btrfs-progs: move mkfs definitions to own header
[platform/upstream/btrfs-progs.git] / convert / main.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20
21 #include <sys/ioctl.h>
22 #include <sys/mount.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <uuid/uuid.h>
30 #include <linux/limits.h>
31 #include <getopt.h>
32
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "volumes.h"
36 #include "transaction.h"
37 #include "crc32c.h"
38 #include "utils.h"
39 #include "task-utils.h"
40 #include "help.h"
41 #include "mkfs/common.h"
42
43 #if BTRFSCONVERT_EXT2
44 #include <ext2fs/ext2_fs.h>
45 #include <ext2fs/ext2fs.h>
46 #include <ext2fs/ext2_ext_attr.h>
47
48 #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO)
49
50 /*
51  * Compatibility code for e2fsprogs 1.41 which doesn't support RO compat flag
52  * BIGALLOC.
53  * Unlike normal RO compat flag, BIGALLOC affects how e2fsprogs check used
54  * space, and btrfs-convert heavily relies on it.
55  */
56 #ifdef HAVE_OLD_E2FSPROGS
57 #define EXT2FS_CLUSTER_RATIO(fs)        (1)
58 #define EXT2_CLUSTERS_PER_GROUP(s)      (EXT2_BLOCKS_PER_GROUP(s))
59 #define EXT2FS_B2C(fs, blk)             (blk)
60 #endif
61
62 #endif
63
64 #define CONV_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID
65
66 struct task_ctx {
67         uint32_t max_copy_inodes;
68         uint32_t cur_copy_inodes;
69         struct task_info *info;
70 };
71
72 static void *print_copied_inodes(void *p)
73 {
74         struct task_ctx *priv = p;
75         const char work_indicator[] = { '.', 'o', 'O', 'o' };
76         uint32_t count = 0;
77
78         task_period_start(priv->info, 1000 /* 1s */);
79         while (1) {
80                 count++;
81                 printf("copy inodes [%c] [%10d/%10d]\r",
82                        work_indicator[count % 4], priv->cur_copy_inodes,
83                        priv->max_copy_inodes);
84                 fflush(stdout);
85                 task_period_wait(priv->info);
86         }
87
88         return NULL;
89 }
90
91 static int after_copied_inodes(void *p)
92 {
93         printf("\n");
94         fflush(stdout);
95
96         return 0;
97 }
98
99 struct btrfs_convert_context;
100 struct btrfs_convert_operations {
101         const char *name;
102         int (*open_fs)(struct btrfs_convert_context *cctx, const char *devname);
103         int (*read_used_space)(struct btrfs_convert_context *cctx);
104         int (*copy_inodes)(struct btrfs_convert_context *cctx,
105                          struct btrfs_root *root, int datacsum,
106                          int packing, int noxattr, struct task_ctx *p);
107         void (*close_fs)(struct btrfs_convert_context *cctx);
108         int (*check_state)(struct btrfs_convert_context *cctx);
109 };
110
111 static void init_convert_context(struct btrfs_convert_context *cctx)
112 {
113         cache_tree_init(&cctx->used);
114         cache_tree_init(&cctx->data_chunks);
115         cache_tree_init(&cctx->free);
116 }
117
118 static void clean_convert_context(struct btrfs_convert_context *cctx)
119 {
120         free_extent_cache_tree(&cctx->used);
121         free_extent_cache_tree(&cctx->data_chunks);
122         free_extent_cache_tree(&cctx->free);
123 }
124
125 static inline int copy_inodes(struct btrfs_convert_context *cctx,
126                               struct btrfs_root *root, int datacsum,
127                               int packing, int noxattr, struct task_ctx *p)
128 {
129         return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing,
130                                              noxattr, p);
131 }
132
133 static inline void convert_close_fs(struct btrfs_convert_context *cctx)
134 {
135         cctx->convert_ops->close_fs(cctx);
136 }
137
138 static inline int convert_check_state(struct btrfs_convert_context *cctx)
139 {
140         return cctx->convert_ops->check_state(cctx);
141 }
142
143 static int intersect_with_sb(u64 bytenr, u64 num_bytes)
144 {
145         int i;
146         u64 offset;
147
148         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
149                 offset = btrfs_sb_offset(i);
150                 offset &= ~((u64)BTRFS_STRIPE_LEN - 1);
151
152                 if (bytenr < offset + BTRFS_STRIPE_LEN &&
153                     bytenr + num_bytes > offset)
154                         return 1;
155         }
156         return 0;
157 }
158
159 static int convert_insert_dirent(struct btrfs_trans_handle *trans,
160                                  struct btrfs_root *root,
161                                  const char *name, size_t name_len,
162                                  u64 dir, u64 objectid,
163                                  u8 file_type, u64 index_cnt,
164                                  struct btrfs_inode_item *inode)
165 {
166         int ret;
167         u64 inode_size;
168         struct btrfs_key location = {
169                 .objectid = objectid,
170                 .offset = 0,
171                 .type = BTRFS_INODE_ITEM_KEY,
172         };
173
174         ret = btrfs_insert_dir_item(trans, root, name, name_len,
175                                     dir, &location, file_type, index_cnt);
176         if (ret)
177                 return ret;
178         ret = btrfs_insert_inode_ref(trans, root, name, name_len,
179                                      objectid, dir, index_cnt);
180         if (ret)
181                 return ret;
182         inode_size = btrfs_stack_inode_size(inode) + name_len * 2;
183         btrfs_set_stack_inode_size(inode, inode_size);
184
185         return 0;
186 }
187
188 static int read_disk_extent(struct btrfs_root *root, u64 bytenr,
189                             u32 num_bytes, char *buffer)
190 {
191         int ret;
192         struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices;
193
194         ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr);
195         if (ret != num_bytes)
196                 goto fail;
197         ret = 0;
198 fail:
199         if (ret > 0)
200                 ret = -1;
201         return ret;
202 }
203
204 static int csum_disk_extent(struct btrfs_trans_handle *trans,
205                             struct btrfs_root *root,
206                             u64 disk_bytenr, u64 num_bytes)
207 {
208         u32 blocksize = root->sectorsize;
209         u64 offset;
210         char *buffer;
211         int ret = 0;
212
213         buffer = malloc(blocksize);
214         if (!buffer)
215                 return -ENOMEM;
216         for (offset = 0; offset < num_bytes; offset += blocksize) {
217                 ret = read_disk_extent(root, disk_bytenr + offset,
218                                         blocksize, buffer);
219                 if (ret)
220                         break;
221                 ret = btrfs_csum_file_block(trans,
222                                             root->fs_info->csum_root,
223                                             disk_bytenr + num_bytes,
224                                             disk_bytenr + offset,
225                                             buffer, blocksize);
226                 if (ret)
227                         break;
228         }
229         free(buffer);
230         return ret;
231 }
232
233 struct blk_iterate_data {
234         struct btrfs_trans_handle *trans;
235         struct btrfs_root *root;
236         struct btrfs_root *convert_root;
237         struct btrfs_inode_item *inode;
238         u64 convert_ino;
239         u64 objectid;
240         u64 first_block;
241         u64 disk_block;
242         u64 num_blocks;
243         u64 boundary;
244         int checksum;
245         int errcode;
246 };
247
248 static void init_blk_iterate_data(struct blk_iterate_data *data,
249                                   struct btrfs_trans_handle *trans,
250                                   struct btrfs_root *root,
251                                   struct btrfs_inode_item *inode,
252                                   u64 objectid, int checksum)
253 {
254         struct btrfs_key key;
255
256         data->trans             = trans;
257         data->root              = root;
258         data->inode             = inode;
259         data->objectid          = objectid;
260         data->first_block       = 0;
261         data->disk_block        = 0;
262         data->num_blocks        = 0;
263         data->boundary          = (u64)-1;
264         data->checksum          = checksum;
265         data->errcode           = 0;
266
267         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
268         key.type = BTRFS_ROOT_ITEM_KEY;
269         key.offset = (u64)-1;
270         data->convert_root = btrfs_read_fs_root(root->fs_info, &key);
271         /* Impossible as we just opened it before */
272         BUG_ON(!data->convert_root || IS_ERR(data->convert_root));
273         data->convert_ino = BTRFS_FIRST_FREE_OBJECTID + 1;
274 }
275
276 /*
277  * Record a file extent in original filesystem into btrfs one.
278  * The special point is, old disk_block can point to a reserved range.
279  * So here, we don't use disk_block directly but search convert_root
280  * to get the real disk_bytenr.
281  */
282 static int record_file_blocks(struct blk_iterate_data *data,
283                               u64 file_block, u64 disk_block, u64 num_blocks)
284 {
285         int ret = 0;
286         struct btrfs_root *root = data->root;
287         struct btrfs_root *convert_root = data->convert_root;
288         struct btrfs_path path;
289         u64 file_pos = file_block * root->sectorsize;
290         u64 old_disk_bytenr = disk_block * root->sectorsize;
291         u64 num_bytes = num_blocks * root->sectorsize;
292         u64 cur_off = old_disk_bytenr;
293
294         /* Hole, pass it to record_file_extent directly */
295         if (old_disk_bytenr == 0)
296                 return btrfs_record_file_extent(data->trans, root,
297                                 data->objectid, data->inode, file_pos, 0,
298                                 num_bytes);
299
300         btrfs_init_path(&path);
301
302         /*
303          * Search real disk bytenr from convert root
304          */
305         while (cur_off < old_disk_bytenr + num_bytes) {
306                 struct btrfs_key key;
307                 struct btrfs_file_extent_item *fi;
308                 struct extent_buffer *node;
309                 int slot;
310                 u64 extent_disk_bytenr;
311                 u64 extent_num_bytes;
312                 u64 real_disk_bytenr;
313                 u64 cur_len;
314
315                 key.objectid = data->convert_ino;
316                 key.type = BTRFS_EXTENT_DATA_KEY;
317                 key.offset = cur_off;
318
319                 ret = btrfs_search_slot(NULL, convert_root, &key, &path, 0, 0);
320                 if (ret < 0)
321                         break;
322                 if (ret > 0) {
323                         ret = btrfs_previous_item(convert_root, &path,
324                                                   data->convert_ino,
325                                                   BTRFS_EXTENT_DATA_KEY);
326                         if (ret < 0)
327                                 break;
328                         if (ret > 0) {
329                                 ret = -ENOENT;
330                                 break;
331                         }
332                 }
333                 node = path.nodes[0];
334                 slot = path.slots[0];
335                 btrfs_item_key_to_cpu(node, &key, slot);
336                 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY ||
337                        key.objectid != data->convert_ino ||
338                        key.offset > cur_off);
339                 fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item);
340                 extent_disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi);
341                 extent_num_bytes = btrfs_file_extent_num_bytes(node, fi);
342                 BUG_ON(cur_off - key.offset >= extent_num_bytes);
343                 btrfs_release_path(&path);
344
345                 if (extent_disk_bytenr)
346                         real_disk_bytenr = cur_off - key.offset +
347                                            extent_disk_bytenr;
348                 else
349                         real_disk_bytenr = 0;
350                 cur_len = min(key.offset + extent_num_bytes,
351                               old_disk_bytenr + num_bytes) - cur_off;
352                 ret = btrfs_record_file_extent(data->trans, data->root,
353                                         data->objectid, data->inode, file_pos,
354                                         real_disk_bytenr, cur_len);
355                 if (ret < 0)
356                         break;
357                 cur_off += cur_len;
358                 file_pos += cur_len;
359
360                 /*
361                  * No need to care about csum
362                  * As every byte of old fs image is calculated for csum, no
363                  * need to waste CPU cycles now.
364                  */
365         }
366         btrfs_release_path(&path);
367         return ret;
368 }
369
370 static int block_iterate_proc(u64 disk_block, u64 file_block,
371                               struct blk_iterate_data *idata)
372 {
373         int ret = 0;
374         int sb_region;
375         int do_barrier;
376         struct btrfs_root *root = idata->root;
377         struct btrfs_block_group_cache *cache;
378         u64 bytenr = disk_block * root->sectorsize;
379
380         sb_region = intersect_with_sb(bytenr, root->sectorsize);
381         do_barrier = sb_region || disk_block >= idata->boundary;
382         if ((idata->num_blocks > 0 && do_barrier) ||
383             (file_block > idata->first_block + idata->num_blocks) ||
384             (disk_block != idata->disk_block + idata->num_blocks)) {
385                 if (idata->num_blocks > 0) {
386                         ret = record_file_blocks(idata, idata->first_block,
387                                                  idata->disk_block,
388                                                  idata->num_blocks);
389                         if (ret)
390                                 goto fail;
391                         idata->first_block += idata->num_blocks;
392                         idata->num_blocks = 0;
393                 }
394                 if (file_block > idata->first_block) {
395                         ret = record_file_blocks(idata, idata->first_block,
396                                         0, file_block - idata->first_block);
397                         if (ret)
398                                 goto fail;
399                 }
400
401                 if (sb_region) {
402                         bytenr += BTRFS_STRIPE_LEN - 1;
403                         bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1);
404                 } else {
405                         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
406                         BUG_ON(!cache);
407                         bytenr = cache->key.objectid + cache->key.offset;
408                 }
409
410                 idata->first_block = file_block;
411                 idata->disk_block = disk_block;
412                 idata->boundary = bytenr / root->sectorsize;
413         }
414         idata->num_blocks++;
415 fail:
416         return ret;
417 }
418
419 static int create_image_file_range(struct btrfs_trans_handle *trans,
420                                       struct btrfs_root *root,
421                                       struct cache_tree *used,
422                                       struct btrfs_inode_item *inode,
423                                       u64 ino, u64 bytenr, u64 *ret_len,
424                                       int datacsum)
425 {
426         struct cache_extent *cache;
427         struct btrfs_block_group_cache *bg_cache;
428         u64 len = *ret_len;
429         u64 disk_bytenr;
430         int i;
431         int ret;
432
433         if (bytenr != round_down(bytenr, root->sectorsize)) {
434                 error("bytenr not sectorsize aligned: %llu",
435                                 (unsigned long long)bytenr);
436                 return -EINVAL;
437         }
438         if (len != round_down(len, root->sectorsize)) {
439                 error("length not sectorsize aligned: %llu",
440                                 (unsigned long long)len);
441                 return -EINVAL;
442         }
443         len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
444
445         /*
446          * Skip sb ranges first
447          * [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K].
