2 * Copyright 2004, 2007 Freescale Semiconductor.
3 * (C) Copyright 2003 Motorola Inc.
4 * Xianghua Xiao (X.Xiao@motorola.com)
6 * See file CREDITS for list of people who contributed to this
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of
12 * the License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
26 #include <asm/processor.h>
30 #include <asm/fsl_law.h>
33 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
34 extern void dma_init(void);
35 extern uint dma_check(void);
36 extern int dma_xfer(void *dest, uint count, void *src);
39 #ifdef CONFIG_SPD_EEPROM
42 #define CFG_READ_SPD i2c_read
45 static unsigned int setup_laws_and_tlbs(unsigned int memsize);
49 * Convert picoseconds into clock cycles (rounding up if needed).
53 picos_to_clk(int picos)
57 clks = picos / (2000000000 / (get_ddr_freq(0) / 1000));
58 if (picos % (2000000000 / (get_ddr_freq(0) / 1000)) != 0) {
67 * Calculate the Density of each Physical Rank.
68 * Returned size is in bytes.
70 * Study these table from Byte 31 of JEDEC SPD Spec.
84 * Reorder Table to be linear by stripping the bottom
85 * 2 or 5 bits off and shifting them up to the top.
89 compute_banksize(unsigned int mem_type, unsigned char row_dens)
93 if (mem_type == SPD_MEMTYPE_DDR) {
94 /* Bottom 2 bits up to the top. */
95 bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
96 debug("DDR: DDR I rank density = 0x%08x\n", bsize);
98 /* Bottom 5 bits up to the top. */
99 bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27;
100 debug("DDR: DDR II rank density = 0x%08x\n", bsize);
107 * Convert a two-nibble BCD value into a cycle time.
108 * While the spec calls for nano-seconds, picos are returned.
110 * This implements the tables for bytes 9, 23 and 25 for both
111 * DDR I and II. No allowance for distinguishing the invalid
112 * fields absent for DDR I yet present in DDR II is made.
113 * (That is, cycle times of .25, .33, .66 and .75 ns are
114 * allowed for both DDR II and I.)
118 convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
121 * Table look up the lower nibble, allow DDR I & II.
123 unsigned int tenths_ps[16] = {
142 unsigned int whole_ns = (spd_val & 0xF0) >> 4;
143 unsigned int tenth_ns = spd_val & 0x0F;
144 unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
151 * Determine Refresh Rate. Ignore self refresh bit on DDR I.
152 * Table from SPD Spec, Byte 12, converted to picoseconds and
153 * filled in with "default" normal values.
155 unsigned int determine_refresh_rate(unsigned int spd_refresh)
157 unsigned int refresh_time_ns[8] = {
158 15625000, /* 0 Normal 1.00x */
159 3900000, /* 1 Reduced .25x */
160 7800000, /* 2 Extended .50x */
161 31300000, /* 3 Extended 2.00x */
162 62500000, /* 4 Extended 4.00x */
163 125000000, /* 5 Extended 8.00x */
164 15625000, /* 6 Normal 1.00x filler */
165 15625000, /* 7 Normal 1.00x filler */
168 return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]);
175 volatile ccsr_ddr_t *ddr = (void *)(CFG_MPC85xx_DDR_ADDR);
177 unsigned int n_ranks;
178 unsigned int rank_density;
179 unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits;
180 unsigned int odt_cfg, mode_odt_enable;
181 unsigned int refresh_clk;
182 #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
183 unsigned char clk_adjust;
185 unsigned int dqs_cfg;
186 unsigned char twr_clk, twtr_clk, twr_auto_clk;
187 unsigned int tCKmin_ps, tCKmax_ps;
188 unsigned int max_data_rate, effective_data_rate;
189 unsigned int busfreq;
191 unsigned int memsize = 0;
192 unsigned char caslat, caslat_ctrl;
193 unsigned int trfc, trfc_clk, trfc_low, trfc_high;
194 unsigned int trcd_clk;
195 unsigned int trtp_clk;
196 unsigned char cke_min_clk;
197 unsigned char add_lat;
198 unsigned char wr_lat;
199 unsigned char wr_data_delay;
200 unsigned char four_act;
202 unsigned char burst_len;
203 unsigned int mode_caslat;
204 unsigned char sdram_type;
205 unsigned char d_init;
209 * Skip configuration if already configured.
