1951         sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
1952                    SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);
1953
1954         /*
1955          * convert t_ras from nanoseconds to ddr clocks
1956          * round up if necessary
1957          */
1958         t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
1959         ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
1960         if (sdram_freq != ddr_check)
1961                 t_ras_clk++;
1962
1963         sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);
1964
1965         /*
1966          * convert t_rc from nanoseconds to ddr clocks
1967          * round up if necessary
1968          */
1969         t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
1970         ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
1971         if (sdram_freq != ddr_check)
1972                 t_rc_clk++;
1973
1974         sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);
1975
1976         /* default xcs value */
1977         sdtr3 |= SDRAM_SDTR3_XCS;
1978
1979         /*
1980          * convert t_rfc from nanoseconds to ddr clocks
1981          * round up if necessary
1982          */
1983         t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
1984         ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
1985         if (sdram_freq != ddr_check)
1986                 t_rfc_clk++;
1987
1988         sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);
1989
1990         mtsdram(SDRAM_SDTR3, sdtr3);
1991 }
1992
1993 /*-----------------------------------------------------------------------------+
1994  * program_bxcf.
1995  *-----------------------------------------------------------------------------*/
1996 static void program_bxcf(unsigned long *dimm_populated,
1997                          unsigned char *iic0_dimm_addr,
1998                          unsigned long num_dimm_banks)
1999 {
2000         unsigned long dimm_num;
2001         unsigned long num_col_addr;
2002         unsigned long num_ranks;
2003         unsigned long num_banks;
2004         unsigned long mode;
2005         unsigned long ind_rank;
2006         unsigned long ind;
2007         unsigned long ind_bank;
2008         unsigned long bank_0_populated;
2009
2010         /*------------------------------------------------------------------
2011          * Set the BxCF regs.  First, wipe out the bank config registers.
2012          *-----------------------------------------------------------------*/
2013         mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
2014         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2015         mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
2016         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2017         mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
2018         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2019         mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
2020         mtdcr(SDRAMC_CFGDATA, 0x00000000);
2021
2022         mode = SDRAM_BXCF_M_BE_ENABLE;
2023
2024         bank_0_populated = 0;
2025
2026         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2027                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2028                         num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
2029                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2030                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2031                                 num_ranks = (num_ranks & 0x0F) +1;
2032                         else
2033                                 num_ranks = num_ranks & 0x0F;
2034
2035                         num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);
2036
2037                         for (ind_bank = 0; ind_bank < 2; ind_bank++) {
2038                                 if (num_banks == 4)
2039                                         ind = 0;
2040                                 else
2041                                         ind = 5;
2042                                 switch (num_col_addr) {
2043                                 case 0x08:
2044                                         mode |= (SDRAM_BXCF_M_AM_0 + ind);
2045                                         break;
2046                                 case 0x09:
2047                                         mode |= (SDRAM_BXCF_M_AM_1 + ind);
2048                                         break;
2049                                 case 0x0A:
2050                                         mode |= (SDRAM_BXCF_M_AM_2 + ind);
2051                                         break;
2052                                 case 0x0B:
2053                                         mode |= (SDRAM_BXCF_M_AM_3 + ind);
2054                                         break;
2055                                 case 0x0C:
2056                                         mode |= (SDRAM_BXCF_M_AM_4 + ind);
2057                                         break;
2058                                 default:
2059                                         printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
2060                                                (unsigned int)dimm_num);
2061                                         printf("ERROR: Unsupported value for number of "
2062                                                "column addresses: %d.\n", (unsigned int)num_col_addr);
2063                                         printf("Replace the DIMM module with a supported DIMM.\n\n");
2064                                         hang();
2065                                 }
2066                         }
2067
2068                         if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
2069                                 bank_0_populated = 1;
2070
2071                         for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
2072                                 mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
2073                                 mtdcr(SDRAMC_CFGDATA, mode);
2074                         }
2075                 }
2076         }
2077 }
2078
2079 /*------------------------------------------------------------------
2080  * program memory queue.
2081  *-----------------------------------------------------------------*/
2082 static void program_memory_queue(unsigned long *dimm_populated,
2083                                  unsigned char *iic0_dimm_addr,
2084                                  unsigned long num_dimm_banks)
2085 {
2086         unsigned long dimm_num;
2087         unsigned long rank_base_addr;
2088         unsigned long rank_reg;
2089         unsigned long rank_size_bytes;
2090         unsigned long rank_size_id;
2091         unsigned long num_ranks;
2092         unsigned long baseadd_size;
2093         unsigned long i;
2094         unsigned long bank_0_populated = 0;
2095
2096         /*------------------------------------------------------------------
2097          * Reset the rank_base_address.
