Merge remote-tracking branch 'remotes/mjt/tags/pull-trivial-patches-2014-11-11' into...
[sdk/emulator/qemu.git] / coroutine-sigaltstack.c
1 /*
2  * sigaltstack coroutine initialization code
3  *
4  * Copyright (C) 2006  Anthony Liguori <anthony@codemonkey.ws>
5  * Copyright (C) 2011  Kevin Wolf <kwolf@redhat.com>
6  * Copyright (C) 2012  Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 **  Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
9  *
10  * This library is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * This library is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22  */
23
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
27 #endif
28 #include <stdlib.h>
29 #include <setjmp.h>
30 #include <stdint.h>
31 #include <pthread.h>
32 #include <signal.h>
33 #include "qemu-common.h"
34 #include "block/coroutine_int.h"
35
36 typedef struct {
37     Coroutine base;
38     void *stack;
39     sigjmp_buf env;
40 } CoroutineUContext;
41
42 /**
43  * Per-thread coroutine bookkeeping
44  */
45 typedef struct {
46     /** Currently executing coroutine */
47     Coroutine *current;
48
49     /** The default coroutine */
50     CoroutineUContext leader;
51
52     /** Information for the signal handler (trampoline) */
53     sigjmp_buf tr_reenter;
54     volatile sig_atomic_t tr_called;
55     void *tr_handler;
56 } CoroutineThreadState;
57
58 static pthread_key_t thread_state_key;
59
60 static CoroutineThreadState *coroutine_get_thread_state(void)
61 {
62     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
63
64     if (!s) {
65         s = g_malloc0(sizeof(*s));
66         s->current = &s->leader.base;
67         pthread_setspecific(thread_state_key, s);
68     }
69     return s;
70 }
71
72 static void qemu_coroutine_thread_cleanup(void *opaque)
73 {
74     CoroutineThreadState *s = opaque;
75
76     g_free(s);
77 }
78
79 static void __attribute__((constructor)) coroutine_init(void)
80 {
81     int ret;
82
83     ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
84     if (ret != 0) {
85         fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
86         abort();
87     }
88 }
89
90 /* "boot" function
91  * This is what starts the coroutine, is called from the trampoline
92  * (from the signal handler when it is not signal handling, read ahead
93  * for more information).
94  */
95 static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
96 {
97     /* Initialize longjmp environment and switch back the caller */
98     if (!sigsetjmp(self->env, 0)) {
99         siglongjmp(*(sigjmp_buf *)co->entry_arg, 1);
100     }
101
102     while (true) {
103         co->entry(co->entry_arg);
104         qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
105     }
106 }
107
108 /*
109  * This is used as the signal handler. This is called with the brand new stack
110  * (thanks to sigaltstack). We have to return, given that this is a signal
111  * handler and the sigmask and some other things are changed.
112  */
113 static void coroutine_trampoline(int signal)
114 {
115     CoroutineUContext *self;
116     Coroutine *co;
117     CoroutineThreadState *coTS;
118
119     /* Get the thread specific information */
120     coTS = coroutine_get_thread_state();
121     self = coTS->tr_handler;
122     coTS->tr_called = 1;
123     co = &self->base;
124
125     /*
126      * Here we have to do a bit of a ping pong between the caller, given that
127      * this is a signal handler and we have to do a return "soon". Then the
128      * caller can reestablish everything and do a siglongjmp here again.
129      */
130     if (!sigsetjmp(coTS->tr_reenter, 0)) {
131         return;
132     }
133
134     /*
135      * Ok, the caller has siglongjmp'ed back to us, so now prepare
136      * us for the real machine state switching. We have to jump
137      * into another function here to get a new stack context for
138      * the auto variables (which have to be auto-variables
139      * because the start of the thread happens later). Else with
140      * PIC (i.e. Position Independent Code which is used when PTH
141      * is built as a shared library) most platforms would
142      * horrible core dump as experience showed.
143      */
144     coroutine_bootstrap(self, co);
145 }
146
147 Coroutine *qemu_coroutine_new(void)
148 {
149     const size_t stack_size = 1 << 20;
150     CoroutineUContext *co;
151     CoroutineThreadState *coTS;
152     struct sigaction sa;
153     struct sigaction osa;
154     stack_t ss;
155     stack_t oss;
156     sigset_t sigs;
157     sigset_t osigs;
158     sigjmp_buf old_env;
159
160     /* The way to manipulate stack is with the sigaltstack function. We
161      * prepare a stack, with it delivering a signal to ourselves and then
162      * put sigsetjmp/siglongjmp where needed.