448          *
449          * Or we will insert a hole into current image file, and later
450          * migrate block will fail as there is already a file extent.
451          */
452         if (bytenr < 1024 * 1024) {
453                 *ret_len = 1024 * 1024 - bytenr;
454                 return 0;
455         }
456         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
457                 u64 cur = btrfs_sb_offset(i);
458
459                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
460                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
461                         return 0;
462                 }
463         }
464         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
465                 u64 cur = btrfs_sb_offset(i);
466
467                 /*
468                  *      |--reserved--|
469                  * |----range-------|
470                  * May still need to go through file extent inserts
471                  */
472                 if (bytenr < cur && bytenr + len >= cur) {
473                         len = min_t(u64, len, cur - bytenr);
474                         break;
475                 }
476                 /*
477                  * |--reserved--|
478                  *      |---range---|
479                  * Drop out, no need to insert anything
480                  */
481                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
482                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
483                         return 0;
484                 }
485         }
486
487         cache = search_cache_extent(used, bytenr);
488         if (cache) {
489                 if (cache->start <= bytenr) {
490                         /*
491                          * |///////Used///////|
492                          *      |<--insert--->|
493                          *      bytenr
494                          */
495                         len = min_t(u64, len, cache->start + cache->size -
496                                     bytenr);
497                         disk_bytenr = bytenr;
498                 } else {
499                         /*
500                          *              |//Used//|
501                          *  |<-insert-->|
502                          *  bytenr
503                          */
504                         len = min(len, cache->start - bytenr);
505                         disk_bytenr = 0;
506                         datacsum = 0;
507                 }
508         } else {
509                 /*
510                  * |//Used//|           |EOF
511                  *          |<-insert-->|
512                  *          bytenr
513                  */
514                 disk_bytenr = 0;
515                 datacsum = 0;
516         }
517
518         if (disk_bytenr) {
519                 /* Check if the range is in a data block group */
520                 bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
521                 if (!bg_cache)
522                         return -ENOENT;
523                 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
524                         return -EINVAL;
525
526                 /* The extent should never cross block group boundary */
527                 len = min_t(u64, len, bg_cache->key.objectid +
528                             bg_cache->key.offset - bytenr);
529         }
530
531         if (len != round_down(len, root->sectorsize)) {
532                 error("remaining length not sectorsize aligned: %llu",
533                                 (unsigned long long)len);
534                 return -EINVAL;
535         }
536         ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
537                                        disk_bytenr, len);
538         if (ret < 0)
539                 return ret;
540
541         if (datacsum)
542                 ret = csum_disk_extent(trans, root, bytenr, len);
543         *ret_len = len;
544         return ret;
545 }
546
547 /*
548  * Relocate old fs data in one reserved ranges
549  *
550  * Since all old fs data in reserved range is not covered by any chunk nor
551  * data extent, we don't need to handle any reference but add new
552  * extent/reference, which makes codes more clear
553  */
554 static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
555                                       struct btrfs_root *root,
556                                       struct cache_tree *used,
557                                       struct btrfs_inode_item *inode, int fd,
558                                       u64 ino, u64 start, u64 len, int datacsum)
559 {
560         u64 cur_off = start;
561         u64 cur_len = len;
562         u64 hole_start = start;
563         u64 hole_len;
564         struct cache_extent *cache;
565         struct btrfs_key key;
566         struct extent_buffer *eb;
567         int ret = 0;
568
569         while (cur_off < start + len) {
570                 cache = lookup_cache_extent(used, cur_off, cur_len);
571                 if (!cache)
572                         break;
573                 cur_off = max(cache->start, cur_off);
574                 cur_len = min(cache->start + cache->size, start + len) -
575                           cur_off;
576                 BUG_ON(cur_len < root->sectorsize);
577
578                 /* reserve extent for the data */
579                 ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
580                                            &key, 1);
581                 if (ret < 0)
582                         break;
583
584                 eb = malloc(sizeof(*eb) + cur_len);
585                 if (!eb) {
586                         ret = -ENOMEM;
587                         break;
588                 }
589
590                 ret = pread(fd, eb->data, cur_len, cur_off);
591                 if (ret < cur_len) {
592                         ret = (ret < 0 ? ret : -EIO);
593                         free(eb);
594                         break;
595                 }
596                 eb->start = key.objectid;
597                 eb->len = key.offset;
598
599                 /* Write the data */
600                 ret = write_and_map_eb(trans, root, eb);
601                 free(eb);
602                 if (ret < 0)
603                         break;
604
605                 /* Now handle extent item and file extent things */
606                 ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
607                                                key.objectid, key.offset);
608                 if (ret < 0)
609                         break;
610                 /* Finally, insert csum items */
611                 if (datacsum)
612                         ret = csum_disk_extent(trans, root, key.objectid,
613                                                key.offset);
614
615                 /* Don't forget to insert hole */
616                 hole_len = cur_off - hole_start;
617                 if (hole_len) {
618                         ret = btrfs_record_file_extent(trans, root, ino, inode,
619                                         hole_start, 0, hole_len);
620                         if (ret < 0)
621                                 break;
622                 }
623
624                 cur_off += key.offset;
625                 hole_start = cur_off;
626                 cur_len = start + len - cur_off;
627         }
628         /* Last hole */
629         if (start + len - hole_start > 0)
630                 ret = btrfs_record_file_extent(trans, root, ino, inode,
631                                 hole_start, 0, start + len - hole_start);
632         return ret;
633 }
634
635 /*
636  * Relocate the used ext2 data in reserved ranges
637  * [0,1M)
638  * [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN)
639  * [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN)
640  */
641 static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
642                                    struct btrfs_root *root,
643                                    struct cache_tree *used,
644                                    struct btrfs_inode_item *inode, int fd,
645                                    u64 ino, u64 total_bytes, int datacsum)
646 {
647         u64 cur_off;
648         u64 cur_len;
649         int ret = 0;
650
651         /* 0 ~ 1M */
652         cur_off = 0;
653         cur_len = 1024 * 1024;
654         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
655                                          cur_off, cur_len, datacsum);
656         if (ret < 0)
657                 return ret;
658
659         /* second sb(fisrt sb is included in 0~1M) */
660         cur_off = btrfs_sb_offset(1);
661         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
662         if (cur_off > total_bytes)
663                 return ret;
664         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
665                                          cur_off, cur_len, datacsum);
666         if (ret < 0)
667                 return ret;
668
669         /* Last sb */
670         cur_off = btrfs_sb_offset(2);
671         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
672         if (cur_off > total_bytes)
673                 return ret;
674         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
675                                          cur_off, cur_len, datacsum);
676         return ret;
677 }
678
679 /*
680  * Helper for expand and merge extent_cache for wipe_one_reserved_range() to
681  * handle wiping a range that exists in cache.
682  */
683 static int _expand_extent_cache(struct cache_tree *tree,
684                                 struct cache_extent *entry,
685                                 u64 min_stripe_size, int backward)
686 {
687         struct cache_extent *ce;
688         int diff;
689
690         if (entry->size >= min_stripe_size)
691                 return 0;
692         diff = min_stripe_size - entry->size;
693
694         if (backward) {
695                 ce = prev_cache_extent(entry);
696                 if (!ce)
697                         goto expand_back;
698                 if (ce->start + ce->size >= entry->start - diff) {
699                         /* Directly merge with previous extent */
700                         ce->size = entry->start + entry->size - ce->start;
701                         remove_cache_extent(tree, entry);
702                         free(entry);
703                         return 0;
704                 }
705 expand_back:
706                 /* No overlap, normal extent */
707                 if (entry->start < diff) {
708                         error("cannot find space for data chunk layout");
709                         return -ENOSPC;
710                 }
711                 entry->start -= diff;
712                 entry->size += diff;
713                 return 0;
714         }
715         ce = next_cache_extent(entry);
716         if (!ce)
717                 goto expand_after;
718         if (entry->start + entry->size + diff >= ce->start) {
719                 /* Directly merge with next extent */
720                 entry->size = ce->start + ce->size - entry->start;
721                 remove_cache_extent(tree, ce);
722                 free(ce);
723                 return 0;
724         }
725 expand_after:
726         entry->size += diff;
727         return 0;
728 }
729
730 /*
731  * Remove one reserve range from given cache tree
732  * if min_stripe_size is non-zero, it will ensure for split case,
733  * all its split cache extent is no smaller than @min_strip_size / 2.
734  */
735 static int wipe_one_reserved_range(struct cache_tree *tree,
736                                    u64 start, u64 len, u64 min_stripe_size,
737                                    int ensure_size)
738 {
739         struct cache_extent *cache;
740         int ret;
741
742         BUG_ON(ensure_size && min_stripe_size == 0);
743         /*
744          * The logical here is simplified to handle special cases only
745          * So we don't need to consider merge case for ensure_size
746          */
747         BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
748                min_stripe_size / 2 < BTRFS_STRIPE_LEN));
749
750         /* Also, wipe range should already be aligned */
751         BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
752                start + len != round_up(start + len, BTRFS_STRIPE_LEN));
753
754         min_stripe_size /= 2;
755
756         cache = lookup_cache_extent(tree, start, len);
757         if (!cache)
758                 return 0;
759
760         if (start <= cache->start) {
761                 /*
762                  *      |--------cache---------|
763                  * |-wipe-|
764                  */
765                 BUG_ON(start + len <= cache->start);
766
767                 /*
768                  * The wipe size is smaller than min_stripe_size / 2,
769                  * so the result length should still meet min_stripe_size
770                  * And no need to do alignment
771                  */
772                 cache->size -= (start + len - cache->start);
773                 if (cache->size == 0) {
774                         remove_cache_extent(tree, cache);
775                         free(cache);
776                         return 0;
777                 }
778
779                 BUG_ON(ensure_size && cache->size < min_stripe_size);
780
781                 cache->start = start + len;
782                 return 0;
783         } else if (start > cache->start && start + len < cache->start +
784                    cache->size) {
785                 /*
786                  * |-------cache-----|
787                  *      |-wipe-|
788                  */
789                 u64 old_start = cache->start;
790                 u64 old_len = cache->size;
791                 u64 insert_start = start + len;
792                 u64 insert_len;
793
794                 cache->size = start - cache->start;
795                 /* Expand the leading half part if needed */
796                 if (ensure_size && cache->size < min_stripe_size) {
797                         ret = _expand_extent_cache(tree, cache,
798                                         min_stripe_size, 1);
799                         if (ret < 0)
800                                 return ret;
801                 }
802
803                 /* And insert the new one */
804                 insert_len = old_start + old_len - start - len;
805                 ret = add_merge_cache_extent(tree, insert_start, insert_len);
806                 if (ret < 0)
807                         return ret;
808
809                 /* Expand the last half part if needed */
810                 if (ensure_size && insert_len < min_stripe_size) {
811                         cache = lookup_cache_extent(tree, insert_start,
812                                                     insert_len);
813                         if (!cache || cache->start != insert_start ||
814                             cache->size != insert_len)
815                                 return -ENOENT;
816                         ret = _expand_extent_cache(tree, cache,
817                                         min_stripe_size, 0);
818                 }
819
820                 return ret;
821         }
822         /*
823          * |----cache-----|
824          *              |--wipe-|
825          * Wipe len should be small enough and no need to expand the
826          * remaining extent
827          */
828         cache->size = start - cache->start;
829         BUG_ON(ensure_size && cache->size < min_stripe_size);
830         return 0;
831 }
832
833 /*
834  * Remove reserved ranges from given cache_tree
835  *
836  * It will remove the following ranges
837  * 1) 0~1M
838  * 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
839  * 3) 3rd superblock, +64K
840  *
841  * @min_stripe must be given for safety check
842  * and if @ensure_size is given, it will ensure affected cache_extent will be
843  * larger than min_stripe_size
844  */
845 static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
846                                 int ensure_size)
847 {
848         int ret;
849
850         ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size,
851                                       ensure_size);
852         if (ret < 0)
853                 return ret;
854         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1),
855                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
856         if (ret < 0)
857                 return ret;
858         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2),
859                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
860         return ret;
861 }
862
863 static int calculate_available_space(struct btrfs_convert_context *cctx)
864 {
865         struct cache_tree *used = &cctx->used;
866         struct cache_tree *data_chunks = &cctx->data_chunks;
867         struct cache_tree *free = &cctx->free;
868         struct cache_extent *cache;
869         u64 cur_off = 0;
870         /*
871          * Twice the minimal chunk size, to allow later wipe_reserved_ranges()
872          * works without need to consider overlap
873          */
874         u64 min_stripe_size = 2 * 16 * 1024 * 1024;
875         int ret;
876
877         /* Calculate data_chunks */
878         for (cache = first_cache_extent(used); cache;
879              cache = next_cache_extent(cache)) {
880                 u64 cur_len;
881
882                 if (cache->start + cache->size < cur_off)
883                         continue;
884                 if (cache->start > cur_off + min_stripe_size)
885                         cur_off = cache->start;
886                 cur_len = max(cache->start + cache->size - cur_off,
887                               min_stripe_size);
888                 ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
889                 if (ret < 0)
890                         goto out;
891                 cur_off += cur_len;
892         }
893         /*
894          * remove reserved ranges, so we won't ever bother relocating an old
895          * filesystem extent to other place.