2098          *-----------------------------------------------------------------*/
2099         rank_reg   = SDRAM_R0BAS;
2100
2101         rank_base_addr = 0x00000000;
2102
2103         for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
2104                 if (dimm_populated[dimm_num] != SDRAM_NONE) {
2105                         num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
2106                         if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
2107                                 num_ranks = (num_ranks & 0x0F) + 1;
2108                         else
2109                                 num_ranks = num_ranks & 0x0F;
2110
2111                         rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);
2112
2113                         /*------------------------------------------------------------------
2114                          * Set the sizes
2115                          *-----------------------------------------------------------------*/
2116                         baseadd_size = 0;
2117                         rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
2118                         switch (rank_size_id) {
2119                         case 0x02:
2120                                 baseadd_size |= SDRAM_RXBAS_SDSZ_8;
2121                                 break;
2122                         case 0x04:
2123                                 baseadd_size |= SDRAM_RXBAS_SDSZ_16;
2124                                 break;
2125                         case 0x08:
2126                                 baseadd_size |= SDRAM_RXBAS_SDSZ_32;
2127                                 break;
2128                         case 0x10:
2129                                 baseadd_size |= SDRAM_RXBAS_SDSZ_64;
2130                                 break;
2131                         case 0x20:
2132                                 baseadd_size |= SDRAM_RXBAS_SDSZ_128;
2133                                 break;
2134                         case 0x40:
2135                                 baseadd_size |= SDRAM_RXBAS_SDSZ_256;
2136                                 break;
2137                         case 0x80:
2138                                 baseadd_size |= SDRAM_RXBAS_SDSZ_512;
2139                                 break;
2140                         default:
2141                                 printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
2142                                        (unsigned int)dimm_num);
2143                                 printf("ERROR: Unsupported value for the banksize: %d.\n",
2144                                        (unsigned int)rank_size_id);
2145                                 printf("Replace the DIMM module with a supported DIMM.\n\n");
2146                                 hang();
2147                         }
2148
2149                         if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
2150                                 bank_0_populated = 1;
2151
2152                         for (i = 0; i < num_ranks; i++) {
2153                                 mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
2154                                           (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
2155                                            baseadd_size));
2156                                 rank_base_addr += rank_size_bytes;
2157                         }
2158                 }
2159         }
2160 }
2161
2162 /*-----------------------------------------------------------------------------+
2163  * is_ecc_enabled.
2164  *-----------------------------------------------------------------------------*/
2165 static unsigned long is_ecc_enabled(void)
2166 {
2167         unsigned long dimm_num;
2168         unsigned long ecc;
2169         unsigned long val;
2170
2171         ecc = 0;
2172         /* loop through all the DIMM slots on the board */
2173         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2174                 mfsdram(SDRAM_MCOPT1, val);
2175                 ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
2176         }
2177
2178         return ecc;
2179 }
2180
2181 static void blank_string(int size)
2182 {
2183         int i;
2184
2185         for (i=0; i<size; i++)
2186                 putc('\b');
2187         for (i=0; i<size; i++)
2188                 putc(' ');
2189         for (i=0; i<size; i++)
2190                 putc('\b');
2191 }
2192
2193 #ifdef CONFIG_DDR_ECC
2194 /*-----------------------------------------------------------------------------+
2195  * program_ecc.
2196  *-----------------------------------------------------------------------------*/
2197 static void program_ecc(unsigned long *dimm_populated,
2198                         unsigned char *iic0_dimm_addr,
2199                         unsigned long num_dimm_banks,
2200                         unsigned long tlb_word2_i_value)
2201 {
2202         unsigned long mcopt1;
2203         unsigned long mcopt2;
2204         unsigned long mcstat;
2205         unsigned long dimm_num;
2206         unsigned long ecc;
2207
2208         ecc = 0;
2209         /* loop through all the DIMM slots on the board */
2210         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2211                 /* If a dimm is installed in a particular slot ... */
2212                 if (dimm_populated[dimm_num] != SDRAM_NONE)
2213                         ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
2214         }
2215         if (ecc == 0)
2216                 return;
2217
2218         mfsdram(SDRAM_MCOPT1, mcopt1);
2219         mfsdram(SDRAM_MCOPT2, mcopt2);
2220
2221         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2222                 /* DDR controller must be enabled and not in self-refresh. */
2223                 mfsdram(SDRAM_MCSTAT, mcstat);
2224                 if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
2225                     && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
2226                     && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
2227                         == (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
2228
2229                         program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
2230                 }
2231         }
2232
2233         return;
2234 }
2235
2236 #ifdef CONFIG_ECC_ERROR_RESET
2237 /*
2238  * Check for ECC errors and reset board upon any error here
2239  *
2240  * On the Katmai 440SPe eval board, from time to time, the first
2241  * lword write access after DDR2 initializazion with ECC checking
2242  * enabled, leads to an ECC error. I couldn't find a configuration
2243  * without this happening. On my board with the current setup it
2244  * happens about 1 from 10 times.