210 * memsize is determined from last configured chip select.
212 if (ddr->cs0_config & 0x80000000) {
213 debug(" cs0 already configured, bnds=%x\n",ddr->cs0_bnds);
214 bnds = 0xfff & ddr->cs0_bnds;
215 if (bnds < 0xff) { /* do not add if at top of 4G */
216 memsize = (bnds + 1) << 4;
219 if (ddr->cs1_config & 0x80000000) {
220 debug(" cs1 already configured, bnds=%x\n",ddr->cs1_bnds);
221 bnds = 0xfff & ddr->cs1_bnds;
222 if (bnds < 0xff) { /* do not add if at top of 4G */
223 memsize = (bnds + 1) << 4; /* assume ordered bnds */
226 if (ddr->cs2_config & 0x80000000) {
227 debug(" cs2 already configured, bnds=%x\n",ddr->cs2_bnds);
228 bnds = 0xfff & ddr->cs2_bnds;
229 if (bnds < 0xff) { /* do not add if at top of 4G */
230 memsize = (bnds + 1) << 4;
233 if (ddr->cs3_config & 0x80000000) {
234 debug(" cs3 already configured, bnds=%x\n",ddr->cs3_bnds);
235 bnds = 0xfff & ddr->cs3_bnds;
236 if (bnds < 0xff) { /* do not add if at top of 4G */
237 memsize = (bnds + 1) << 4;
242 printf(" Reusing current %dMB configuration\n",memsize);
243 memsize = setup_laws_and_tlbs(memsize);
244 return memsize << 20;
248 * Read SPD information.
250 CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) &spd, sizeof(spd));
253 * Check for supported memory module types.
255 if (spd.mem_type != SPD_MEMTYPE_DDR &&
256 spd.mem_type != SPD_MEMTYPE_DDR2) {
257 printf("Unable to locate DDR I or DDR II module.\n"
258 " Fundamental memory type is 0x%0x\n",
264 * These test gloss over DDR I and II differences in interpretation
265 * of bytes 3 and 4, but irrelevantly. Multiple asymmetric banks
266 * are not supported on DDR I; and not encoded on DDR II.
268 * Also note that the 8548 controller can support:
271 * 8 <= ncol <= 11 (still, for DDR)
272 * 6 <= ncol <= 9 (for FCRAM)
274 if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
275 printf("DDR: Unsupported number of Row Addr lines: %d.\n",
279 if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
280 printf("DDR: Unsupported number of Column Addr lines: %d.\n",
286 * Determine the number of physical banks controlled by
287 * different Chip Select signals. This is not quite the
288 * same as the number of DIMM modules on the board. Feh.
290 if (spd.mem_type == SPD_MEMTYPE_DDR) {
293 n_ranks = (spd.nrows & 0x7) + 1;
296 debug("DDR: number of ranks = %d\n", n_ranks);
299 printf("DDR: Only 2 chip selects are supported: %d\n",
304 #ifdef CONFIG_MPC8548
306 * Adjust DDR II IO voltage biasing.
307 * Only 8548 rev 1 needs the fix
309 if ((SVR_SOC_VER(get_svr()) == SVR_8548_E) &&
310 (SVR_MJREV(get_svr()) == 1) &&
311 (spd.mem_type == SPD_MEMTYPE_DDR2)) {
312 volatile ccsr_gur_t *gur = (void *)(CFG_MPC85xx_GUTS_ADDR);
313 gur->ddrioovcr = (0x80000000 /* Enable */
314 | 0x10000000);/* VSEL to 1.8V */
319 * Determine the size of each Rank in bytes.
321 rank_density = compute_banksize(spd.mem_type, spd.row_dens);
325 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000 first 256 Meg
327 ddr->cs0_bnds = (rank_density >> 24) - 1;
330 * ODT configuration recommendation from DDR Controller Chapter.