896          */
897         ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
898         if (ret < 0)
899                 goto out;
900
901         cur_off = 0;
902         /*
903          * Calculate free space
904          * Always round up the start bytenr, to avoid metadata extent corss
905          * stripe boundary, as later mkfs_convert() won't have all the extent
906          * allocation check
907          */
908         for (cache = first_cache_extent(data_chunks); cache;
909              cache = next_cache_extent(cache)) {
910                 if (cache->start < cur_off)
911                         continue;
912                 if (cache->start > cur_off) {
913                         u64 insert_start;
914                         u64 len;
915
916                         len = cache->start - round_up(cur_off,
917                                                       BTRFS_STRIPE_LEN);
918                         insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
919
920                         ret = add_merge_cache_extent(free, insert_start, len);
921                         if (ret < 0)
922                                 goto out;
923                 }
924                 cur_off = cache->start + cache->size;
925         }
926         /* Don't forget the last range */
927         if (cctx->total_bytes > cur_off) {
928                 u64 len = cctx->total_bytes - cur_off;
929                 u64 insert_start;
930
931                 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
932
933                 ret = add_merge_cache_extent(free, insert_start, len);
934                 if (ret < 0)
935                         goto out;
936         }
937
938         /* Remove reserved bytes */
939         ret = wipe_reserved_ranges(free, min_stripe_size, 0);
940 out:
941         return ret;
942 }
943
944 /*
945  * Read used space, and since we have the used space,
946  * calcuate data_chunks and free for later mkfs
947  */
948 static int convert_read_used_space(struct btrfs_convert_context *cctx)
949 {
950         int ret;
951
952         ret = cctx->convert_ops->read_used_space(cctx);
953         if (ret)
954                 return ret;
955
956         ret = calculate_available_space(cctx);
957         return ret;
958 }
959
960 /*
961  * Create the fs image file of old filesystem.
962  *
963  * This is completely fs independent as we have cctx->used, only
964  * need to create file extents pointing to all the positions.
965  */
966 static int create_image(struct btrfs_root *root,
967                            struct btrfs_mkfs_config *cfg,
968                            struct btrfs_convert_context *cctx, int fd,
969                            u64 size, char *name, int datacsum)
970 {
971         struct btrfs_inode_item buf;
972         struct btrfs_trans_handle *trans;
973         struct btrfs_path path;
974         struct btrfs_key key;
975         struct cache_extent *cache;
976         struct cache_tree used_tmp;
977         u64 cur;
978         u64 ino;
979         u64 flags = BTRFS_INODE_READONLY;
980         int ret;
981
982         if (!datacsum)
983                 flags |= BTRFS_INODE_NODATASUM;
984
985         trans = btrfs_start_transaction(root, 1);
986         if (!trans)
987                 return -ENOMEM;
988
989         cache_tree_init(&used_tmp);
990         btrfs_init_path(&path);
991
992         ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
993                                        &ino);
994         if (ret < 0)
995                 goto out;
996         ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
997         if (ret < 0)
998                 goto out;
999         ret = btrfs_change_inode_flags(trans, root, ino, flags);
1000         if (ret < 0)
1001                 goto out;
1002         ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
1003                              strlen(name), BTRFS_FT_REG_FILE, NULL, 1);
1004         if (ret < 0)
1005                 goto out;
1006
1007         key.objectid = ino;
1008         key.type = BTRFS_INODE_ITEM_KEY;
1009         key.offset = 0;
1010
1011         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1012         if (ret) {
1013                 ret = (ret > 0 ? -ENOENT : ret);
1014                 goto out;
1015         }
1016         read_extent_buffer(path.nodes[0], &buf,
1017                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1018                         sizeof(buf));
1019         btrfs_release_path(&path);
1020
1021         /*
1022          * Create a new used space cache, which doesn't contain the reserved
1023          * range
1024          */
1025         for (cache = first_cache_extent(&cctx->used); cache;
1026              cache = next_cache_extent(cache)) {
1027                 ret = add_cache_extent(&used_tmp, cache->start, cache->size);
1028                 if (ret < 0)
1029                         goto out;
1030         }
1031         ret = wipe_reserved_ranges(&used_tmp, 0, 0);
1032         if (ret < 0)
1033                 goto out;
1034
1035         /*
1036          * Start from 1M, as 0~1M is reserved, and create_image_file_range()
1037          * can't handle bytenr 0(will consider it as a hole)
1038          */
1039         cur = 1024 * 1024;
1040         while (cur < size) {
1041                 u64 len = size - cur;
1042
1043                 ret = create_image_file_range(trans, root, &used_tmp,
1044                                                 &buf, ino, cur, &len, datacsum);
1045                 if (ret < 0)
1046                         goto out;
1047                 cur += len;
1048         }
1049         /* Handle the reserved ranges */
1050         ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino,
1051                                       cfg->num_bytes, datacsum);
1052
1053
1054         key.objectid = ino;
1055         key.type = BTRFS_INODE_ITEM_KEY;
1056         key.offset = 0;
1057         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1058         if (ret) {
1059                 ret = (ret > 0 ? -ENOENT : ret);
1060                 goto out;
1061         }
1062         btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
1063         write_extent_buffer(path.nodes[0], &buf,
1064                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1065                         sizeof(buf));
1066 out:
1067         free_extent_cache_tree(&used_tmp);
1068         btrfs_release_path(&path);
1069         btrfs_commit_transaction(trans, root);
1070         return ret;
1071 }
1072
1073 static struct btrfs_root* link_subvol(struct btrfs_root *root,
1074                 const char *base, u64 root_objectid)
1075 {
1076         struct btrfs_trans_handle *trans;
1077         struct btrfs_fs_info *fs_info = root->fs_info;
1078         struct btrfs_root *tree_root = fs_info->tree_root;
1079         struct btrfs_root *new_root = NULL;
1080         struct btrfs_path path;
1081         struct btrfs_inode_item *inode_item;
1082         struct extent_buffer *leaf;
1083         struct btrfs_key key;
1084         u64 dirid = btrfs_root_dirid(&root->root_item);
1085         u64 index = 2;
1086         char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */
1087         int len;
1088         int i;
1089         int ret;
1090
1091         len = strlen(base);
1092         if (len == 0 || len > BTRFS_NAME_LEN)
1093                 return NULL;
1094
1095         btrfs_init_path(&path);
1096         key.objectid = dirid;
1097         key.type = BTRFS_DIR_INDEX_KEY;
1098         key.offset = (u64)-1;
1099
1100         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1101         if (ret <= 0) {
1102                 error("search for DIR_INDEX dirid %llu failed: %d",
1103                                 (unsigned long long)dirid, ret);
1104                 goto fail;
1105         }
1106
1107         if (path.slots[0] > 0) {
1108                 path.slots[0]--;
1109                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1110                 if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY)
1111                         index = key.offset + 1;
1112         }
1113         btrfs_release_path(&path);
1114
1115         trans = btrfs_start_transaction(root, 1);
1116         if (!trans) {
1117                 error("unable to start transaction");
1118                 goto fail;
1119         }
1120
1121         key.objectid = dirid;
1122         key.offset = 0;
1123         key.type =  BTRFS_INODE_ITEM_KEY;
1124
1125         ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
1126         if (ret) {
1127                 error("search for INODE_ITEM %llu failed: %d",
1128                                 (unsigned long long)dirid, ret);
1129                 goto fail;
1130         }
1131         leaf = path.nodes[0];
1132         inode_item = btrfs_item_ptr(leaf, path.slots[0],
1133                                     struct btrfs_inode_item);
1134
1135         key.objectid = root_objectid;
1136         key.offset = (u64)-1;
1137         key.type = BTRFS_ROOT_ITEM_KEY;
1138
1139         memcpy(buf, base, len);
1140         for (i = 0; i < 1024; i++) {
1141                 ret = btrfs_insert_dir_item(trans, root, buf, len,
1142                                             dirid, &key, BTRFS_FT_DIR, index);
1143                 if (ret != -EEXIST)
1144                         break;
1145                 len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i);
1146                 if (len < 1 || len > BTRFS_NAME_LEN) {
1147                         ret = -EINVAL;
1148                         break;
1149                 }
1150         }
1151         if (ret)
1152                 goto fail;
1153
1154         btrfs_set_inode_size(leaf, inode_item, len * 2 +
1155                              btrfs_inode_size(leaf, inode_item));
1156         btrfs_mark_buffer_dirty(leaf);
1157         btrfs_release_path(&path);
1158
1159         /* add the backref first */
1160         ret = btrfs_add_root_ref(trans, tree_root, root_objectid,
1161                                  BTRFS_ROOT_BACKREF_KEY,
1162                                  root->root_key.objectid,
1163                                  dirid, index, buf, len);
1164         if (ret) {
1165                 error("unable to add root backref for %llu: %d",
1166                                 root->root_key.objectid, ret);
1167                 goto fail;
1168         }
1169
1170         /* now add the forward ref */
1171         ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid,
1172                                  BTRFS_ROOT_REF_KEY, root_objectid,
1173                                  dirid, index, buf, len);
1174         if (ret) {
1175                 error("unable to add root ref for %llu: %d",
1176                                 root->root_key.objectid, ret);
1177                 goto fail;
1178         }
1179
1180         ret = btrfs_commit_transaction(trans, root);
1181         if (ret) {
1182                 error("transaction commit failed: %d", ret);
1183                 goto fail;
1184         }
1185
1186         new_root = btrfs_read_fs_root(fs_info, &key);
1187         if (IS_ERR(new_root)) {
1188                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1189                 new_root = NULL;
1190         }
1191 fail:
1192         btrfs_init_path(&path);
1193         return new_root;
1194 }
1195
1196 static int create_subvol(struct btrfs_trans_handle *trans,
1197                          struct btrfs_root *root, u64 root_objectid)
1198 {
1199         struct extent_buffer *tmp;
1200         struct btrfs_root *new_root;
1201         struct btrfs_key key;
1202         struct btrfs_root_item root_item;
1203         int ret;
1204
1205         ret = btrfs_copy_root(trans, root, root->node, &tmp,
1206                               root_objectid);
1207         if (ret)
1208                 return ret;
1209
1210         memcpy(&root_item, &root->root_item, sizeof(root_item));
1211         btrfs_set_root_bytenr(&root_item, tmp->start);
1212         btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
1213         btrfs_set_root_generation(&root_item, trans->transid);
1214         free_extent_buffer(tmp);
1215
1216         key.objectid = root_objectid;
1217         key.type = BTRFS_ROOT_ITEM_KEY;
1218         key.offset = trans->transid;
1219         ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1220                                 &key, &root_item);
1221
1222         key.offset = (u64)-1;
1223         new_root = btrfs_read_fs_root(root->fs_info, &key);
1224         if (!new_root || IS_ERR(new_root)) {
1225                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1226                 return PTR_ERR(new_root);
1227         }
1228
1229         ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
1230
1231         return ret;
1232 }
1233
1234 /*
1235  * New make_btrfs() has handle system and meta chunks quite well.
1236  * So only need to add remaining data chunks.
1237  */
1238 static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
1239                                           struct btrfs_fs_info *fs_info,
1240                                           struct btrfs_mkfs_config *cfg,
1241                                           struct btrfs_convert_context *cctx)
1242 {
1243         struct btrfs_root *extent_root = fs_info->extent_root;
1244         struct cache_tree *data_chunks = &cctx->data_chunks;
1245         struct cache_extent *cache;
1246         u64 max_chunk_size;
1247         int ret = 0;
1248
1249         /*
1250          * Don't create data chunk over 10% of the convert device
1251          * And for single chunk, don't create chunk larger than 1G.
1252          */
1253         max_chunk_size = cfg->num_bytes / 10;
1254         max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size);
1255         max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize);
1256
1257         for (cache = first_cache_extent(data_chunks); cache;
1258              cache = next_cache_extent(cache)) {
1259                 u64 cur = cache->start;
1260
1261                 while (cur < cache->start + cache->size) {
1262                         u64 len;
1263                         u64 cur_backup = cur;
1264
1265                         len = min(max_chunk_size,
1266                                   cache->start + cache->size - cur);
1267                         ret = btrfs_alloc_data_chunk(trans, extent_root,
1268                                         &cur_backup, len,
1269                                         BTRFS_BLOCK_GROUP_DATA, 1);
1270                         if (ret < 0)
1271                                 break;
1272                         ret = btrfs_make_block_group(trans, extent_root, 0,
1273                                         BTRFS_BLOCK_GROUP_DATA,
1274                                         BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1275                                         cur, len);
1276                         if (ret < 0)
1277                                 break;
1278                         cur += len;
1279                 }
1280         }
1281         return ret;
1282 }
1283
1284 /*
1285  * Init the temp btrfs to a operational status.