2245  *
2246  * The ECC modules used for testing are:
2247  * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
2248  *
2249  * This has to get fixed for the Katmai and tested for the other
2250  * board (440SP/440SPe) that will eventually use this code in the
2251  * future.
2252  *
2253  * 2007-03-01, sr
2254  */
2255 static void check_ecc(void)
2256 {
2257         u32 val;
2258
2259         mfsdram(SDRAM_ECCCR, val);
2260         if (val != 0) {
2261                 printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
2262                        val, mfdcr(0x4c), mfdcr(0x4e));
2263                 printf("ECC error occured, resetting board...\n");
2264                 do_reset(NULL, 0, 0, NULL);
2265         }
2266 }
2267 #endif
2268
2269 static void wait_ddr_idle(void)
2270 {
2271         u32 val;
2272
2273         do {
2274                 mfsdram(SDRAM_MCSTAT, val);
2275         } while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
2276 }
2277
2278 /*-----------------------------------------------------------------------------+
2279  * program_ecc_addr.
2280  *-----------------------------------------------------------------------------*/
2281 static void program_ecc_addr(unsigned long start_address,
2282                              unsigned long num_bytes,
2283                              unsigned long tlb_word2_i_value)
2284 {
2285         unsigned long current_address;
2286         unsigned long end_address;
2287         unsigned long address_increment;
2288         unsigned long mcopt1;
2289         char str[] = "ECC generation -";
2290         char slash[] = "\\|/-\\|/-";
2291         int loop = 0;
2292         int loopi = 0;
2293
2294         current_address = start_address;
2295         mfsdram(SDRAM_MCOPT1, mcopt1);
2296         if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
2297                 mtsdram(SDRAM_MCOPT1,
2298                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
2299                 sync();
2300                 eieio();
2301                 wait_ddr_idle();
2302
2303                 puts(str);
2304                 if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
2305                         /* ECC bit set method for non-cached memory */
2306                         if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
2307                                 address_increment = 4;
2308                         else
2309                                 address_increment = 8;
2310                         end_address = current_address + num_bytes;
2311
2312                         while (current_address < end_address) {
2313                                 *((unsigned long *)current_address) = 0x00000000;
2314                                 current_address += address_increment;
2315
2316                                 if ((loop++ % (2 << 20)) == 0) {
2317                                         putc('\b');
2318                                         putc(slash[loopi++ % 8]);
2319                                 }
2320                         }
2321
2322                 } else {
2323                         /* ECC bit set method for cached memory */
2324                         dcbz_area(start_address, num_bytes);
2325                         dflush();
2326                 }
2327
2328                 blank_string(strlen(str));
2329
2330                 sync();
2331                 eieio();
2332                 wait_ddr_idle();
2333
2334                 /* clear ECC error repoting registers */
2335                 mtsdram(SDRAM_ECCCR, 0xffffffff);
2336                 mtdcr(0x4c, 0xffffffff);
2337
2338                 mtsdram(SDRAM_MCOPT1,
2339                         (mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
2340                 sync();
2341                 eieio();
2342                 wait_ddr_idle();
2343
2344 #ifdef CONFIG_ECC_ERROR_RESET
2345                 /*
2346                  * One write to 0 is enough to trigger this ECC error
2347                  * (see description above)
2348                  */
2349                 out_be32(0, 0x12345678);
2350                 check_ecc();
2351 #endif
2352         }
2353 }
2354 #endif
2355
2356 /*-----------------------------------------------------------------------------+
2357  * program_DQS_calibration.
2358  *-----------------------------------------------------------------------------*/
2359 static void program_DQS_calibration(unsigned long *dimm_populated,
2360                                     unsigned char *iic0_dimm_addr,
2361                                     unsigned long num_dimm_banks)
2362 {
2363         unsigned long val;
2364
2365 #ifdef HARD_CODED_DQS /* calibration test with hardvalues */
2366         mtsdram(SDRAM_RQDC, 0x80000037);
2367         mtsdram(SDRAM_RDCC, 0x40000000);
2368         mtsdram(SDRAM_RFDC, 0x000001DF);
2369
2370         test();
2371 #else
2372         /*------------------------------------------------------------------
2373          * Program RDCC register
2374          * Read sample cycle auto-update enable
2375          *-----------------------------------------------------------------*/
2376
2377         /*
2378          * Modified for the Katmai platform:  with some DIMMs, the DDR2
2379          * controller automatically selects the T2 read cycle, but this
2380          * proves unreliable.  Go ahead and force the DDR2 controller
2381          * to use the T4 sample and disable the automatic update of the
2382          * RDSS field.