332 odt_rd_cfg = 0; /* Never assert ODT */
333 odt_wr_cfg = 0; /* Never assert ODT */
334 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
335 odt_wr_cfg = 1; /* Assert ODT on writes to CS0 */
337 /* FIXME: How to determine the number of dimm modules? */
338 if (n_dimm_modules == 2) {
339 odt_rd_cfg = 1; /* Assert ODT on reads to CS0 */
345 if (spd.nbanks == 0x8)
348 ddr->cs0_config = ( 1 << 31
352 | (spd.nrow_addr - 12) << 8
353 | (spd.ncol_addr - 8) );
355 debug("DDR: cs0_bnds = 0x%08x\n", ddr->cs0_bnds);
356 debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config);
360 * Eg: Bounds: 0x0f00_0000 to 0x1e0000_0000, second 256 Meg
362 ddr->cs1_bnds = ( (rank_density >> 8)
363 | ((rank_density >> (24 - 1)) - 1) );
364 ddr->cs1_config = ( 1<<31
367 | (spd.nrow_addr - 12) << 8
368 | (spd.ncol_addr - 8) );
369 debug("DDR: cs1_bnds = 0x%08x\n", ddr->cs1_bnds);
370 debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config);
375 * Find the largest CAS by locating the highest 1 bit
376 * in the spd.cas_lat field. Translate it to a DDR
377 * controller field value:
379 * CAS Lat DDR I DDR II Ctrl
380 * Clocks SPD Bit SPD Bit Value
381 * ------- ------- ------- -----
392 caslat = __ilog2(spd.cas_lat);
393 if ((spd.mem_type == SPD_MEMTYPE_DDR)
395 printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
398 } else if (spd.mem_type == SPD_MEMTYPE_DDR2
399 && (caslat < 2 || caslat > 5)) {
400 printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
404 debug("DDR: caslat SPD bit is %d\n", caslat);
407 * Calculate the Maximum Data Rate based on the Minimum Cycle time.
408 * The SPD clk_cycle field (tCKmin) is measured in tenths of
409 * nanoseconds and represented as BCD.
411 tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle);
412 debug("DDR: tCKmin = %d ps\n", tCKmin_ps);
415 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz.
417 max_data_rate = 2 * 1000 * 1000 / tCKmin_ps;
418 debug("DDR: Module max data rate = %d Mhz\n", max_data_rate);
422 * Adjust the CAS Latency to allow for bus speeds that
423 * are slower than the DDR module.
425 busfreq = get_ddr_freq(0) / 1000000; /* MHz */
427 effective_data_rate = max_data_rate;
429 /* DDR rate out-of-range */
430 puts("DDR: platform frequency is not fit for DDR rate\n");
433 } else if (90 <= busfreq && busfreq < 230 && max_data_rate >= 230) {
435 * busfreq 90~230 range, treated as DDR 200.
437 effective_data_rate = 200;
438 if (spd.clk_cycle3 == 0xa0) /* 10 ns */
440 else if (spd.clk_cycle2 == 0xa0)
443 } else if (230 <= busfreq && busfreq < 280 && max_data_rate >= 280) {
445 * busfreq 230~280 range, treated as DDR 266.
447 effective_data_rate = 266;
448 if (spd.clk_cycle3 == 0x75) /* 7.5 ns */
450 else if (spd.clk_cycle2 == 0x75)
453 } else if (280 <= busfreq && busfreq < 350 && max_data_rate >= 350) {
455 * busfreq 280~350 range, treated as DDR 333.
457 effective_data_rate = 333;
458 if (spd.clk_cycle3 == 0x60) /* 6.0 ns */
460 else if (spd.clk_cycle2 == 0x60)
463 } else if (350 <= busfreq && busfreq < 460 && max_data_rate >= 460) {
465 * busfreq 350~460 range, treated as DDR 400.
467 effective_data_rate = 400;
468 if (spd.clk_cycle3 == 0x50) /* 5.0 ns */
470 else if (spd.clk_cycle2 == 0x50)
473 } else if (460 <= busfreq && busfreq < 560 && max_data_rate >= 560) {
475 * busfreq 460~560 range, treated as DDR 533.
477 effective_data_rate = 533;
478 if (spd.clk_cycle3 == 0x3D) /* 3.75 ns */
480 else if (spd.clk_cycle2 == 0x3D)
483 } else if (560 <= busfreq && busfreq < 700 && max_data_rate >= 700) {
485 * busfreq 560~700 range, treated as DDR 667.