1286  *
1287  * It will fix the extent usage accounting(XXX: Do we really need?) and
1288  * insert needed data chunks, to ensure all old fs data extents are covered
1289  * by DATA chunks, preventing wrong chunks are allocated.
1290  *
1291  * And also create convert image subvolume and relocation tree.
1292  * (XXX: Not need again?)
1293  * But the convert image subvolume is *NOT* linked to fs tree yet.
1294  */
1295 static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
1296                          struct btrfs_convert_context *cctx, int datacsum,
1297                          int packing, int noxattr)
1298 {
1299         struct btrfs_key location;
1300         struct btrfs_trans_handle *trans;
1301         struct btrfs_fs_info *fs_info = root->fs_info;
1302         int ret;
1303
1304         /*
1305          * Don't alloc any metadata/system chunk, as we don't want
1306          * any meta/sys chunk allcated before all data chunks are inserted.
1307          * Or we screw up the chunk layout just like the old implement.
1308          */
1309         fs_info->avoid_sys_chunk_alloc = 1;
1310         fs_info->avoid_meta_chunk_alloc = 1;
1311         trans = btrfs_start_transaction(root, 1);
1312         if (!trans) {
1313                 error("unable to start transaction");
1314                 ret = -EINVAL;
1315                 goto err;
1316         }
1317         ret = btrfs_fix_block_accounting(trans, root);
1318         if (ret)
1319                 goto err;
1320         ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
1321         if (ret)
1322                 goto err;
1323         ret = btrfs_make_root_dir(trans, fs_info->tree_root,
1324                                   BTRFS_ROOT_TREE_DIR_OBJECTID);
1325         if (ret)
1326                 goto err;
1327         memcpy(&location, &root->root_key, sizeof(location));
1328         location.offset = (u64)-1;
1329         ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
1330                                 btrfs_super_root_dir(fs_info->super_copy),
1331                                 &location, BTRFS_FT_DIR, 0);
1332         if (ret)
1333                 goto err;
1334         ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
1335                                 location.objectid,
1336                                 btrfs_super_root_dir(fs_info->super_copy), 0);
1337         if (ret)
1338                 goto err;
1339         btrfs_set_root_dirid(&fs_info->fs_root->root_item,
1340                              BTRFS_FIRST_FREE_OBJECTID);
1341
1342         /* subvol for fs image file */
1343         ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
1344         if (ret < 0) {
1345                 error("failed to create subvolume image root: %d", ret);
1346                 goto err;
1347         }
1348         /* subvol for data relocation tree */
1349         ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
1350         if (ret < 0) {
1351                 error("failed to create DATA_RELOC root: %d", ret);
1352                 goto err;
1353         }
1354
1355         ret = btrfs_commit_transaction(trans, root);
1356         fs_info->avoid_sys_chunk_alloc = 0;
1357         fs_info->avoid_meta_chunk_alloc = 0;
1358 err:
1359         return ret;
1360 }
1361
1362 /*
1363  * Migrate super block to its default position and zero 0 ~ 16k
1364  */
1365 static int migrate_super_block(int fd, u64 old_bytenr)
1366 {
1367         int ret;
1368         struct extent_buffer *buf;
1369         struct btrfs_super_block *super;
1370         u32 len;
1371         u32 bytenr;
1372
1373         buf = malloc(sizeof(*buf) + BTRFS_SUPER_INFO_SIZE);
1374         if (!buf)
1375                 return -ENOMEM;
1376
1377         buf->len = BTRFS_SUPER_INFO_SIZE;
1378         ret = pread(fd, buf->data, BTRFS_SUPER_INFO_SIZE, old_bytenr);
1379         if (ret != BTRFS_SUPER_INFO_SIZE)
1380                 goto fail;
1381
1382         super = (struct btrfs_super_block *)buf->data;
1383         BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
1384         btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
1385
1386         csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
1387         ret = pwrite(fd, buf->data, BTRFS_SUPER_INFO_SIZE,
1388                 BTRFS_SUPER_INFO_OFFSET);
1389         if (ret != BTRFS_SUPER_INFO_SIZE)
1390                 goto fail;
1391
1392         ret = fsync(fd);
1393         if (ret)
1394                 goto fail;
1395
1396         memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
1397         for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
1398                 len = BTRFS_SUPER_INFO_OFFSET - bytenr;
1399                 if (len > BTRFS_SUPER_INFO_SIZE)
1400                         len = BTRFS_SUPER_INFO_SIZE;
1401                 ret = pwrite(fd, buf->data, len, bytenr);
1402                 if (ret != len) {
1403                         fprintf(stderr, "unable to zero fill device\n");
1404                         break;
1405                 }
1406                 bytenr += len;
1407         }
1408         ret = 0;
1409         fsync(fd);
1410 fail:
1411         free(buf);
1412         if (ret > 0)
1413                 ret = -1;
1414         return ret;
1415 }
1416
1417 static int prepare_system_chunk_sb(struct btrfs_super_block *super)
1418 {
1419         struct btrfs_chunk *chunk;
1420         struct btrfs_disk_key *key;
1421         u32 sectorsize = btrfs_super_sectorsize(super);
1422
1423         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1424         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1425                                        sizeof(struct btrfs_disk_key));
1426
1427         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1428         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1429         btrfs_set_disk_key_offset(key, 0);
1430
1431         btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super));
1432         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1433         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1434         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1435         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1436         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1437         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1438         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1439         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1440         chunk->stripe.devid = super->dev_item.devid;
1441         btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1442         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1443         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1444         return 0;
1445 }
1446
1447 #if BTRFSCONVERT_EXT2
1448
1449 /*
1450  * Open Ext2fs in readonly mode, read block allocation bitmap and
1451  * inode bitmap into memory.
1452  */
1453 static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name)
1454 {
1455         errcode_t ret;
1456         ext2_filsys ext2_fs;
1457         ext2_ino_t ino;
1458         u32 ro_feature;
1459
1460         ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs);
1461         if (ret) {
1462                 fprintf(stderr, "ext2fs_open: %s\n", error_message(ret));
1463                 return -1;
1464         }
1465         /*
1466          * We need to know exactly the used space, some RO compat flags like
1467          * BIGALLOC will affect how used space is present.
1468          * So we need manuall check any unsupported RO compat flags
1469          */
1470         ro_feature = ext2_fs->super->s_feature_ro_compat;
1471         if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
1472                 error(
1473 "unsupported RO features detected: %x, abort convert to avoid possible corruption",
1474                       ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP);
1475                 goto fail;
1476         }
1477         ret = ext2fs_read_inode_bitmap(ext2_fs);
1478         if (ret) {
1479                 fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n",
1480                         error_message(ret));
1481                 goto fail;
1482         }
1483         ret = ext2fs_read_block_bitmap(ext2_fs);
1484         if (ret) {
1485                 fprintf(stderr, "ext2fs_read_block_bitmap: %s\n",
1486                         error_message(ret));
1487                 goto fail;
1488         }
1489         /*
1490          * search each block group for a free inode. this set up
1491          * uninit block/inode bitmaps appropriately.
1492          */
1493         ino = 1;
1494         while (ino <= ext2_fs->super->s_inodes_count) {
1495                 ext2_ino_t foo;
1496                 ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo);
1497                 ino += EXT2_INODES_PER_GROUP(ext2_fs->super);
1498         }
1499
1500         if (!(ext2_fs->super->s_feature_incompat &
1501               EXT2_FEATURE_INCOMPAT_FILETYPE)) {
1502                 error("filetype feature is missing");
1503                 goto fail;
1504         }
1505
1506         cctx->fs_data = ext2_fs;
1507         cctx->blocksize = ext2_fs->blocksize;
1508         cctx->block_count = ext2_fs->super->s_blocks_count;
1509         cctx->total_bytes = ext2_fs->blocksize * ext2_fs->super->s_blocks_count;
1510         cctx->volume_name = strndup(ext2_fs->super->s_volume_name, 16);
1511         cctx->first_data_block = ext2_fs->super->s_first_data_block;
1512         cctx->inodes_count = ext2_fs->super->s_inodes_count;
1513         cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count;
1514         return 0;
1515 fail:
1516         ext2fs_close(ext2_fs);
1517         return -1;
1518 }
1519
1520 static int __ext2_add_one_block(ext2_filsys fs, char *bitmap,
1521                                 unsigned long group_nr, struct cache_tree *used)
1522 {
1523         unsigned long offset;
1524         unsigned i;
1525         int ret = 0;
1526
1527         offset = fs->super->s_first_data_block;
1528         offset /= EXT2FS_CLUSTER_RATIO(fs);
1529         offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super);
1530         for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) {
1531                 if ((i + offset) >= ext2fs_blocks_count(fs->super))
1532                         break;
1533
1534                 if (ext2fs_test_bit(i, bitmap)) {
1535                         u64 start;
1536
1537                         start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs);
1538                         start *= fs->blocksize;
1539                         ret = add_merge_cache_extent(used, start,
1540                                                      fs->blocksize);
1541                         if (ret < 0)
1542                                 break;
1543                 }
1544         }
1545         return ret;
1546 }
1547
1548 /*
1549  * Read all used ext2 space into cctx->used cache tree
1550  */
1551 static int ext2_read_used_space(struct btrfs_convert_context *cctx)
1552 {
1553         ext2_filsys fs = (ext2_filsys)cctx->fs_data;
1554         blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block);
1555         struct cache_tree *used_tree = &cctx->used;
1556         char *block_bitmap = NULL;
1557         unsigned long i;
1558         int block_nbytes;
1559         int ret = 0;
1560
1561         block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8;
1562         /* Shouldn't happen */
1563         BUG_ON(!fs->block_map);
1564
1565         block_bitmap = malloc(block_nbytes);
1566         if (!block_bitmap)
1567                 return -ENOMEM;
1568
1569         for (i = 0; i < fs->group_desc_count; i++) {
1570                 ret = ext2fs_get_block_bitmap_range(fs->block_map, blk_itr,
1571                                                 block_nbytes * 8, block_bitmap);
1572                 if (ret) {
1573                         error("fail to get bitmap from ext2, %s",
1574                               strerror(-ret));
1575                         break;
1576                 }
1577                 ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree);
1578                 if (ret < 0) {
1579                         error("fail to build used space tree, %s",
1580                               strerror(-ret));
1581                         break;
1582                 }
1583                 blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super);
1584         }
1585
1586         free(block_bitmap);
1587         return ret;
1588 }
1589
1590 static void ext2_close_fs(struct btrfs_convert_context *cctx)
1591 {
1592         if (cctx->volume_name) {
1593                 free(cctx->volume_name);
1594                 cctx->volume_name = NULL;
1595         }
1596         ext2fs_close(cctx->fs_data);
1597 }
1598
1599 struct dir_iterate_data {
1600         struct btrfs_trans_handle *trans;
1601         struct btrfs_root *root;
1602         struct btrfs_inode_item *inode;
1603         u64 objectid;
1604         u64 index_cnt;
1605         u64 parent;
1606         int errcode;
1607 };
1608
1609 static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = {
1610         [EXT2_FT_UNKNOWN]       = BTRFS_FT_UNKNOWN,
1611         [EXT2_FT_REG_FILE]      = BTRFS_FT_REG_FILE,
1612         [EXT2_FT_DIR]           = BTRFS_FT_DIR,
1613         [EXT2_FT_CHRDEV]        = BTRFS_FT_CHRDEV,
1614         [EXT2_FT_BLKDEV]        = BTRFS_FT_BLKDEV,
1615         [EXT2_FT_FIFO]          = BTRFS_FT_FIFO,
1616         [EXT2_FT_SOCK]          = BTRFS_FT_SOCK,
1617         [EXT2_FT_SYMLINK]       = BTRFS_FT_SYMLINK,
1618 };
1619
1620 static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry,
1621                             struct ext2_dir_entry *dirent,
1622                             int offset, int blocksize,
1623                             char *buf,void *priv_data)
1624 {
1625         int ret;
1626         int file_type;
1627         u64 objectid;
1628         char dotdot[] = "..";
1629         struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data;
1630         int name_len;
1631
1632         name_len = dirent->name_len & 0xFF;
1633
1634         objectid = dirent->inode + INO_OFFSET;
1635         if (!strncmp(dirent->name, dotdot, name_len)) {
1636                 if (name_len == 2) {
1637                         BUG_ON(idata->parent != 0);
1638                         idata->parent = objectid;
1639                 }
1640                 return 0;
1641         }
1642         if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO)
1643                 return 0;
1644
1645         file_type = dirent->name_len >> 8;
1646         BUG_ON(file_type > EXT2_FT_SYMLINK);
1647
1648         ret = convert_insert_dirent(idata->trans, idata->root, dirent->name,
1649                                     name_len, idata->objectid, objectid,
1650                                     ext2_filetype_conversion_table[file_type],
1651                                     idata->index_cnt, idata->inode);
1652         if (ret < 0) {
1653                 idata->errcode = ret;
1654                 return BLOCK_ABORT;
1655         }
1656
1657         idata->index_cnt++;
1658         return 0;
1659 }
1660
1661 static int ext2_create_dir_entries(struct btrfs_trans_handle *trans,
1662                               struct btrfs_root *root, u64 objectid,
1663                               struct btrfs_inode_item *btrfs_inode,
1664                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
1665 {
1666         int ret;
1667         errcode_t err;
1668         struct dir_iterate_data data = {
1669                 .trans          = trans,
1670                 .root           = root,
1671                 .inode          = btrfs_inode,
1672                 .objectid       = objectid,
1673                 .index_cnt      = 2,
1674                 .parent         = 0,
1675                 .errcode        = 0,
1676         };
1677
1678         err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL,
1679                                   ext2_dir_iterate_proc, &data);
1680         if (err)
1681                 goto error;
1682         ret = data.errcode;
1683         if (ret == 0 && data.parent == objectid) {
1684                 ret = btrfs_insert_inode_ref(trans, root, "..", 2,
1685                                              objectid, objectid, 0);
1686         }
1687         return ret;
1688 error:
1689         fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err));
1690         return -1;
1691 }
1692
1693 static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr,
1694                                 e2_blkcnt_t blockcnt, blk_t ref_block,
1695                                 int ref_offset, void *priv_data)
1696 {
1697         int ret;
1698         struct blk_iterate_data *idata;
1699         idata = (struct blk_iterate_data *)priv_data;
1700         ret = block_iterate_proc(*blocknr, blockcnt, idata);
1701         if (ret) {
1702                 idata->errcode = ret;
1703                 return BLOCK_ABORT;
1704         }
1705         return 0;
1706 }
1707
1708 /*
1709  * traverse file's data blocks, record these data blocks as file extents.