2383          */
2384         mfsdram(SDRAM_RDCC, val);
2385         mtsdram(SDRAM_RDCC,
2386                 (val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
2387                 | (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));
2388
2389         /*------------------------------------------------------------------
2390          * Program RQDC register
2391          * Internal DQS delay mechanism enable
2392          *-----------------------------------------------------------------*/
2393         mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));
2394
2395         /*------------------------------------------------------------------
2396          * Program RFDC register
2397          * Set Feedback Fractional Oversample
2398          * Auto-detect read sample cycle enable
2399          *-----------------------------------------------------------------*/
2400         mfsdram(SDRAM_RFDC, val);
2401         mtsdram(SDRAM_RFDC,
2402                 (val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
2403                          SDRAM_RFDC_RFFD_MASK))
2404                 | (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
2405                    SDRAM_RFDC_RFFD_ENCODE(0)));
2406
2407         DQS_calibration_process();
2408 #endif
2409 }
2410
2411 static int short_mem_test(void)
2412 {
2413         u32 *membase;
2414         u32 bxcr_num;
2415         u32 bxcf;
2416         int i;
2417         int j;
2418         u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
2419                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2420                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2421                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2422                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2423                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2424                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2425                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2426                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2427                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2428                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2429                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2430                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2431                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2432                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2433                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2434                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2435         int l;
2436
2437         for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
2438                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);
2439
2440                 /* Banks enabled */
2441                 if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2442                         /* Bank is enabled */
2443
2444                         /*------------------------------------------------------------------
2445                          * Run the short memory test.
2446                          *-----------------------------------------------------------------*/
2447                         membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));
2448
2449                         for (i = 0; i < NUMMEMTESTS; i++) {
2450                                 for (j = 0; j < NUMMEMWORDS; j++) {
2451                                         membase[j] = test[i][j];
2452                                         ppcDcbf((u32)&(membase[j]));
2453                                 }
2454                                 sync();
2455                                 for (l=0; l<NUMLOOPS; l++) {
2456                                         for (j = 0; j < NUMMEMWORDS; j++) {
2457                                                 if (membase[j] != test[i][j]) {
2458                                                         ppcDcbf((u32)&(membase[j]));
2459                                                         return 0;
2460                                                 }
2461                                                 ppcDcbf((u32)&(membase[j]));
2462                                         }
2463                                         sync();
2464                                 }
2465                         }
2466                 }       /* if bank enabled */
2467         }               /* for bxcf_num */
2468
2469         return 1;
2470 }
2471
2472 #ifndef HARD_CODED_DQS
2473 /*-----------------------------------------------------------------------------+
2474  * DQS_calibration_process.
2475  *-----------------------------------------------------------------------------*/
2476 static void DQS_calibration_process(void)
2477 {
2478         unsigned long rfdc_reg;
2479         unsigned long rffd;
2480         unsigned long rqdc_reg;
2481         unsigned long rqfd;
2482         unsigned long val;
2483         long rqfd_average;
2484         long rffd_average;
2485         long max_start;
2486         long min_end;
2487         unsigned long begin_rqfd[MAXRANKS];
2488         unsigned long begin_rffd[MAXRANKS];
2489         unsigned long end_rqfd[MAXRANKS];
2490         unsigned long end_rffd[MAXRANKS];
2491         char window_found;
2492         unsigned long dlycal;
2493         unsigned long dly_val;
2494         unsigned long max_pass_length;
2495         unsigned long current_pass_length;
2496         unsigned long current_fail_length;
2497         unsigned long current_start;
2498         long max_end;
2499         unsigned char fail_found;
2500         unsigned char pass_found;
2501         u32 rqfd_start;
2502         char str[] = "Auto calibration -";
2503         char slash[] = "\\|/-\\|/-";
2504         int loopi = 0;
2505
2506         /*------------------------------------------------------------------
2507          * Test to determine the best read clock delay tuning bits.
2508          *
2509          * Before the DDR controller can be used, the read clock delay needs to be
2510          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2511          * This value cannot be hardcoded into the program because it changes
2512          * depending on the board's setup and environment.
2513          * To do this, all delay values are tested to see if they
2514          * work or not.  By doing this, you get groups of fails with groups of
2515          * passing values.  The idea is to find the start and end of a passing
2516          * window and take the center of it to use as the read clock delay.