487 effective_data_rate = 667;
488 if (spd.clk_cycle3 == 0x30) /* 3.0 ns */
490 else if (spd.clk_cycle2 == 0x30)
493 } else if (700 <= busfreq) {
495 * DDR rate out-of-range
497 printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n",
498 busfreq, max_data_rate);
504 * Convert caslat clocks to DDR controller value.
505 * Force caslat_ctrl to be DDR Controller field-sized.
507 if (spd.mem_type == SPD_MEMTYPE_DDR) {
508 caslat_ctrl = (caslat + 1) & 0x07;
510 caslat_ctrl = (2 * caslat - 1) & 0x0f;
513 debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
514 debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
515 caslat, caslat_ctrl);
519 * Avoid writing for DDR I. The new PQ38 DDR controller
520 * dreams up non-zero default values to be backwards compatible.
522 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
523 unsigned char taxpd_clk = 8; /* By the book. */
524 unsigned char tmrd_clk = 2; /* By the book. */
525 unsigned char act_pd_exit = 2; /* Empirical? */
526 unsigned char pre_pd_exit = 6; /* Empirical? */
528 ddr->timing_cfg_0 = (0
529 | ((act_pd_exit & 0x7) << 20) /* ACT_PD_EXIT */
530 | ((pre_pd_exit & 0x7) << 16) /* PRE_PD_EXIT */
531 | ((taxpd_clk & 0xf) << 8) /* ODT_PD_EXIT */
532 | ((tmrd_clk & 0xf) << 0) /* MRS_CYC */
535 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
537 debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
542 * Force extra cycles with 0xaa bits.
543 * Incidentally supply the dreamt-up backwards compat value!
545 ddr->timing_cfg_0 = 0x00110105; /* backwards compat value */
546 ddr->timing_cfg_0 |= 0xaa000000; /* extra cycles */
547 debug("DDR: HACK timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
553 * Some Timing Config 1 values now.
554 * Sneak Extended Refresh Recovery in here too.
558 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
559 * use conservative value.
560 * For DDR II, they are bytes 36 and 37, in quarter nanos.
563 if (spd.mem_type == SPD_MEMTYPE_DDR) {
564 twr_clk = 3; /* Clocks */
565 twtr_clk = 1; /* Clocks */
567 twr_clk = picos_to_clk(spd.twr * 250);
568 twtr_clk = picos_to_clk(spd.twtr * 250);
572 * Calculate Trfc, in picos.
573 * DDR I: Byte 42 straight up in ns.
574 * DDR II: Byte 40 and 42 swizzled some, in ns.
576 if (spd.mem_type == SPD_MEMTYPE_DDR) {
577 trfc = spd.trfc * 1000; /* up to ps */
579 unsigned int byte40_table_ps[8] = {
590 trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
591 + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
593 trfc_clk = picos_to_clk(trfc);
596 * Trcd, Byte 29, from quarter nanos to ps and clocks.
598 trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;
601 * Convert trfc_clk to DDR controller fields. DDR I should
602 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
603 * 8548 controller has an extended REFREC field of three bits.
604 * The controller automatically adds 8 clocks to this value,
605 * so preadjust it down 8 first before splitting it up.
607 trfc_low = (trfc_clk - 8) & 0xf;
608 trfc_high = ((trfc_clk - 8) >> 4) & 0x3;
611 * Sneak in some Extended Refresh Recovery.
613 ddr->ext_refrec = (trfc_high << 16);
614 debug("DDR: ext_refrec = 0x%08x\n", ddr->ext_refrec);
618 | ((picos_to_clk(spd.trp * 250) & 0x07) << 28) /* PRETOACT */
619 | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24) /* ACTTOPRE */
620 | (trcd_clk << 20) /* ACTTORW */
621 | (caslat_ctrl << 16) /* CASLAT */
622 | (trfc_low << 12) /* REFEC */
623 | ((twr_clk & 0x07) << 8) /* WRRREC */
624 | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) /* ACTTOACT */
625 | ((twtr_clk & 0x07) << 0) /* WRTORD */
628 debug("DDR: timing_cfg_1 = 0x%08x\n", ddr->timing_cfg_1);
639 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
640 * which comes from Trcd, and also note that:
641 * add_lat + caslat must be >= 4
644 if (spd.mem_type == SPD_MEMTYPE_DDR2
645 && (odt_wr_cfg || odt_rd_cfg)
647 add_lat = 4 - caslat;
648 if (add_lat > trcd_clk) {
649 add_lat = trcd_clk - 1;
655 * Historically 0x2 == 4/8 clock delay.