1710  */
1711 static int ext2_create_file_extents(struct btrfs_trans_handle *trans,
1712                                struct btrfs_root *root, u64 objectid,
1713                                struct btrfs_inode_item *btrfs_inode,
1714                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1715                                int datacsum, int packing)
1716 {
1717         int ret;
1718         char *buffer = NULL;
1719         errcode_t err;
1720         u32 last_block;
1721         u32 sectorsize = root->sectorsize;
1722         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1723         struct blk_iterate_data data;
1724
1725         init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid,
1726                               datacsum);
1727
1728         err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY,
1729                                     NULL, ext2_block_iterate_proc, &data);
1730         if (err)
1731                 goto error;
1732         ret = data.errcode;
1733         if (ret)
1734                 goto fail;
1735         if (packing && data.first_block == 0 && data.num_blocks > 0 &&
1736             inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
1737                 u64 num_bytes = data.num_blocks * sectorsize;
1738                 u64 disk_bytenr = data.disk_block * sectorsize;
1739                 u64 nbytes;
1740
1741                 buffer = malloc(num_bytes);
1742                 if (!buffer)
1743                         return -ENOMEM;
1744                 ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer);
1745                 if (ret)
1746                         goto fail;
1747                 if (num_bytes > inode_size)
1748                         num_bytes = inode_size;
1749                 ret = btrfs_insert_inline_extent(trans, root, objectid,
1750                                                  0, buffer, num_bytes);
1751                 if (ret)
1752                         goto fail;
1753                 nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes;
1754                 btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes);
1755         } else if (data.num_blocks > 0) {
1756                 ret = record_file_blocks(&data, data.first_block,
1757                                          data.disk_block, data.num_blocks);
1758                 if (ret)
1759                         goto fail;
1760         }
1761         data.first_block += data.num_blocks;
1762         last_block = (inode_size + sectorsize - 1) / sectorsize;
1763         if (last_block > data.first_block) {
1764                 ret = record_file_blocks(&data, data.first_block, 0,
1765                                          last_block - data.first_block);
1766         }
1767 fail:
1768         free(buffer);
1769         return ret;
1770 error:
1771         fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err));
1772         return -1;
1773 }
1774
1775 static int ext2_create_symbol_link(struct btrfs_trans_handle *trans,
1776                               struct btrfs_root *root, u64 objectid,
1777                               struct btrfs_inode_item *btrfs_inode,
1778                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1779                               struct ext2_inode *ext2_inode)
1780 {
1781         int ret;
1782         char *pathname;
1783         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1784         if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) {
1785                 btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1);
1786                 ret = ext2_create_file_extents(trans, root, objectid,
1787                                 btrfs_inode, ext2_fs, ext2_ino, 1, 1);
1788                 btrfs_set_stack_inode_size(btrfs_inode, inode_size);
1789                 return ret;
1790         }
1791
1792         pathname = (char *)&(ext2_inode->i_block[0]);
1793         BUG_ON(pathname[inode_size] != 0);
1794         ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
1795                                          pathname, inode_size + 1);
1796         btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1);
1797         return ret;
1798 }
1799
1800 /*
1801  * Following xattr/acl related codes are based on codes in
1802  * fs/ext3/xattr.c and fs/ext3/acl.c
1803  */
1804 #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr))
1805 #define EXT2_XATTR_BFIRST(ptr) \
1806         ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1))
1807 #define EXT2_XATTR_IHDR(inode) \
1808         ((struct ext2_ext_attr_header *) ((void *)(inode) + \
1809                 EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize))
1810 #define EXT2_XATTR_IFIRST(inode) \
1811         ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \
1812                 sizeof(EXT2_XATTR_IHDR(inode)->h_magic)))
1813
1814 static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry,
1815                                   const void *end)
1816 {
1817         struct ext2_ext_attr_entry *next;
1818
1819         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
1820                 next = EXT2_EXT_ATTR_NEXT(entry);
1821                 if ((void *)next >= end)
1822                         return -EIO;
1823                 entry = next;
1824         }
1825         return 0;
1826 }
1827
1828 static int ext2_xattr_check_block(const char *buf, size_t size)
1829 {
1830         int error;
1831         struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf);
1832
1833         if (header->h_magic != EXT2_EXT_ATTR_MAGIC ||
1834             header->h_blocks != 1)
1835                 return -EIO;
1836         error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size);
1837         return error;
1838 }
1839
1840 static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry,
1841                                   size_t size)
1842 {
1843         size_t value_size = entry->e_value_size;
1844
1845         if (entry->e_value_block != 0 || value_size > size ||
1846             entry->e_value_offs + value_size > size)
1847                 return -EIO;
1848         return 0;
1849 }
1850
1851 #define EXT2_ACL_VERSION        0x0001
1852
1853 /* 23.2.5 acl_tag_t values */
1854
1855 #define ACL_UNDEFINED_TAG       (0x00)
1856 #define ACL_USER_OBJ            (0x01)
1857 #define ACL_USER                (0x02)
1858 #define ACL_GROUP_OBJ           (0x04)
1859 #define ACL_GROUP               (0x08)
1860 #define ACL_MASK                (0x10)
1861 #define ACL_OTHER               (0x20)
1862
1863 /* 23.2.7 ACL qualifier constants */
1864
1865 #define ACL_UNDEFINED_ID        ((id_t)-1)
1866
1867 typedef struct {
1868         __le16          e_tag;
1869         __le16          e_perm;
1870         __le32          e_id;
1871 } ext2_acl_entry;
1872
1873 typedef struct {
1874         __le16          e_tag;
1875         __le16          e_perm;
1876 } ext2_acl_entry_short;
1877
1878 typedef struct {
1879         __le32          a_version;
1880 } ext2_acl_header;
1881
1882 static inline int ext2_acl_count(size_t size)
1883 {
1884         ssize_t s;
1885         size -= sizeof(ext2_acl_header);
1886         s = size - 4 * sizeof(ext2_acl_entry_short);
1887         if (s < 0) {
1888                 if (size % sizeof(ext2_acl_entry_short))
1889                         return -1;
1890                 return size / sizeof(ext2_acl_entry_short);
1891         } else {
1892                 if (s % sizeof(ext2_acl_entry))
1893                         return -1;
1894                 return s / sizeof(ext2_acl_entry) + 4;
1895         }
1896 }
1897
1898 #define ACL_EA_VERSION          0x0002
1899
1900 typedef struct {
1901         __le16          e_tag;
1902         __le16          e_perm;
1903         __le32          e_id;
1904 } acl_ea_entry;
1905
1906 typedef struct {
1907         __le32          a_version;
1908         acl_ea_entry    a_entries[0];
1909 } acl_ea_header;
1910
1911 static inline size_t acl_ea_size(int count)
1912 {
1913         return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry);
1914 }
1915
1916 static int ext2_acl_to_xattr(void *dst, const void *src,
1917                              size_t dst_size, size_t src_size)
1918 {
1919         int i, count;
1920         const void *end = src + src_size;
1921         acl_ea_header *ext_acl = (acl_ea_header *)dst;
1922         acl_ea_entry *dst_entry = ext_acl->a_entries;
1923         ext2_acl_entry *src_entry;
1924
1925         if (src_size < sizeof(ext2_acl_header))
1926                 goto fail;
1927         if (((ext2_acl_header *)src)->a_version !=
1928             cpu_to_le32(EXT2_ACL_VERSION))
1929                 goto fail;
1930         src += sizeof(ext2_acl_header);
1931         count = ext2_acl_count(src_size);
1932         if (count <= 0)
1933                 goto fail;
1934
1935         BUG_ON(dst_size < acl_ea_size(count));
1936         ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION);
1937         for (i = 0; i < count; i++, dst_entry++) {
1938                 src_entry = (ext2_acl_entry *)src;
1939                 if (src + sizeof(ext2_acl_entry_short) > end)
1940                         goto fail;
1941                 dst_entry->e_tag = src_entry->e_tag;
1942                 dst_entry->e_perm = src_entry->e_perm;
1943                 switch (le16_to_cpu(src_entry->e_tag)) {
1944                 case ACL_USER_OBJ:
1945                 case ACL_GROUP_OBJ:
1946                 case ACL_MASK:
1947                 case ACL_OTHER:
1948                         src += sizeof(ext2_acl_entry_short);
1949                         dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID);
1950                         break;
1951                 case ACL_USER:
1952                 case ACL_GROUP:
1953                         src += sizeof(ext2_acl_entry);
1954                         if (src > end)
1955                                 goto fail;
1956                         dst_entry->e_id = src_entry->e_id;
1957                         break;
1958                 default:
1959                         goto fail;
1960                 }
1961         }
1962         if (src != end)
1963                 goto fail;
1964         return 0;
1965 fail:
1966         return -EINVAL;
1967 }
1968
1969 static char *xattr_prefix_table[] = {
1970         [1] =   "user.",
1971         [2] =   "system.posix_acl_access",
1972         [3] =   "system.posix_acl_default",
1973         [4] =   "trusted.",
1974         [6] =   "security.",
1975 };
1976
1977 static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans,
1978                              struct btrfs_root *root, u64 objectid,
1979                              struct ext2_ext_attr_entry *entry,
1980                              const void *data, u32 datalen)
1981 {
1982         int ret = 0;
1983         int name_len;
1984         int name_index;
1985         void *databuf = NULL;
1986         char namebuf[XATTR_NAME_MAX + 1];
1987
1988         name_index = entry->e_name_index;
1989         if (name_index >= ARRAY_SIZE(xattr_prefix_table) ||
1990             xattr_prefix_table[name_index] == NULL)
1991                 return -EOPNOTSUPP;
1992         name_len = strlen(xattr_prefix_table[name_index]) +
1993                    entry->e_name_len;
1994         if (name_len >= sizeof(namebuf))
1995                 return -ERANGE;
1996
1997         if (name_index == 2 || name_index == 3) {
1998                 size_t bufsize = acl_ea_size(ext2_acl_count(datalen));
1999                 databuf = malloc(bufsize);
2000                 if (!databuf)
2001                        return -ENOMEM;
2002                 ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen);
2003                 if (ret)
2004                         goto out;
2005                 data = databuf;
2006                 datalen = bufsize;
2007         }
2008         strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX);
2009         strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len);
2010         if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) -
2011             sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) {
2012                 fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n",
2013                         objectid - INO_OFFSET, name_len, namebuf);
2014                 goto out;
2015         }
2016         ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len,
2017                                       data, datalen, objectid);
2018 out:
2019         free(databuf);
2020         return ret;
2021 }
2022
2023 static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans,
2024                                struct btrfs_root *root, u64 objectid,
2025                                struct btrfs_inode_item *btrfs_inode,
2026                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
2027 {
2028         int ret = 0;
2029         int inline_ea = 0;
2030         errcode_t err;
2031         u32 datalen;
2032         u32 block_size = ext2_fs->blocksize;
2033         u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super);
2034         struct ext2_inode_large *ext2_inode;
2035         struct ext2_ext_attr_entry *entry;
2036         void *data;
2037         char *buffer = NULL;
2038         char inode_buf[EXT2_GOOD_OLD_INODE_SIZE];
2039
2040         if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) {
2041                 ext2_inode = (struct ext2_inode_large *)inode_buf;
2042         } else {
2043                 ext2_inode = (struct ext2_inode_large *)malloc(inode_size);
2044                 if (!ext2_inode)
2045                        return -ENOMEM;
2046         }
2047         err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode,
2048                                      inode_size);
2049         if (err) {
2050                 fprintf(stderr, "ext2fs_read_inode_full: %s\n",
2051                         error_message(err));
2052                 ret = -1;
2053                 goto out;
2054         }
2055
2056         if (ext2_ino > ext2_fs->super->s_first_ino &&
2057             inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
2058                 if (EXT2_GOOD_OLD_INODE_SIZE +
2059                     ext2_inode->i_extra_isize > inode_size) {
2060                         ret = -EIO;
2061                         goto out;
2062                 }
2063                 if (ext2_inode->i_extra_isize != 0 &&
2064                     EXT2_XATTR_IHDR(ext2_inode)->h_magic ==
2065                     EXT2_EXT_ATTR_MAGIC) {
2066                         inline_ea = 1;
2067                 }
2068         }
2069         if (inline_ea) {
2070                 int total;
2071                 void *end = (void *)ext2_inode + inode_size;
2072                 entry = EXT2_XATTR_IFIRST(ext2_inode);
2073                 total = end - (void *)entry;
2074                 ret = ext2_xattr_check_names(entry, end);
2075                 if (ret)
2076                         goto out;
2077                 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2078                         ret = ext2_xattr_check_entry(entry, total);
2079                         if (ret)
2080                                 goto out;