2517          *
2518          * A failure has to be seen first so that when we hit a pass, we know
2519          * that it is truely the start of the window.  If we get passing values
2520          * to start off with, we don't know if we are at the start of the window.
2521          *
2522          * The code assumes that a failure will always be found.
2523          * If a failure is not found, there is no easy way to get the middle
2524          * of the passing window.  I guess we can pretty much pick any value
2525          * but some values will be better than others.  Since the lowest speed
2526          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2527          * from experimentation it is safe to say you will always have a failure.
2528          *-----------------------------------------------------------------*/
2529
2530         /* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
2531         rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */
2532
2533         puts(str);
2534
2535 calibration_loop:
2536         mfsdram(SDRAM_RQDC, rqdc_reg);
2537         mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2538                 SDRAM_RQDC_RQFD_ENCODE(rqfd_start));
2539
2540         max_start = 0;
2541         min_end = 0;
2542         begin_rqfd[0] = 0;
2543         begin_rffd[0] = 0;
2544         begin_rqfd[1] = 0;
2545         begin_rffd[1] = 0;
2546         end_rqfd[0] = 0;
2547         end_rffd[0] = 0;
2548         end_rqfd[1] = 0;
2549         end_rffd[1] = 0;
2550         window_found = FALSE;
2551
2552         max_pass_length = 0;
2553         max_start = 0;
2554         max_end = 0;
2555         current_pass_length = 0;
2556         current_fail_length = 0;
2557         current_start = 0;
2558         window_found = FALSE;
2559         fail_found = FALSE;
2560         pass_found = FALSE;
2561
2562         /*
2563          * get the delay line calibration register value
2564          */
2565         mfsdram(SDRAM_DLCR, dlycal);
2566         dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;
2567
2568         for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
2569                 mfsdram(SDRAM_RFDC, rfdc_reg);
2570                 rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);
2571
2572                 /*------------------------------------------------------------------
2573                  * Set the timing reg for the test.
2574                  *-----------------------------------------------------------------*/
2575                 mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));
2576
2577                 /*------------------------------------------------------------------
2578                  * See if the rffd value passed.
2579                  *-----------------------------------------------------------------*/
2580                 if (short_mem_test()) {
2581                         if (fail_found == TRUE) {
2582                                 pass_found = TRUE;
2583                                 if (current_pass_length == 0)
2584                                         current_start = rffd;
2585
2586                                 current_fail_length = 0;
2587                                 current_pass_length++;
2588
2589                                 if (current_pass_length > max_pass_length) {
2590                                         max_pass_length = current_pass_length;
2591                                         max_start = current_start;
2592                                         max_end = rffd;
2593                                 }
2594                         }
2595                 } else {
2596                         current_pass_length = 0;
2597                         current_fail_length++;
2598
2599                         if (current_fail_length >= (dly_val >> 2)) {
2600                                 if (fail_found == FALSE) {
2601                                         fail_found = TRUE;
2602                                 } else if (pass_found == TRUE) {
2603                                         window_found = TRUE;
2604                                         break;
2605                                 }
2606                         }
2607                 }
2608         }               /* for rffd */
2609
2610         /*------------------------------------------------------------------
2611          * Set the average RFFD value
2612          *-----------------------------------------------------------------*/
2613         rffd_average = ((max_start + max_end) >> 1);
2614
2615         if (rffd_average < 0)
2616                 rffd_average = 0;
2617
2618         if (rffd_average > SDRAM_RFDC_RFFD_MAX)
2619                 rffd_average = SDRAM_RFDC_RFFD_MAX;
2620         /* now fix RFDC[RFFD] found and find RQDC[RQFD] */
2621         mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));
2622
2623         max_pass_length = 0;
2624         max_start = 0;
2625         max_end = 0;
2626         current_pass_length = 0;
2627         current_fail_length = 0;
2628         current_start = 0;
2629         window_found = FALSE;
2630         fail_found = FALSE;
2631         pass_found = FALSE;
2632
2633         for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
2634                 mfsdram(SDRAM_RQDC, rqdc_reg);
2635                 rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);
2636
2637                 /*------------------------------------------------------------------
2638                  * Set the timing reg for the test.
2639                  *-----------------------------------------------------------------*/
2640                 mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));
2641
2642                 /*------------------------------------------------------------------
2643                  * See if the rffd value passed.