656 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
663 * Minimum CKE Pulse Width.
664 * Four Activate Window
666 if (spd.mem_type == SPD_MEMTYPE_DDR) {
668 * This is a lie. It should really be 1, but if it is
669 * set to 1, bits overlap into the old controller's
670 * otherwise unused ACSM field. If we leave it 0, then
671 * the HW will magically treat it as 1 for DDR 1. Oh Yea.
675 trtp_clk = 2; /* By the book. */
676 cke_min_clk = 1; /* By the book. */
677 four_act = 1; /* By the book. */
682 /* Convert SPD value from quarter nanos to picos. */
683 trtp_clk = picos_to_clk(spd.trtp * 250);
685 cke_min_clk = 3; /* By the book. */
686 four_act = picos_to_clk(37500); /* By the book. 1k pages? */
690 * Empirically set ~MCAS-to-preamble override for DDR 2.
691 * Your milage will vary.
694 if (spd.mem_type == SPD_MEMTYPE_DDR2) {
695 if (effective_data_rate <= 333) {
696 cpo = 0x7; /* READ_LAT + 5/4 */
698 cpo = 0x9; /* READ_LAT + 7/4 */
702 ddr->timing_cfg_2 = (0
703 | ((add_lat & 0x7) << 28) /* ADD_LAT */
704 | ((cpo & 0x1f) << 23) /* CPO */
705 | ((wr_lat & 0x7) << 19) /* WR_LAT */
706 | ((trtp_clk & 0x7) << 13) /* RD_TO_PRE */
707 | ((wr_data_delay & 0x7) << 10) /* WR_DATA_DELAY */
708 | ((cke_min_clk & 0x7) << 6) /* CKE_PLS */
709 | ((four_act & 0x1f) << 0) /* FOUR_ACT */
712 debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2);
716 * Determine the Mode Register Set.
718 * This is nominally part specific, but it appears to be
719 * consistent for all DDR I devices, and for all DDR II devices.
721 * caslat must be programmed
722 * burst length is always 4
723 * burst type is sequential
726 * operating mode is "normal"
735 * Table lookup from DDR I or II Device Operation Specs.
737 if (spd.mem_type == SPD_MEMTYPE_DDR) {
738 if (1 <= caslat && caslat <= 4) {
739 unsigned char mode_caslat_table[4] = {
740 0x5, /* 1.5 clocks */
741 0x2, /* 2.0 clocks */
742 0x6, /* 2.5 clocks */
745 mode_caslat = mode_caslat_table[caslat - 1];
747 puts("DDR I: Only CAS Latencies of 1.5, 2.0, "
748 "2.5 and 3.0 clocks are supported.\n");
753 if (2 <= caslat && caslat <= 5) {
754 mode_caslat = caslat;
756 puts("DDR II: Only CAS Latencies of 2.0, 3.0, "
757 "4.0 and 5.0 clocks are supported.\n");
763 * Encoded Burst Lenght of 4.
765 burst_len = 2; /* Fiat. */
767 if (spd.mem_type == SPD_MEMTYPE_DDR) {
768 twr_auto_clk = 0; /* Historical */
771 * Determine tCK max in picos. Grab tWR and convert to picos.
772 * Auto-precharge write recovery is:
773 * WR = roundup(tWR_ns/tCKmax_ns).
775 * Ponder: Is twr_auto_clk different than twr_clk?
777 tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax);
778 twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps;
783 * Mode Reg in bits 16 ~ 31,
784 * Extended Mode Reg 1 in bits 0 ~ 15.
786 mode_odt_enable = 0x0; /* Default disabled */
787 if (odt_wr_cfg || odt_rd_cfg) {
789 * Bits 6 and 2 in Extended MRS(1)
790 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
791 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
793 mode_odt_enable = 0x40; /* 150 Ohm */
798 | (add_lat << (16 + 3)) /* Additive Latency in EMRS1 */
799 | (mode_odt_enable << 16) /* ODT Enable in EMRS1 */
800 | (twr_auto_clk << 9) /* Write Recovery Autopre */
801 | (mode_caslat << 4) /* caslat */
802 | (burst_len << 0) /* Burst length */
805 debug("DDR: sdram_mode = 0x%08x\n", ddr->sdram_mode);
809 * Clear EMRS2 and EMRS3.