2081                         data = (void *)EXT2_XATTR_IFIRST(ext2_inode) +
2082                                 entry->e_value_offs;
2083                         datalen = entry->e_value_size;
2084                         ret = ext2_copy_single_xattr(trans, root, objectid,
2085                                                 entry, data, datalen);
2086                         if (ret)
2087                                 goto out;
2088                         entry = EXT2_EXT_ATTR_NEXT(entry);
2089                 }
2090         }
2091
2092         if (ext2_inode->i_file_acl == 0)
2093                 goto out;
2094
2095         buffer = malloc(block_size);
2096         if (!buffer) {
2097                 ret = -ENOMEM;
2098                 goto out;
2099         }
2100         err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer);
2101         if (err) {
2102                 fprintf(stderr, "ext2fs_read_ext_attr: %s\n",
2103                         error_message(err));
2104                 ret = -1;
2105                 goto out;
2106         }
2107         ret = ext2_xattr_check_block(buffer, block_size);
2108         if (ret)
2109                 goto out;
2110
2111         entry = EXT2_XATTR_BFIRST(buffer);
2112         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2113                 ret = ext2_xattr_check_entry(entry, block_size);
2114                 if (ret)
2115                         goto out;
2116                 data = buffer + entry->e_value_offs;
2117                 datalen = entry->e_value_size;
2118                 ret = ext2_copy_single_xattr(trans, root, objectid,
2119                                         entry, data, datalen);
2120                 if (ret)
2121                         goto out;
2122                 entry = EXT2_EXT_ATTR_NEXT(entry);
2123         }
2124 out:
2125         free(buffer);
2126         if ((void *)ext2_inode != inode_buf)
2127                 free(ext2_inode);
2128         return ret;
2129 }
2130 #define MINORBITS       20
2131 #define MKDEV(ma, mi)   (((ma) << MINORBITS) | (mi))
2132
2133 static inline dev_t old_decode_dev(u16 val)
2134 {
2135         return MKDEV((val >> 8) & 255, val & 255);
2136 }
2137
2138 static inline dev_t new_decode_dev(u32 dev)
2139 {
2140         unsigned major = (dev & 0xfff00) >> 8;
2141         unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00);
2142         return MKDEV(major, minor);
2143 }
2144
2145 static void ext2_copy_inode_item(struct btrfs_inode_item *dst,
2146                            struct ext2_inode *src, u32 blocksize)
2147 {
2148         btrfs_set_stack_inode_generation(dst, 1);
2149         btrfs_set_stack_inode_sequence(dst, 0);
2150         btrfs_set_stack_inode_transid(dst, 1);
2151         btrfs_set_stack_inode_size(dst, src->i_size);
2152         btrfs_set_stack_inode_nbytes(dst, 0);
2153         btrfs_set_stack_inode_block_group(dst, 0);
2154         btrfs_set_stack_inode_nlink(dst, src->i_links_count);
2155         btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16));
2156         btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16));
2157         btrfs_set_stack_inode_mode(dst, src->i_mode);
2158         btrfs_set_stack_inode_rdev(dst, 0);
2159         btrfs_set_stack_inode_flags(dst, 0);
2160         btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime);
2161         btrfs_set_stack_timespec_nsec(&dst->atime, 0);
2162         btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime);
2163         btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
2164         btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime);
2165         btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
2166         btrfs_set_stack_timespec_sec(&dst->otime, 0);
2167         btrfs_set_stack_timespec_nsec(&dst->otime, 0);
2168
2169         if (S_ISDIR(src->i_mode)) {
2170                 btrfs_set_stack_inode_size(dst, 0);
2171                 btrfs_set_stack_inode_nlink(dst, 1);
2172         }
2173         if (S_ISREG(src->i_mode)) {
2174                 btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 |
2175                                            (u64)src->i_size);
2176         }
2177         if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) &&
2178             !S_ISLNK(src->i_mode)) {
2179                 if (src->i_block[0]) {
2180                         btrfs_set_stack_inode_rdev(dst,
2181                                 old_decode_dev(src->i_block[0]));
2182                 } else {
2183                         btrfs_set_stack_inode_rdev(dst,
2184                                 new_decode_dev(src->i_block[1]));
2185                 }
2186         }
2187         memset(&dst->reserved, 0, sizeof(dst->reserved));
2188 }
2189 static int ext2_check_state(struct btrfs_convert_context *cctx)
2190 {
2191         ext2_filsys fs = cctx->fs_data;
2192
2193         if (!(fs->super->s_state & EXT2_VALID_FS))
2194                 return 1;
2195         else if (fs->super->s_state & EXT2_ERROR_FS)
2196                 return 1;
2197         else
2198                 return 0;
2199 }
2200
2201 /* EXT2_*_FL to BTRFS_INODE_FLAG_* stringification helper */
2202 #define COPY_ONE_EXT2_FLAG(flags, ext2_inode, name) ({                  \
2203         if (ext2_inode->i_flags & EXT2_##name##_FL)                     \
2204                 flags |= BTRFS_INODE_##name;                            \
2205 })
2206
2207 /*
2208  * Convert EXT2_*_FL to corresponding BTRFS_INODE_* flags
2209  *
2210  * Only a subset of EXT_*_FL is supported in btrfs.
2211  */
2212 static void ext2_convert_inode_flags(struct btrfs_inode_item *dst,
2213                                      struct ext2_inode *src)
2214 {
2215         u64 flags = 0;
2216
2217         COPY_ONE_EXT2_FLAG(flags, src, APPEND);
2218         COPY_ONE_EXT2_FLAG(flags, src, SYNC);
2219         COPY_ONE_EXT2_FLAG(flags, src, IMMUTABLE);
2220         COPY_ONE_EXT2_FLAG(flags, src, NODUMP);
2221         COPY_ONE_EXT2_FLAG(flags, src, NOATIME);
2222         COPY_ONE_EXT2_FLAG(flags, src, DIRSYNC);
2223         btrfs_set_stack_inode_flags(dst, flags);
2224 }
2225
2226 /*
2227  * copy a single inode. do all the required works, such as cloning
2228  * inode item, creating file extents and creating directory entries.
2229  */
2230 static int ext2_copy_single_inode(struct btrfs_trans_handle *trans,
2231                              struct btrfs_root *root, u64 objectid,
2232                              ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
2233                              struct ext2_inode *ext2_inode,
2234                              int datacsum, int packing, int noxattr)
2235 {
2236         int ret;
2237         struct btrfs_inode_item btrfs_inode;
2238
2239         if (ext2_inode->i_links_count == 0)
2240                 return 0;
2241
2242         ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize);
2243         if (!datacsum && S_ISREG(ext2_inode->i_mode)) {
2244                 u32 flags = btrfs_stack_inode_flags(&btrfs_inode) |
2245                             BTRFS_INODE_NODATASUM;
2246                 btrfs_set_stack_inode_flags(&btrfs_inode, flags);
2247         }
2248         ext2_convert_inode_flags(&btrfs_inode, ext2_inode);
2249
2250         switch (ext2_inode->i_mode & S_IFMT) {
2251         case S_IFREG:
2252                 ret = ext2_create_file_extents(trans, root, objectid,
2253                         &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing);
2254                 break;
2255         case S_IFDIR:
2256                 ret = ext2_create_dir_entries(trans, root, objectid,
2257                                 &btrfs_inode, ext2_fs, ext2_ino);
2258                 break;
2259         case S_IFLNK:
2260                 ret = ext2_create_symbol_link(trans, root, objectid,
2261                                 &btrfs_inode, ext2_fs, ext2_ino, ext2_inode);
2262                 break;
2263         default:
2264                 ret = 0;
2265                 break;
2266         }
2267         if (ret)
2268                 return ret;
2269
2270         if (!noxattr) {
2271                 ret = ext2_copy_extended_attrs(trans, root, objectid,
2272                                 &btrfs_inode, ext2_fs, ext2_ino);
2273                 if (ret)
2274                         return ret;
2275         }
2276         return btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
2277 }
2278
2279 /*
2280  * scan ext2's inode bitmap and copy all used inodes.
2281  */
2282 static int ext2_copy_inodes(struct btrfs_convert_context *cctx,
2283                             struct btrfs_root *root,
2284                             int datacsum, int packing, int noxattr, struct task_ctx *p)
2285 {
2286         ext2_filsys ext2_fs = cctx->fs_data;
2287         int ret;
2288         errcode_t err;
2289         ext2_inode_scan ext2_scan;
2290         struct ext2_inode ext2_inode;
2291         ext2_ino_t ext2_ino;
2292         u64 objectid;
2293         struct btrfs_trans_handle *trans;
2294
2295         trans = btrfs_start_transaction(root, 1);
2296         if (!trans)
2297                 return -ENOMEM;
2298         err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan);
2299         if (err) {
2300                 fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err));
2301                 return -1;
2302         }
2303         while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino,
2304                                              &ext2_inode))) {
2305                 /* no more inodes */
2306                 if (ext2_ino == 0)
2307                         break;
2308                 /* skip special inode in ext2fs */
2309                 if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO &&
2310                     ext2_ino != EXT2_ROOT_INO)
2311                         continue;
2312                 objectid = ext2_ino + INO_OFFSET;
2313                 ret = ext2_copy_single_inode(trans, root,
2314                                         objectid, ext2_fs, ext2_ino,
2315                                         &ext2_inode, datacsum, packing,
2316                                         noxattr);
2317                 p->cur_copy_inodes++;
2318                 if (ret)
2319                         return ret;
2320                 if (trans->blocks_used >= 4096) {
2321                         ret = btrfs_commit_transaction(trans, root);
2322                         BUG_ON(ret);
2323                         trans = btrfs_start_transaction(root, 1);
2324                         BUG_ON(!trans);
2325                 }
2326         }
2327         if (err) {
2328                 fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err));
2329                 return -1;
2330         }
2331         ret = btrfs_commit_transaction(trans, root);
2332         BUG_ON(ret);
2333         ext2fs_close_inode_scan(ext2_scan);
2334
2335         return ret;
2336 }
2337
2338 static const struct btrfs_convert_operations ext2_convert_ops = {
2339         .name                   = "ext2",
2340         .open_fs                = ext2_open_fs,
2341         .read_used_space        = ext2_read_used_space,
2342         .copy_inodes            = ext2_copy_inodes,
2343         .close_fs               = ext2_close_fs,
2344         .check_state            = ext2_check_state,
2345 };
2346
2347 #endif
2348
2349 static const struct btrfs_convert_operations *convert_operations[] = {
2350 #if BTRFSCONVERT_EXT2
2351         &ext2_convert_ops,
2352 #endif
2353 };
2354
2355 static int convert_open_fs(const char *devname,
2356                            struct btrfs_convert_context *cctx)
2357 {
2358         int i;
2359
2360         memset(cctx, 0, sizeof(*cctx));
2361
2362         for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
2363                 int ret = convert_operations[i]->open_fs(cctx, devname);
2364
2365                 if (ret == 0) {
2366                         cctx->convert_ops = convert_operations[i];
2367                         return ret;
2368                 }
2369         }
2370
2371         error("no file system found to convert");
2372         return -1;
2373 }
2374
2375 static int do_convert(const char *devname, int datacsum, int packing,
2376                 int noxattr, u32 nodesize, int copylabel, const char *fslabel,
2377                 int progress, u64 features)
2378 {
2379         int ret;
2380         int fd = -1;
2381         u32 blocksize;
2382         u64 total_bytes;
2383         struct btrfs_root *root;
2384         struct btrfs_root *image_root;
2385         struct btrfs_convert_context cctx;
2386         struct btrfs_key key;
2387         char *subvol_name = NULL;
2388         struct task_ctx ctx;
2389         char features_buf[64];
2390         struct btrfs_mkfs_config mkfs_cfg;
2391
2392         init_convert_context(&cctx);
2393         ret = convert_open_fs(devname, &cctx);
2394         if (ret)
2395                 goto fail;
2396         ret = convert_check_state(&cctx);
2397         if (ret)
2398                 warning(
2399                 "source filesystem is not clean, running filesystem check is recommended");
2400         ret = convert_read_used_space(&cctx);
2401         if (ret)
2402                 goto fail;
2403
2404         blocksize = cctx.blocksize;
2405         total_bytes = (u64)blocksize * (u64)cctx.block_count;
2406         if (blocksize < 4096) {
2407                 error("block size is too small: %u < 4096", blocksize);
2408                 goto fail;
2409         }
2410         if (btrfs_check_nodesize(nodesize, blocksize, features))
2411                 goto fail;
2412         fd = open(devname, O_RDWR);
2413         if (fd < 0) {
2414                 error("unable to open %s: %s", devname, strerror(errno));
2415                 goto fail;
2416         }
2417         btrfs_parse_features_to_string(features_buf, features);
2418         if (features == BTRFS_MKFS_DEFAULT_FEATURES)
2419                 strcat(features_buf, " (default)");
2420
2421         printf("create btrfs filesystem:\n");
2422         printf("\tblocksize: %u\n", blocksize);
2423         printf("\tnodesize:  %u\n", nodesize);
2424         printf("\tfeatures:  %s\n", features_buf);
2425
2426         mkfs_cfg.label = cctx.volume_name;
2427         mkfs_cfg.num_bytes = total_bytes;
2428         mkfs_cfg.nodesize = nodesize;
2429         mkfs_cfg.sectorsize = blocksize;
2430         mkfs_cfg.stripesize = blocksize;
2431         mkfs_cfg.features = features;
2432         /* New convert need these space */
2433         memset(mkfs_cfg.chunk_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2434         memset(mkfs_cfg.fs_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2435
2436         ret = make_convert_btrfs(fd, &mkfs_cfg, &cctx);
2437         if (ret) {
2438                 error("unable to create initial ctree: %s", strerror(-ret));
2439                 goto fail;
2440         }
2441
2442         root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
2443                              OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2444         if (!root) {
2445                 error("unable to open ctree");
2446                 goto fail;