2644                  *-----------------------------------------------------------------*/
2645                 if (short_mem_test()) {
2646                         if (fail_found == TRUE) {
2647                                 pass_found = TRUE;
2648                                 if (current_pass_length == 0)
2649                                         current_start = rqfd;
2650
2651                                 current_fail_length = 0;
2652                                 current_pass_length++;
2653
2654                                 if (current_pass_length > max_pass_length) {
2655                                         max_pass_length = current_pass_length;
2656                                         max_start = current_start;
2657                                         max_end = rqfd;
2658                                 }
2659                         }
2660                 } else {
2661                         current_pass_length = 0;
2662                         current_fail_length++;
2663
2664                         if (fail_found == FALSE) {
2665                                 fail_found = TRUE;
2666                         } else if (pass_found == TRUE) {
2667                                 window_found = TRUE;
2668                                 break;
2669                         }
2670                 }
2671         }
2672
2673         rqfd_average = ((max_start + max_end) >> 1);
2674
2675         /*------------------------------------------------------------------
2676          * Make sure we found the valid read passing window.  Halt if not
2677          *-----------------------------------------------------------------*/
2678         if (window_found == FALSE) {
2679                 if (rqfd_start < SDRAM_RQDC_RQFD_MAX) {
2680                         putc('\b');
2681                         putc(slash[loopi++ % 8]);
2682
2683                         /* try again from with a different RQFD start value */
2684                         rqfd_start++;
2685                         goto calibration_loop;
2686                 }
2687
2688                 printf("\nERROR: Cannot determine a common read delay for the "
2689                        "DIMM(s) installed.\n");
2690                 debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
2691                 hang();
2692         }
2693
2694         blank_string(strlen(str));
2695
2696         if (rqfd_average < 0)
2697                 rqfd_average = 0;
2698
2699         if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
2700                 rqfd_average = SDRAM_RQDC_RQFD_MAX;
2701
2702         mtsdram(SDRAM_RQDC,
2703                 (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
2704                 SDRAM_RQDC_RQFD_ENCODE(rqfd_average));
2705
2706         mfsdram(SDRAM_DLCR, val);
2707         debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
2708         mfsdram(SDRAM_RQDC, val);
2709         debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2710         mfsdram(SDRAM_RFDC, val);
2711         debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
2712 }
2713 #else /* calibration test with hardvalues */
2714 /*-----------------------------------------------------------------------------+
2715  * DQS_calibration_process.
2716  *-----------------------------------------------------------------------------*/
2717 static void test(void)
2718 {
2719         unsigned long dimm_num;
2720         unsigned long ecc_temp;
2721         unsigned long i, j;
2722         unsigned long *membase;
2723         unsigned long bxcf[MAXRANKS];
2724         unsigned long val;
2725         char window_found;
2726         char begin_found[MAXDIMMS];
2727         char end_found[MAXDIMMS];
2728         char search_end[MAXDIMMS];
2729         unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
2730                 {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
2731                  0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
2732                 {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
2733                  0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
2734                 {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
2735                  0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
2736                 {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
2737                  0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
2738                 {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
2739                  0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
2740                 {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
2741                  0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
2742                 {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
2743                  0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
2744                 {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
2745                  0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };
2746
2747         /*------------------------------------------------------------------
2748          * Test to determine the best read clock delay tuning bits.
2749          *
2750          * Before the DDR controller can be used, the read clock delay needs to be
2751          * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
2752          * This value cannot be hardcoded into the program because it changes
2753          * depending on the board's setup and environment.
2754          * To do this, all delay values are tested to see if they
2755          * work or not.  By doing this, you get groups of fails with groups of
2756          * passing values.  The idea is to find the start and end of a passing
2757          * window and take the center of it to use as the read clock delay.
2758          *
2759          * A failure has to be seen first so that when we hit a pass, we know
2760          * that it is truely the start of the window.  If we get passing values
2761          * to start off with, we don't know if we are at the start of the window.
2762          *
2763          * The code assumes that a failure will always be found.
2764          * If a failure is not found, there is no easy way to get the middle
2765          * of the passing window.  I guess we can pretty much pick any value
2766          * but some values will be better than others.  Since the lowest speed
2767          * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
2768          * from experimentation it is safe to say you will always have a failure.
2769          *-----------------------------------------------------------------*/
2770         mfsdram(SDRAM_MCOPT1, ecc_temp);
2771         ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
2772         mfsdram(SDRAM_MCOPT1, val);
2773         mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
2774                 SDRAM_MCOPT1_MCHK_NON);
2775
2776         window_found = FALSE;
2777         begin_found[0] = FALSE;
2778         end_found[0] = FALSE;
2779         search_end[0] = FALSE;
2780         begin_found[1] = FALSE;
2781         end_found[1] = FALSE;
2782         search_end[1] = FALSE;
2783
2784         for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
2785                 mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);
2786
2787                 /* Banks enabled */
2788                 if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
2789
2790                         /* Bank is enabled */
2791                         membase =
2792                                 (unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));
2793
2794                         /*------------------------------------------------------------------
2795                          * Run the short memory test.