811 ddr->sdram_mode_2 = 0;
812 debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2);
815 * Determine Refresh Rate.
817 refresh_clk = determine_refresh_rate(spd.refresh & 0x7);
820 * Set BSTOPRE to 0x100 for page mode
821 * If auto-charge is used, set BSTOPRE = 0
823 ddr->sdram_interval =
825 | (refresh_clk & 0x3fff) << 16
828 debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval);
831 * Is this an ECC DDR chip?
832 * But don't mess with it if the DDR controller will init mem.
834 #ifdef CONFIG_DDR_ECC
835 if (spd.config == 0x02) {
836 #ifndef CONFIG_ECC_INIT_VIA_DDRCONTROLLER
837 ddr->err_disable = 0x0000000d;
839 ddr->err_sbe = 0x00ff0000;
842 debug("DDR: err_disable = 0x%08x\n", ddr->err_disable);
843 debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe);
844 #endif /* CONFIG_DDR_ECC */
846 asm("sync;isync;msync");
854 * When ODT is enabled, Chap 9 suggests asserting ODT to
855 * internal IOs only during reads.
858 if (odt_rd_cfg | odt_wr_cfg) {
859 odt_cfg = 0x2; /* ODT to IOs during reads */
863 * Try to use differential DQS with DDR II.
865 if (spd.mem_type == SPD_MEMTYPE_DDR) {
866 dqs_cfg = 0; /* No Differential DQS for DDR I */
868 dqs_cfg = 0x1; /* Differential DQS for DDR II */
871 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
873 * Use the DDR controller to auto initialize memory.
876 ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE;
877 debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init);
880 * Memory will be initialized via DMA, or not at all.
885 ddr->sdram_cfg_2 = (0
886 | (dqs_cfg << 26) /* Differential DQS */
887 | (odt_cfg << 21) /* ODT */
888 | (d_init << 4) /* D_INIT auto init DDR */
891 debug("DDR: sdram_cfg_2 = 0x%08x\n", ddr->sdram_cfg_2);
894 #ifdef MPC85xx_DDR_SDRAM_CLK_CNTL
896 * Setup the clock control.
897 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1
898 * SDRAM_CLK_CNTL[5-7] = Clock Adjust
899 * 0110 3/4 cycle late
900 * 0111 7/8 cycle late
902 if (spd.mem_type == SPD_MEMTYPE_DDR)
905 #ifdef CONFIG_MPC8568
906 /* Empirally setting clk_adjust */
912 ddr->sdram_clk_cntl = (0
916 debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl);
920 * Figure out the settings for the sdram_cfg register.
921 * Build up the entire register in 'sdram_cfg' before writing
922 * since the write into the register will actually enable the
923 * memory controller; all settings must be done before enabling.
925 * sdram_cfg[0] = 1 (ddr sdram logic enable)
926 * sdram_cfg[1] = 1 (self-refresh-enable)
927 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
931 sdram_type = (spd.mem_type == SPD_MEMTYPE_DDR) ? 2 : 3;
933 | (1 << 31) /* Enable */
934 | (1 << 30) /* Self refresh */
935 | (sdram_type << 24) /* SDRAM type */
939 * sdram_cfg[3] = RD_EN - registered DIMM enable
940 * A value of 0x26 indicates micron registered DIMMS (micron.com)
942 if (spd.mem_type == SPD_MEMTYPE_DDR && spd.mod_attr == 0x26) {
943 sdram_cfg |= 0x10000000; /* RD_EN */
946 #if defined(CONFIG_DDR_ECC)
948 * If the user wanted ECC (enabled via sdram_cfg[2])
950 if (spd.config == 0x02) {
951 sdram_cfg |= 0x20000000; /* ECC_EN */
956 * REV1 uses 1T timing.
957 * REV2 may use 1T or 2T as configured by the user.
960 uint pvr = get_pvr();
962 if (pvr != PVR_85xx_REV1) {
963 #if defined(CONFIG_DDR_2T_TIMING)
965 * Enable 2T timing by setting sdram_cfg[16].