2447         }
2448         ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr);
2449         if (ret) {
2450                 error("unable to setup the root tree: %d", ret);
2451                 goto fail;
2452         }
2453
2454         printf("creating %s image file\n", cctx.convert_ops->name);
2455         ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name);
2456         if (ret < 0) {
2457                 error("memory allocation failure for subvolume name: %s_saved",
2458                         cctx.convert_ops->name);
2459                 goto fail;
2460         }
2461         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2462         key.offset = (u64)-1;
2463         key.type = BTRFS_ROOT_ITEM_KEY;
2464         image_root = btrfs_read_fs_root(root->fs_info, &key);
2465         if (!image_root) {
2466                 error("unable to create image subvolume");
2467                 goto fail;
2468         }
2469         ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
2470                               mkfs_cfg.num_bytes, "image", datacsum);
2471         if (ret) {
2472                 error("failed to create %s/image: %d", subvol_name, ret);
2473                 goto fail;
2474         }
2475
2476         printf("creating btrfs metadata");
2477         ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
2478         ctx.cur_copy_inodes = 0;
2479
2480         if (progress) {
2481                 ctx.info = task_init(print_copied_inodes, after_copied_inodes,
2482                                      &ctx);
2483                 task_start(ctx.info);
2484         }
2485         ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx);
2486         if (ret) {
2487                 error("error during copy_inodes %d", ret);
2488                 goto fail;
2489         }
2490         if (progress) {
2491                 task_stop(ctx.info);
2492                 task_deinit(ctx.info);
2493         }
2494
2495         image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID);
2496         if (!image_root) {
2497                 error("unable to link subvolume %s", subvol_name);
2498                 goto fail;
2499         }
2500
2501         free(subvol_name);
2502
2503         memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
2504         if (copylabel == 1) {
2505                 __strncpy_null(root->fs_info->super_copy->label,
2506                                 cctx.volume_name, BTRFS_LABEL_SIZE - 1);
2507                 printf("copy label '%s'\n", root->fs_info->super_copy->label);
2508         } else if (copylabel == -1) {
2509                 strcpy(root->fs_info->super_copy->label, fslabel);
2510                 printf("set label to '%s'\n", fslabel);
2511         }
2512
2513         ret = close_ctree(root);
2514         if (ret) {
2515                 error("close_ctree failed: %d", ret);
2516                 goto fail;
2517         }
2518         convert_close_fs(&cctx);
2519         clean_convert_context(&cctx);
2520
2521         /*
2522          * If this step succeed, we get a mountable btrfs. Otherwise
2523          * the source fs is left unchanged.
2524          */
2525         ret = migrate_super_block(fd, mkfs_cfg.super_bytenr);
2526         if (ret) {
2527                 error("unable to migrate super block: %d", ret);
2528                 goto fail;
2529         }
2530
2531         root = open_ctree_fd(fd, devname, 0,
2532                         OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2533         if (!root) {
2534                 error("unable to open ctree for finalization");
2535                 goto fail;
2536         }
2537         root->fs_info->finalize_on_close = 1;
2538         close_ctree(root);
2539         close(fd);
2540
2541         printf("conversion complete");
2542         return 0;
2543 fail:
2544         clean_convert_context(&cctx);
2545         if (fd != -1)
2546                 close(fd);
2547         warning(
2548 "an error occurred during conversion, filesystem is partially created but not finalized and not mountable");
2549         return -1;
2550 }
2551
2552 /*
2553  * Check if a non 1:1 mapped chunk can be rolled back.
2554  * For new convert, it's OK while for old convert it's not.
2555  */
2556 static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr)
2557 {
2558         struct btrfs_block_group_cache *bg;
2559         struct btrfs_key key;
2560         struct btrfs_path path;
2561         struct btrfs_root *extent_root = fs_info->extent_root;
2562         u64 bg_start;
2563         u64 bg_end;
2564         int ret;
2565
2566         bg = btrfs_lookup_first_block_group(fs_info, bytenr);
2567         if (!bg)
2568                 return -ENOENT;
2569         bg_start = bg->key.objectid;
2570         bg_end = bg->key.objectid + bg->key.offset;
2571
2572         key.objectid = bg_end;
2573         key.type = BTRFS_METADATA_ITEM_KEY;
2574         key.offset = 0;
2575         btrfs_init_path(&path);
2576
2577         ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0);
2578         if (ret < 0)
2579                 return ret;
2580
2581         while (1) {
2582                 struct btrfs_extent_item *ei;
2583
2584                 ret = btrfs_previous_extent_item(extent_root, &path, bg_start);
2585                 if (ret > 0) {
2586                         ret = 0;
2587                         break;
2588                 }
2589                 if (ret < 0)
2590                         break;
2591
2592                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2593                 if (key.type == BTRFS_METADATA_ITEM_KEY)
2594                         continue;
2595                 /* Now it's EXTENT_ITEM_KEY only */
2596                 ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
2597                                     struct btrfs_extent_item);
2598                 /*
2599                  * Found data extent, means this is old convert must follow 1:1
2600                  * mapping.
2601                  */
2602                 if (btrfs_extent_flags(path.nodes[0], ei)
2603                                 & BTRFS_EXTENT_FLAG_DATA) {
2604                         ret = -EINVAL;
2605                         break;
2606                 }
2607         }
2608         btrfs_release_path(&path);
2609         return ret;
2610 }
2611
2612 static int may_rollback(struct btrfs_root *root)
2613 {
2614         struct btrfs_fs_info *info = root->fs_info;
2615         struct btrfs_multi_bio *multi = NULL;
2616         u64 bytenr;
2617         u64 length;
2618         u64 physical;
2619         u64 total_bytes;
2620         int num_stripes;
2621         int ret;
2622
2623         if (btrfs_super_num_devices(info->super_copy) != 1)
2624                 goto fail;
2625
2626         bytenr = BTRFS_SUPER_INFO_OFFSET;
2627         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2628
2629         while (1) {
2630                 ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr,
2631                                       &length, &multi, 0, NULL);
2632                 if (ret) {
2633                         if (ret == -ENOENT) {
2634                                 /* removed block group at the tail */
2635                                 if (length == (u64)-1)
2636                                         break;
2637
2638                                 /* removed block group in the middle */
2639                                 goto next;
2640                         }
2641                         goto fail;
2642                 }
2643
2644                 num_stripes = multi->num_stripes;
2645                 physical = multi->stripes[0].physical;
2646                 free(multi);
2647
2648                 if (num_stripes != 1) {
2649                         error("num stripes for bytenr %llu is not 1", bytenr);
2650                         goto fail;
2651                 }
2652
2653                 /*
2654                  * Extra check for new convert, as metadata chunk from new
2655                  * convert is much more free than old convert, it doesn't need
2656                  * to do 1:1 mapping.
2657                  */
2658                 if (physical != bytenr) {
2659                         /*
2660                          * Check if it's a metadata chunk and has only metadata
2661                          * extent.
2662                          */
2663                         ret = may_rollback_chunk(info, bytenr);
2664                         if (ret < 0)
2665                                 goto fail;
2666                 }
2667 next:
2668                 bytenr += length;
2669                 if (bytenr >= total_bytes)
2670                         break;
2671         }
2672         return 0;
2673 fail:
2674         return -1;
2675 }
2676
2677 static int do_rollback(const char *devname)
2678 {
2679         int fd = -1;
2680         int ret;
2681         int i;
2682         struct btrfs_root *root;
2683         struct btrfs_root *image_root;
2684         struct btrfs_root *chunk_root;
2685         struct btrfs_dir_item *dir;
2686         struct btrfs_inode_item *inode;
2687         struct btrfs_file_extent_item *fi;
2688         struct btrfs_trans_handle *trans;
2689         struct extent_buffer *leaf;
2690         struct btrfs_block_group_cache *cache1;
2691         struct btrfs_block_group_cache *cache2;
2692         struct btrfs_key key;
2693         struct btrfs_path path;
2694         struct extent_io_tree io_tree;
2695         char *buf = NULL;
2696         char *name;
2697         u64 bytenr;
2698         u64 num_bytes;
2699         u64 root_dir;
2700         u64 objectid;
2701         u64 offset;
2702         u64 start;
2703         u64 end;
2704         u64 sb_bytenr;
2705         u64 first_free;
2706         u64 total_bytes;
2707         u32 sectorsize;
2708
2709         extent_io_tree_init(&io_tree);
2710
2711         fd = open(devname, O_RDWR);
2712         if (fd < 0) {
2713                 error("unable to open %s: %s", devname, strerror(errno));
2714                 goto fail;
2715         }
2716         root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES);
2717         if (!root) {
2718                 error("unable to open ctree");
2719                 goto fail;
2720         }
2721         ret = may_rollback(root);
2722         if (ret < 0) {
2723                 error("unable to do rollback: %d", ret);
2724                 goto fail;
2725         }
2726
2727         sectorsize = root->sectorsize;
2728         buf = malloc(sectorsize);
2729         if (!buf) {
2730                 error("unable to allocate memory");
2731                 goto fail;
2732         }
2733
2734         btrfs_init_path(&path);
2735
2736         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2737         key.type = BTRFS_ROOT_BACKREF_KEY;
2738         key.offset = BTRFS_FS_TREE_OBJECTID;
2739         ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0,
2740                                 0);
2741         btrfs_release_path(&path);
2742         if (ret > 0) {
2743                 error("unable to convert ext2 image subvolume, is it deleted?");
2744                 goto fail;
2745         } else if (ret < 0) {
2746                 error("unable to open ext2_saved, id %llu: %s",
2747                         (unsigned long long)key.objectid, strerror(-ret));
2748                 goto fail;
2749         }
2750
2751         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2752         key.type = BTRFS_ROOT_ITEM_KEY;
2753         key.offset = (u64)-1;
2754         image_root = btrfs_read_fs_root(root->fs_info, &key);
2755         if (!image_root || IS_ERR(image_root)) {
2756                 error("unable to open subvolume %llu: %ld",
2757                         (unsigned long long)key.objectid, PTR_ERR(image_root));
2758                 goto fail;
2759         }
2760
2761         name = "image";
2762         root_dir = btrfs_root_dirid(&root->root_item);
2763         dir = btrfs_lookup_dir_item(NULL, image_root, &path,
2764                                    root_dir, name, strlen(name), 0);
2765         if (!dir || IS_ERR(dir)) {
2766                 error("unable to find file %s: %ld", name, PTR_ERR(dir));
2767                 goto fail;
2768         }
2769         leaf = path.nodes[0];
2770         btrfs_dir_item_key_to_cpu(leaf, dir, &key);
2771         btrfs_release_path(&path);
2772
2773         objectid = key.objectid;
2774
2775         ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
2776         if (ret) {
2777                 error("unable to find inode item: %d", ret);
2778                 goto fail;
2779         }
2780         leaf = path.nodes[0];
2781         inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item);
2782         total_bytes = btrfs_inode_size(leaf, inode);
2783         btrfs_release_path(&path);
2784
2785         key.objectid = objectid;
2786         key.offset = 0;
2787         key.type = BTRFS_EXTENT_DATA_KEY;
2788         ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
2789         if (ret != 0) {
2790                 error("unable to find first file extent: %d", ret);
2791                 btrfs_release_path(&path);
2792                 goto fail;
2793         }
2794
2795         /* build mapping tree for the relocated blocks */
2796         for (offset = 0; offset < total_bytes; ) {
2797                 leaf = path.nodes[0];
2798                 if (path.slots[0] >= btrfs_header_nritems(leaf)) {
2799                         ret = btrfs_next_leaf(root, &path);
2800                         if (ret != 0)
2801                                 break;  
2802                         continue;
2803                 }
2804
2805                 btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
2806                 if (key.objectid != objectid || key.offset != offset ||
2807                     key.type != BTRFS_EXTENT_DATA_KEY)
2808                         break;
2809
2810                 fi = btrfs_item_ptr(leaf, path.slots[0],
2811                                     struct btrfs_file_extent_item);
2812                 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2813                         break;
2814                 if (btrfs_file_extent_compression(leaf, fi) ||
2815                     btrfs_file_extent_encryption(leaf, fi) ||
2816                     btrfs_file_extent_other_encoding(leaf, fi))
2817                         break;
2818
2819                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2820                 /* skip holes and direct mapped extents */
2821                 if (bytenr == 0 || bytenr == offset)
2822                         goto next_extent;
2823
2824                 bytenr += btrfs_file_extent_offset(leaf, fi);
2825                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
2826
2827                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2828                 cache2 = btrfs_lookup_block_group(root->fs_info,
2829                                                   offset + num_bytes - 1);
2830                 /*
2831                  * Here we must take consideration of old and new convert
2832                  * behavior.