2796                          *-----------------------------------------------------------------*/
2797                         for (i = 0; i < NUMMEMTESTS; i++) {
2798                                 for (j = 0; j < NUMMEMWORDS; j++) {
2799                                         membase[j] = test[i][j];
2800                                         ppcDcbf((u32)&(membase[j]));
2801                                 }
2802                                 sync();
2803                                 for (j = 0; j < NUMMEMWORDS; j++) {
2804                                         if (membase[j] != test[i][j]) {
2805                                                 ppcDcbf((u32)&(membase[j]));
2806                                                 break;
2807                                         }
2808                                         ppcDcbf((u32)&(membase[j]));
2809                                 }
2810                                 sync();
2811                                 if (j < NUMMEMWORDS)
2812                                         break;
2813                         }
2814
2815                         /*------------------------------------------------------------------
2816                          * See if the rffd value passed.
2817                          *-----------------------------------------------------------------*/
2818                         if (i < NUMMEMTESTS) {
2819                                 if ((end_found[dimm_num] == FALSE) &&
2820                                     (search_end[dimm_num] == TRUE)) {
2821                                         end_found[dimm_num] = TRUE;
2822                                 }
2823                                 if ((end_found[0] == TRUE) &&
2824                                     (end_found[1] == TRUE))
2825                                         break;
2826                         } else {
2827                                 if (begin_found[dimm_num] == FALSE) {
2828                                         begin_found[dimm_num] = TRUE;
2829                                         search_end[dimm_num] = TRUE;
2830                                 }
2831                         }
2832                 } else {
2833                         begin_found[dimm_num] = TRUE;
2834                         end_found[dimm_num] = TRUE;
2835                 }
2836         }
2837
2838         if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
2839                 window_found = TRUE;
2840
2841         /*------------------------------------------------------------------
2842          * Make sure we found the valid read passing window.  Halt if not
2843          *-----------------------------------------------------------------*/
2844         if (window_found == FALSE) {
2845                 printf("ERROR: Cannot determine a common read delay for the "
2846                        "DIMM(s) installed.\n");
2847                 hang();
2848         }
2849
2850         /*------------------------------------------------------------------
2851          * Restore the ECC variable to what it originally was
2852          *-----------------------------------------------------------------*/
2853         mtsdram(SDRAM_MCOPT1,
2854                 (ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
2855                 | ecc_temp);
2856 }
2857 #endif
2858
2859 #if defined(DEBUG)
2860 static void ppc440sp_sdram_register_dump(void)
2861 {
2862         unsigned int sdram_reg;
2863         unsigned int sdram_data;
2864         unsigned int dcr_data;
2865
2866         printf("\n  Register Dump:\n");
2867         sdram_reg = SDRAM_MCSTAT;
2868         mfsdram(sdram_reg, sdram_data);
2869         printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
2870         sdram_reg = SDRAM_MCOPT1;
2871         mfsdram(sdram_reg, sdram_data);
2872         printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
2873         sdram_reg = SDRAM_MCOPT2;
2874         mfsdram(sdram_reg, sdram_data);
2875         printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
2876         sdram_reg = SDRAM_MODT0;
2877         mfsdram(sdram_reg, sdram_data);
2878         printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
2879         sdram_reg = SDRAM_MODT1;
2880         mfsdram(sdram_reg, sdram_data);
2881         printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
2882         sdram_reg = SDRAM_MODT2;
2883         mfsdram(sdram_reg, sdram_data);
2884         printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
2885         sdram_reg = SDRAM_MODT3;
2886         mfsdram(sdram_reg, sdram_data);
2887         printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
2888         sdram_reg = SDRAM_CODT;
2889         mfsdram(sdram_reg, sdram_data);
2890         printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
2891         sdram_reg = SDRAM_VVPR;
2892         mfsdram(sdram_reg, sdram_data);
2893         printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
2894         sdram_reg = SDRAM_OPARS;
2895         mfsdram(sdram_reg, sdram_data);
2896         printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
2897         /*
2898          * OPAR2 is only used as a trigger register.