163      * This has been done keeping coroutine-ucontext as a model and with the
164      * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
165      * of the coroutines and see pth_mctx.c (from the pth project) for the
166      * sigaltstack way of manipulating stacks.
167      */
168
169     co = g_malloc0(sizeof(*co));
170     co->stack = g_malloc(stack_size);
171     co->base.entry_arg = &old_env; /* stash away our jmp_buf */
172
173     coTS = coroutine_get_thread_state();
174     coTS->tr_handler = co;
175
176     /*
177      * Preserve the SIGUSR2 signal state, block SIGUSR2,
178      * and establish our signal handler. The signal will
179      * later transfer control onto the signal stack.
180      */
181     sigemptyset(&sigs);
182     sigaddset(&sigs, SIGUSR2);
183     pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
184     sa.sa_handler = coroutine_trampoline;
185     sigfillset(&sa.sa_mask);
186     sa.sa_flags = SA_ONSTACK;
187     if (sigaction(SIGUSR2, &sa, &osa) != 0) {
188         abort();
189     }
190
191     /*
192      * Set the new stack.
193      */
194     ss.ss_sp = co->stack;
195     ss.ss_size = stack_size;
196     ss.ss_flags = 0;
197     if (sigaltstack(&ss, &oss) < 0) {
198         abort();
199     }
200
201     /*
202      * Now transfer control onto the signal stack and set it up.
203      * It will return immediately via "return" after the sigsetjmp()
204      * was performed. Be careful here with race conditions.  The
205      * signal can be delivered the first time sigsuspend() is
206      * called.
207      */
208     coTS->tr_called = 0;
209     pthread_kill(pthread_self(), SIGUSR2);
210     sigfillset(&sigs);
211     sigdelset(&sigs, SIGUSR2);
212     while (!coTS->tr_called) {
213         sigsuspend(&sigs);
214     }
215
216     /*
217      * Inform the system that we are back off the signal stack by
218      * removing the alternative signal stack. Be careful here: It
219      * first has to be disabled, before it can be removed.
220      */
221     sigaltstack(NULL, &ss);
222     ss.ss_flags = SS_DISABLE;
223     if (sigaltstack(&ss, NULL) < 0) {
224         abort();
225     }
226     sigaltstack(NULL, &ss);
227     if (!(oss.ss_flags & SS_DISABLE)) {
228         sigaltstack(&oss, NULL);
229     }
230
231     /*
232      * Restore the old SIGUSR2 signal handler and mask
233      */
234     sigaction(SIGUSR2, &osa, NULL);
235     pthread_sigmask(SIG_SETMASK, &osigs, NULL);
236
237     /*
238      * Now enter the trampoline again, but this time not as a signal
239      * handler. Instead we jump into it directly. The functionally
240      * redundant ping-pong pointer arithmetic is necessary to avoid
241      * type-conversion warnings related to the `volatile' qualifier and
242      * the fact that `jmp_buf' usually is an array type.
243      */
244     if (!sigsetjmp(old_env, 0)) {
245         siglongjmp(coTS->tr_reenter, 1);
246     }
247
248     /*
249      * Ok, we returned again, so now we're finished
250      */
251
252     return &co->base;
253 }
254
255 void qemu_coroutine_delete(Coroutine *co_)
256 {
257     CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
258
259     g_free(co->stack);
260     g_free(co);
261 }
262
263 CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
264                                       CoroutineAction action)
265 {
266     CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
267     CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
268     CoroutineThreadState *s = coroutine_get_thread_state();
269     int ret;
270
271     s->current = to_;
272
273     ret = sigsetjmp(from->env, 0);
274     if (ret == 0) {
275         siglongjmp(to->env, action);
276     }
277     return ret;
278 }
279
280 Coroutine *qemu_coroutine_self(void)
281 {
282     CoroutineThreadState *s = coroutine_get_thread_state();
283
284     return s->current;
285 }
286
287 bool qemu_in_coroutine(void)
288 {
289     CoroutineThreadState *s = pthread_getspecific(thread_state_key);
290
291     return s && s->current->caller;
292 }
293