2833                  * For old convert case, sign, there is no consist chunk type
2834                  * that will cover the extent. META/DATA/SYS are all possible.
2835                  * Just ensure relocate one is in SYS chunk.
2836                  * For new convert case, they are all covered by DATA chunk.
2837                  *
2838                  * So, there is not valid chunk type check for it now.
2839                  */
2840                 if (cache1 != cache2)
2841                         break;
2842
2843                 set_extent_bits(&io_tree, offset, offset + num_bytes - 1,
2844                                 EXTENT_LOCKED, GFP_NOFS);
2845                 set_state_private(&io_tree, offset, bytenr);
2846 next_extent:
2847                 offset += btrfs_file_extent_num_bytes(leaf, fi);
2848                 path.slots[0]++;
2849         }
2850         btrfs_release_path(&path);
2851
2852         if (offset < total_bytes) {
2853                 error("unable to build extent mapping (offset %llu, total_bytes %llu)",
2854                                 (unsigned long long)offset,
2855                                 (unsigned long long)total_bytes);
2856                 error("converted filesystem after balance is unable to rollback");
2857                 goto fail;
2858         }
2859
2860         first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1;
2861         first_free &= ~((u64)sectorsize - 1);
2862         /* backup for extent #0 should exist */
2863         if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) {
2864                 error("no backup for the first extent");
2865                 goto fail;
2866         }
2867         /* force no allocation from system block group */
2868         root->fs_info->system_allocs = -1;
2869         trans = btrfs_start_transaction(root, 1);
2870         if (!trans) {
2871                 error("unable to start transaction");
2872                 goto fail;
2873         }
2874         /*
2875          * recow the whole chunk tree, this will remove all chunk tree blocks
2876          * from system block group
2877          */
2878         chunk_root = root->fs_info->chunk_root;
2879         memset(&key, 0, sizeof(key));
2880         while (1) {
2881                 ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
2882                 if (ret < 0)
2883                         break;
2884
2885                 ret = btrfs_next_leaf(chunk_root, &path);
2886                 if (ret)
2887                         break;
2888
2889                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2890                 btrfs_release_path(&path);
2891         }
2892         btrfs_release_path(&path);
2893
2894         offset = 0;
2895         num_bytes = 0;
2896         while(1) {
2897                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2898                 if (!cache1)
2899                         break;
2900
2901                 if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2902                         num_bytes += btrfs_block_group_used(&cache1->item);
2903
2904                 offset = cache1->key.objectid + cache1->key.offset;
2905         }
2906         /* only extent #0 left in system block group? */
2907         if (num_bytes > first_free) {
2908                 error(
2909         "unable to empty system block group (num_bytes %llu, first_free %llu",
2910                                 (unsigned long long)num_bytes,
2911                                 (unsigned long long)first_free);
2912                 goto fail;
2913         }
2914         /* create a system chunk that maps the whole device */
2915         ret = prepare_system_chunk_sb(root->fs_info->super_copy);
2916         if (ret) {
2917                 error("unable to update system chunk: %d", ret);
2918                 goto fail;
2919         }
2920
2921         ret = btrfs_commit_transaction(trans, root);
2922         if (ret) {
2923                 error("transaction commit failed: %d", ret);
2924                 goto fail;
2925         }
2926
2927         ret = close_ctree(root);
2928         if (ret) {
2929                 error("close_ctree failed: %d", ret);
2930                 goto fail;
2931         }
2932
2933         /* zero btrfs super block mirrors */
2934         memset(buf, 0, sectorsize);
2935         for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2936                 bytenr = btrfs_sb_offset(i);
2937                 if (bytenr >= total_bytes)
2938                         break;
2939                 ret = pwrite(fd, buf, sectorsize, bytenr);
2940                 if (ret != sectorsize) {
2941                         error("zeroing superblock mirror %d failed: %d",
2942                                         i, ret);
2943                         goto fail;
2944                 }
2945         }
2946
2947         sb_bytenr = (u64)-1;
2948         /* copy all relocated blocks back */
2949         while(1) {
2950                 ret = find_first_extent_bit(&io_tree, 0, &start, &end,
2951                                             EXTENT_LOCKED);
2952                 if (ret)
2953                         break;
2954
2955                 ret = get_state_private(&io_tree, start, &bytenr);
2956                 BUG_ON(ret);
2957
2958                 clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED,
2959                                   GFP_NOFS);
2960
2961                 while (start <= end) {
2962                         if (start == BTRFS_SUPER_INFO_OFFSET) {
2963                                 sb_bytenr = bytenr;
2964                                 goto next_sector;
2965                         }
2966                         ret = pread(fd, buf, sectorsize, bytenr);
2967                         if (ret < 0) {
2968                                 error("reading superblock at %llu failed: %d",
2969                                                 (unsigned long long)bytenr, ret);
2970                                 goto fail;
2971                         }
2972                         BUG_ON(ret != sectorsize);
2973                         ret = pwrite(fd, buf, sectorsize, start);
2974                         if (ret < 0) {
2975                                 error("writing superblock at %llu failed: %d",
2976                                                 (unsigned long long)start, ret);
2977                                 goto fail;
2978                         }
2979                         BUG_ON(ret != sectorsize);
2980 next_sector:
2981                         start += sectorsize;
2982                         bytenr += sectorsize;
2983                 }
2984         }
2985
2986         ret = fsync(fd);
2987         if (ret < 0) {
2988                 error("fsync failed: %s", strerror(errno));
2989                 goto fail;
2990         }
2991         /*
2992          * finally, overwrite btrfs super block.
2993          */
2994         ret = pread(fd, buf, sectorsize, sb_bytenr);
2995         if (ret < 0) {
2996                 error("reading primary superblock failed: %s",
2997                                 strerror(errno));
2998                 goto fail;
2999         }
3000         BUG_ON(ret != sectorsize);
3001         ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
3002         if (ret < 0) {
3003                 error("writing primary superblock failed: %s",
3004                                 strerror(errno));
3005                 goto fail;
3006         }
3007         BUG_ON(ret != sectorsize);
3008         ret = fsync(fd);
3009         if (ret < 0) {
3010                 error("fsync failed: %s", strerror(errno));
3011                 goto fail;
3012         }
3013
3014         close(fd);
3015         free(buf);
3016         extent_io_tree_cleanup(&io_tree);
3017         printf("rollback complete\n");
3018         return 0;
3019
3020 fail:
3021         if (fd != -1)
3022                 close(fd);
3023         free(buf);
3024         error("rollback aborted");
3025         return -1;
3026 }
3027
3028 static void print_usage(void)
3029 {
3030         printf("usage: btrfs-convert [options] device\n");
3031         printf("options:\n");
3032         printf("\t-d|--no-datasum        disable data checksum, sets NODATASUM\n");
3033         printf("\t-i|--no-xattr          ignore xattrs and ACLs\n");
3034         printf("\t-n|--no-inline         disable inlining of small files to metadata\n");
3035         printf("\t-N|--nodesize SIZE     set filesystem metadata nodesize\n");
3036         printf("\t-r|--rollback          roll back to the original filesystem\n");
3037         printf("\t-l|--label LABEL       set filesystem label\n");
3038         printf("\t-L|--copy-label        use label from converted filesystem\n");
3039         printf("\t-p|--progress          show converting progress (default)\n");
3040         printf("\t-O|--features LIST     comma separated list of filesystem features\n");
3041         printf("\t--no-progress          show only overview, not the detailed progress\n");
3042         printf("\n");
3043         printf("Supported filesystems:\n");
3044         printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
3045 }
3046
3047 int main(int argc, char *argv[])
3048 {
3049         int ret;
3050         int packing = 1;
3051         int noxattr = 0;
3052         int datacsum = 1;
3053         u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
3054                         BTRFS_MKFS_DEFAULT_NODE_SIZE);
3055         int rollback = 0;
3056         int copylabel = 0;
3057         int usage_error = 0;
3058         int progress = 1;
3059         char *file;
3060         char fslabel[BTRFS_LABEL_SIZE];
3061         u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
3062
3063         while(1) {
3064                 enum { GETOPT_VAL_NO_PROGRESS = 256 };
3065                 static const struct option long_options[] = {
3066                         { "no-progress", no_argument, NULL,
3067                                 GETOPT_VAL_NO_PROGRESS },
3068                         { "no-datasum", no_argument, NULL, 'd' },
3069                         { "no-inline", no_argument, NULL, 'n' },
3070                         { "no-xattr", no_argument, NULL, 'i' },
3071                         { "rollback", no_argument, NULL, 'r' },
3072                         { "features", required_argument, NULL, 'O' },
3073                         { "progress", no_argument, NULL, 'p' },
3074                         { "label", required_argument, NULL, 'l' },
3075                         { "copy-label", no_argument, NULL, 'L' },
3076                         { "nodesize", required_argument, NULL, 'N' },
3077                         { "help", no_argument, NULL, GETOPT_VAL_HELP},
3078                         { NULL, 0, NULL, 0 }
3079                 };
3080                 int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
3081
3082                 if (c < 0)
3083                         break;
3084                 switch(c) {
3085                         case 'd':
3086                                 datacsum = 0;
3087                                 break;
3088                         case 'i':
3089                                 noxattr = 1;
3090                                 break;
3091                         case 'n':
3092                                 packing = 0;
3093                                 break;
3094                         case 'N':
3095                                 nodesize = parse_size(optarg);
3096                                 break;
3097                         case 'r':
3098                                 rollback = 1;
3099                                 break;
3100                         case 'l':
3101                                 copylabel = -1;
3102                                 if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
3103                                         warning(
3104                                         "label too long, trimmed to %d bytes",
3105                                                 BTRFS_LABEL_SIZE - 1);
3106                                 }
3107                                 __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
3108                                 break;
3109                         case 'L':
3110                                 copylabel = 1;
3111                                 break;
3112                         case 'p':
3113                                 progress = 1;
3114                                 break;
3115                         case 'O': {
3116                                 char *orig = strdup(optarg);
3117                                 char *tmp = orig;
3118
3119                                 tmp = btrfs_parse_fs_features(tmp, &features);
3120                                 if (tmp) {
3121                                         error("unrecognized filesystem feature: %s",
3122                                                         tmp);
3123                                         free(orig);
3124                                         exit(1);
3125                                 }
3126                                 free(orig);
3127                                 if (features & BTRFS_FEATURE_LIST_ALL) {
3128                                         btrfs_list_all_fs_features(
3129                                                 ~BTRFS_CONVERT_ALLOWED_FEATURES);
3130                                         exit(0);
3131                                 }
3132                                 if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
3133                                         char buf[64];
3134
3135                                         btrfs_parse_features_to_string(buf,
3136                                                 features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
3137                                         error("features not allowed for convert: %s",
3138                                                 buf);
3139                                         exit(1);
3140                                 }
3141
3142                                 break;
3143                                 }
3144                         case GETOPT_VAL_NO_PROGRESS:
3145                                 progress = 0;
3146                                 break;
3147                         case GETOPT_VAL_HELP:
3148                         default:
3149                                 print_usage();
3150                                 return c != GETOPT_VAL_HELP;
3151                 }
3152         }
3153         set_argv0(argv);
3154         if (check_argc_exact(argc - optind, 1)) {
3155                 print_usage();
3156                 return 1;
3157         }
3158
3159         if (rollback && (!datacsum || noxattr || !packing)) {
3160                 fprintf(stderr,
3161                         "Usage error: -d, -i, -n options do not apply to rollback\n");
3162                 usage_error++;
3163         }
3164
3165         if (usage_error) {
3166                 print_usage();
3167                 return 1;
3168         }
3169
3170         file = argv[optind];
3171         ret = check_mounted(file);
3172         if (ret < 0) {
3173                 error("could not check mount status: %s", strerror(-ret));
3174                 return 1;
3175         } else if (ret) {
3176                 error("%s is mounted", file);
3177                 return 1;
3178         }
3179
3180         if (rollback) {
3181                 ret = do_rollback(file);
3182         } else {
3183                 ret = do_convert(file, datacsum, packing, noxattr, nodesize,
3184                                 copylabel, fslabel, progress, features);
3185         }
3186         if (ret)
3187                 return 1;
3188         return 0;
3189 }