2899          * No data is contained in this register, and reading or writing
2900          * to is can cause bad things to happen (hangs).  Just skip it
2901          * and report NA
2902          * sdram_reg = SDRAM_OPAR2;
2903          * mfsdram(sdram_reg, sdram_data);
2904          * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
2905          */
2906         printf("        SDRAM_OPART     = N/A       ");
2907         sdram_reg = SDRAM_RTR;
2908         mfsdram(sdram_reg, sdram_data);
2909         printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
2910         sdram_reg = SDRAM_MB0CF;
2911         mfsdram(sdram_reg, sdram_data);
2912         printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
2913         sdram_reg = SDRAM_MB1CF;
2914         mfsdram(sdram_reg, sdram_data);
2915         printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
2916         sdram_reg = SDRAM_MB2CF;
2917         mfsdram(sdram_reg, sdram_data);
2918         printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
2919         sdram_reg = SDRAM_MB3CF;
2920         mfsdram(sdram_reg, sdram_data);
2921         printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
2922         sdram_reg = SDRAM_INITPLR0;
2923         mfsdram(sdram_reg, sdram_data);
2924         printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
2925         sdram_reg = SDRAM_INITPLR1;
2926         mfsdram(sdram_reg, sdram_data);
2927         printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
2928         sdram_reg = SDRAM_INITPLR2;
2929         mfsdram(sdram_reg, sdram_data);
2930         printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
2931         sdram_reg = SDRAM_INITPLR3;
2932         mfsdram(sdram_reg, sdram_data);
2933         printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
2934         sdram_reg = SDRAM_INITPLR4;
2935         mfsdram(sdram_reg, sdram_data);
2936         printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
2937         sdram_reg = SDRAM_INITPLR5;
2938         mfsdram(sdram_reg, sdram_data);
2939         printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
2940         sdram_reg = SDRAM_INITPLR6;
2941         mfsdram(sdram_reg, sdram_data);
2942         printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
2943         sdram_reg = SDRAM_INITPLR7;
2944         mfsdram(sdram_reg, sdram_data);
2945         printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
2946         sdram_reg = SDRAM_INITPLR8;
2947         mfsdram(sdram_reg, sdram_data);
2948         printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
2949         sdram_reg = SDRAM_INITPLR9;
2950         mfsdram(sdram_reg, sdram_data);
2951         printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
2952         sdram_reg = SDRAM_INITPLR10;
2953         mfsdram(sdram_reg, sdram_data);
2954         printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
2955         sdram_reg = SDRAM_INITPLR11;
2956         mfsdram(sdram_reg, sdram_data);
2957         printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
2958         sdram_reg = SDRAM_INITPLR12;
2959         mfsdram(sdram_reg, sdram_data);
2960         printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
2961         sdram_reg = SDRAM_INITPLR13;
2962         mfsdram(sdram_reg, sdram_data);
2963         printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
2964         sdram_reg = SDRAM_INITPLR14;
2965         mfsdram(sdram_reg, sdram_data);
2966         printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
2967         sdram_reg = SDRAM_INITPLR15;
2968         mfsdram(sdram_reg, sdram_data);
2969         printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
2970         sdram_reg = SDRAM_RQDC;
2971         mfsdram(sdram_reg, sdram_data);
2972         printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
2973         sdram_reg = SDRAM_RFDC;
2974         mfsdram(sdram_reg, sdram_data);
2975         printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
2976         sdram_reg = SDRAM_RDCC;
2977         mfsdram(sdram_reg, sdram_data);
2978         printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
2979         sdram_reg = SDRAM_DLCR;
2980         mfsdram(sdram_reg, sdram_data);
2981         printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
2982         sdram_reg = SDRAM_CLKTR;
2983         mfsdram(sdram_reg, sdram_data);
2984         printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
2985         sdram_reg = SDRAM_WRDTR;
2986         mfsdram(sdram_reg, sdram_data);
2987         printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
2988         sdram_reg = SDRAM_SDTR1;
2989         mfsdram(sdram_reg, sdram_data);
2990         printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
2991         sdram_reg = SDRAM_SDTR2;
2992         mfsdram(sdram_reg, sdram_data);
2993         printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
2994         sdram_reg = SDRAM_SDTR3;
2995         mfsdram(sdram_reg, sdram_data);
2996         printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
2997         sdram_reg = SDRAM_MMODE;
2998         mfsdram(sdram_reg, sdram_data);
2999         printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
3000         sdram_reg = SDRAM_MEMODE;
3001         mfsdram(sdram_reg, sdram_data);
3002         printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
3003         sdram_reg = SDRAM_ECCCR;
3004         mfsdram(sdram_reg, sdram_data);
3005         printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);
3006
3007         dcr_data = mfdcr(SDRAM_R0BAS);
3008         printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
3009         dcr_data = mfdcr(SDRAM_R1BAS);
3010         printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
3011         dcr_data = mfdcr(SDRAM_R2BAS);
3012         printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
3013         dcr_data = mfdcr(SDRAM_R3BAS);
3014         printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
3015 }
3016 #endif
3017 #endif /* CONFIG_SPD_EEPROM */