967 sdram_cfg |= 0x8000; /* 2T_EN */
973 * 200 painful micro-seconds must elapse between
974 * the DDR clock setup and the DDR config enable.
981 ddr->sdram_cfg = sdram_cfg;
983 asm("sync;isync;msync");
986 debug("DDR: sdram_cfg = 0x%08x\n", ddr->sdram_cfg);
989 #if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
991 * Poll until memory is initialized.
992 * 512 Meg at 400 might hit this 200 times or so.
994 while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) {
1001 * Figure out memory size in Megabytes.
1003 memsize = n_ranks * rank_density / 0x100000;
1006 * Establish Local Access Window and TLB mappings for DDR memory.
1008 memsize = setup_laws_and_tlbs(memsize);
1013 return memsize * 1024 * 1024;
1018 * Setup Local Access Window and TLB1 mappings for the requested
1019 * amount of memory. Returns the amount of memory actually mapped
1020 * (usually the original request size), or 0 on error.
1024 setup_laws_and_tlbs(unsigned int memsize)
1026 unsigned int tlb_size;
1027 unsigned int law_size;
1028 unsigned int ram_tlb_index;
1029 unsigned int ram_tlb_address;
1032 * Determine size of each TLB1 entry.
1037 tlb_size = BOOKE_PAGESZ_16M;
1041 tlb_size = BOOKE_PAGESZ_64M;
1045 tlb_size = BOOKE_PAGESZ_256M;
1049 if (PVR_VER(get_pvr()) > PVR_VER(PVR_85xx))
1050 tlb_size = BOOKE_PAGESZ_1G;
1052 tlb_size = BOOKE_PAGESZ_256M;
1055 puts("DDR: only 16M,32M,64M,128M,256M,512M,1G and 2G are supported.\n");
1058 * The memory was not able to be mapped.
1059 * Default to a small size.
1061 tlb_size = BOOKE_PAGESZ_64M;
1067 * Configure DDR TLB1 entries.
1068 * Starting at TLB1 8, use no more than 8 TLB1 entries.
1071 ram_tlb_address = (unsigned int)CFG_DDR_SDRAM_BASE;
1072 while (ram_tlb_address < (memsize * 1024 * 1024)
1073 && ram_tlb_index < 16) {
1074 set_tlb(1, ram_tlb_address, ram_tlb_address,
1075 MAS3_SX|MAS3_SW|MAS3_SR, 0,
1076 0, ram_tlb_index, tlb_size, 1);
1078 ram_tlb_address += (0x1000 << ((tlb_size - 1) * 2));
1084 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. Fnord.
1086 law_size = 19 + __ilog2(memsize);
1089 * Set up LAWBAR for all of DDR.
1092 #ifdef CONFIG_FSL_LAW
1093 set_law(1, CFG_DDR_SDRAM_BASE, law_size, LAW_TRGT_IF_DDR);
1097 * Confirm that the requested amount of memory was mapped.
1102 #endif /* CONFIG_SPD_EEPROM */
1105 #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER)
1108 * Initialize all of memory for ECC, then enable errors.
1112 ddr_enable_ecc(unsigned int dram_size)
1116 volatile ccsr_ddr_t *ddr= (void *)(CFG_MPC85xx_DDR_ADDR);
1120 for (*p = 0; p < (uint *)(8 * 1024); p++) {
1121 if (((unsigned int)p & 0x1f) == 0) {
1122 ppcDcbz((unsigned long) p);
1124 *p = (unsigned int)CONFIG_MEM_INIT_VALUE;
1125 if (((unsigned int)p & 0x1c) == 0x1c) {
1126 ppcDcbf((unsigned long) p);
1130 dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */
1131 dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */
1132 dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */
1133 dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */
1134 dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */
1135 dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */
1136 dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */
1137 dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
1138 dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
1139 dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */
1141 for (i = 1; i < dram_size / 0x800000; i++) {
1142 dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
1146 * Enable errors for ECC.
1148 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
1149 ddr->err_disable = 0x00000000;
1150 asm("sync;isync;msync");
1151 debug("DMA DDR: err_disable = 0x%08x\n", ddr->err_disable);
1154 #endif /* CONFIG_DDR_ECC && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */