btrfs-progs: move help defines to own header
[platform/upstream/btrfs-progs.git] / convert / main.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20
21 #include <sys/ioctl.h>
22 #include <sys/mount.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <uuid/uuid.h>
30 #include <linux/limits.h>
31 #include <getopt.h>
32
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "volumes.h"
36 #include "transaction.h"
37 #include "crc32c.h"
38 #include "utils.h"
39 #include "task-utils.h"
40 #include "help.h"
41
42 #if BTRFSCONVERT_EXT2
43 #include <ext2fs/ext2_fs.h>
44 #include <ext2fs/ext2fs.h>
45 #include <ext2fs/ext2_ext_attr.h>
46
47 #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO)
48
49 /*
50  * Compatibility code for e2fsprogs 1.41 which doesn't support RO compat flag
51  * BIGALLOC.
52  * Unlike normal RO compat flag, BIGALLOC affects how e2fsprogs check used
53  * space, and btrfs-convert heavily relies on it.
54  */
55 #ifdef HAVE_OLD_E2FSPROGS
56 #define EXT2FS_CLUSTER_RATIO(fs)        (1)
57 #define EXT2_CLUSTERS_PER_GROUP(s)      (EXT2_BLOCKS_PER_GROUP(s))
58 #define EXT2FS_B2C(fs, blk)             (blk)
59 #endif
60
61 #endif
62
63 #define CONV_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID
64
65 struct task_ctx {
66         uint32_t max_copy_inodes;
67         uint32_t cur_copy_inodes;
68         struct task_info *info;
69 };
70
71 static void *print_copied_inodes(void *p)
72 {
73         struct task_ctx *priv = p;
74         const char work_indicator[] = { '.', 'o', 'O', 'o' };
75         uint32_t count = 0;
76
77         task_period_start(priv->info, 1000 /* 1s */);
78         while (1) {
79                 count++;
80                 printf("copy inodes [%c] [%10d/%10d]\r",
81                        work_indicator[count % 4], priv->cur_copy_inodes,
82                        priv->max_copy_inodes);
83                 fflush(stdout);
84                 task_period_wait(priv->info);
85         }
86
87         return NULL;
88 }
89
90 static int after_copied_inodes(void *p)
91 {
92         printf("\n");
93         fflush(stdout);
94
95         return 0;
96 }
97
98 struct btrfs_convert_context;
99 struct btrfs_convert_operations {
100         const char *name;
101         int (*open_fs)(struct btrfs_convert_context *cctx, const char *devname);
102         int (*read_used_space)(struct btrfs_convert_context *cctx);
103         int (*copy_inodes)(struct btrfs_convert_context *cctx,
104                          struct btrfs_root *root, int datacsum,
105                          int packing, int noxattr, struct task_ctx *p);
106         void (*close_fs)(struct btrfs_convert_context *cctx);
107         int (*check_state)(struct btrfs_convert_context *cctx);
108 };
109
110 static void init_convert_context(struct btrfs_convert_context *cctx)
111 {
112         cache_tree_init(&cctx->used);
113         cache_tree_init(&cctx->data_chunks);
114         cache_tree_init(&cctx->free);
115 }
116
117 static void clean_convert_context(struct btrfs_convert_context *cctx)
118 {
119         free_extent_cache_tree(&cctx->used);
120         free_extent_cache_tree(&cctx->data_chunks);
121         free_extent_cache_tree(&cctx->free);
122 }
123
124 static inline int copy_inodes(struct btrfs_convert_context *cctx,
125                               struct btrfs_root *root, int datacsum,
126                               int packing, int noxattr, struct task_ctx *p)
127 {
128         return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing,
129                                              noxattr, p);
130 }
131
132 static inline void convert_close_fs(struct btrfs_convert_context *cctx)
133 {
134         cctx->convert_ops->close_fs(cctx);
135 }
136
137 static inline int convert_check_state(struct btrfs_convert_context *cctx)
138 {
139         return cctx->convert_ops->check_state(cctx);
140 }
141
142 static int intersect_with_sb(u64 bytenr, u64 num_bytes)
143 {
144         int i;
145         u64 offset;
146
147         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
148                 offset = btrfs_sb_offset(i);
149                 offset &= ~((u64)BTRFS_STRIPE_LEN - 1);
150
151                 if (bytenr < offset + BTRFS_STRIPE_LEN &&
152                     bytenr + num_bytes > offset)
153                         return 1;
154         }
155         return 0;
156 }
157
158 static int convert_insert_dirent(struct btrfs_trans_handle *trans,
159                                  struct btrfs_root *root,
160                                  const char *name, size_t name_len,
161                                  u64 dir, u64 objectid,
162                                  u8 file_type, u64 index_cnt,
163                                  struct btrfs_inode_item *inode)
164 {
165         int ret;
166         u64 inode_size;
167         struct btrfs_key location = {
168                 .objectid = objectid,
169                 .offset = 0,
170                 .type = BTRFS_INODE_ITEM_KEY,
171         };
172
173         ret = btrfs_insert_dir_item(trans, root, name, name_len,
174                                     dir, &location, file_type, index_cnt);
175         if (ret)
176                 return ret;
177         ret = btrfs_insert_inode_ref(trans, root, name, name_len,
178                                      objectid, dir, index_cnt);
179         if (ret)
180                 return ret;
181         inode_size = btrfs_stack_inode_size(inode) + name_len * 2;
182         btrfs_set_stack_inode_size(inode, inode_size);
183
184         return 0;
185 }
186
187 static int read_disk_extent(struct btrfs_root *root, u64 bytenr,
188                             u32 num_bytes, char *buffer)
189 {
190         int ret;
191         struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices;
192
193         ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr);
194         if (ret != num_bytes)
195                 goto fail;
196         ret = 0;
197 fail:
198         if (ret > 0)
199                 ret = -1;
200         return ret;
201 }
202
203 static int csum_disk_extent(struct btrfs_trans_handle *trans,
204                             struct btrfs_root *root,
205                             u64 disk_bytenr, u64 num_bytes)
206 {
207         u32 blocksize = root->sectorsize;
208         u64 offset;
209         char *buffer;
210         int ret = 0;
211
212         buffer = malloc(blocksize);
213         if (!buffer)
214                 return -ENOMEM;
215         for (offset = 0; offset < num_bytes; offset += blocksize) {
216                 ret = read_disk_extent(root, disk_bytenr + offset,
217                                         blocksize, buffer);
218                 if (ret)
219                         break;
220                 ret = btrfs_csum_file_block(trans,
221                                             root->fs_info->csum_root,
222                                             disk_bytenr + num_bytes,
223                                             disk_bytenr + offset,
224                                             buffer, blocksize);
225                 if (ret)
226                         break;
227         }
228         free(buffer);
229         return ret;
230 }
231
232 struct blk_iterate_data {
233         struct btrfs_trans_handle *trans;
234         struct btrfs_root *root;
235         struct btrfs_root *convert_root;
236         struct btrfs_inode_item *inode;
237         u64 convert_ino;
238         u64 objectid;
239         u64 first_block;
240         u64 disk_block;
241         u64 num_blocks;
242         u64 boundary;
243         int checksum;
244         int errcode;
245 };
246
247 static void init_blk_iterate_data(struct blk_iterate_data *data,
248                                   struct btrfs_trans_handle *trans,
249                                   struct btrfs_root *root,
250                                   struct btrfs_inode_item *inode,
251                                   u64 objectid, int checksum)
252 {
253         struct btrfs_key key;
254
255         data->trans             = trans;
256         data->root              = root;
257         data->inode             = inode;
258         data->objectid          = objectid;
259         data->first_block       = 0;
260         data->disk_block        = 0;
261         data->num_blocks        = 0;
262         data->boundary          = (u64)-1;
263         data->checksum          = checksum;
264         data->errcode           = 0;
265
266         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
267         key.type = BTRFS_ROOT_ITEM_KEY;
268         key.offset = (u64)-1;
269         data->convert_root = btrfs_read_fs_root(root->fs_info, &key);
270         /* Impossible as we just opened it before */
271         BUG_ON(!data->convert_root || IS_ERR(data->convert_root));
272         data->convert_ino = BTRFS_FIRST_FREE_OBJECTID + 1;
273 }
274
275 /*
276  * Record a file extent in original filesystem into btrfs one.
277  * The special point is, old disk_block can point to a reserved range.
278  * So here, we don't use disk_block directly but search convert_root
279  * to get the real disk_bytenr.
280  */
281 static int record_file_blocks(struct blk_iterate_data *data,
282                               u64 file_block, u64 disk_block, u64 num_blocks)
283 {
284         int ret = 0;
285         struct btrfs_root *root = data->root;
286         struct btrfs_root *convert_root = data->convert_root;
287         struct btrfs_path path;
288         u64 file_pos = file_block * root->sectorsize;
289         u64 old_disk_bytenr = disk_block * root->sectorsize;
290         u64 num_bytes = num_blocks * root->sectorsize;
291         u64 cur_off = old_disk_bytenr;
292
293         /* Hole, pass it to record_file_extent directly */
294         if (old_disk_bytenr == 0)
295                 return btrfs_record_file_extent(data->trans, root,
296                                 data->objectid, data->inode, file_pos, 0,
297                                 num_bytes);
298
299         btrfs_init_path(&path);
300
301         /*
302          * Search real disk bytenr from convert root
303          */
304         while (cur_off < old_disk_bytenr + num_bytes) {
305                 struct btrfs_key key;
306                 struct btrfs_file_extent_item *fi;
307                 struct extent_buffer *node;
308                 int slot;
309                 u64 extent_disk_bytenr;
310                 u64 extent_num_bytes;
311                 u64 real_disk_bytenr;
312                 u64 cur_len;
313
314                 key.objectid = data->convert_ino;
315                 key.type = BTRFS_EXTENT_DATA_KEY;
316                 key.offset = cur_off;
317
318                 ret = btrfs_search_slot(NULL, convert_root, &key, &path, 0, 0);
319                 if (ret < 0)
320                         break;
321                 if (ret > 0) {
322                         ret = btrfs_previous_item(convert_root, &path,
323                                                   data->convert_ino,
324                                                   BTRFS_EXTENT_DATA_KEY);
325                         if (ret < 0)
326                                 break;
327                         if (ret > 0) {
328                                 ret = -ENOENT;
329                                 break;
330                         }
331                 }
332                 node = path.nodes[0];
333                 slot = path.slots[0];
334                 btrfs_item_key_to_cpu(node, &key, slot);
335                 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY ||
336                        key.objectid != data->convert_ino ||
337                        key.offset > cur_off);
338                 fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item);
339                 extent_disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi);
340                 extent_num_bytes = btrfs_file_extent_num_bytes(node, fi);
341                 BUG_ON(cur_off - key.offset >= extent_num_bytes);
342                 btrfs_release_path(&path);
343
344                 if (extent_disk_bytenr)
345                         real_disk_bytenr = cur_off - key.offset +
346                                            extent_disk_bytenr;
347                 else
348                         real_disk_bytenr = 0;
349                 cur_len = min(key.offset + extent_num_bytes,
350                               old_disk_bytenr + num_bytes) - cur_off;
351                 ret = btrfs_record_file_extent(data->trans, data->root,
352                                         data->objectid, data->inode, file_pos,
353                                         real_disk_bytenr, cur_len);
354                 if (ret < 0)
355                         break;
356                 cur_off += cur_len;
357                 file_pos += cur_len;
358
359                 /*
360                  * No need to care about csum
361                  * As every byte of old fs image is calculated for csum, no
362                  * need to waste CPU cycles now.
363                  */
364         }
365         btrfs_release_path(&path);
366         return ret;
367 }
368
369 static int block_iterate_proc(u64 disk_block, u64 file_block,
370                               struct blk_iterate_data *idata)
371 {
372         int ret = 0;
373         int sb_region;
374         int do_barrier;
375         struct btrfs_root *root = idata->root;
376         struct btrfs_block_group_cache *cache;
377         u64 bytenr = disk_block * root->sectorsize;
378
379         sb_region = intersect_with_sb(bytenr, root->sectorsize);
380         do_barrier = sb_region || disk_block >= idata->boundary;
381         if ((idata->num_blocks > 0 && do_barrier) ||
382             (file_block > idata->first_block + idata->num_blocks) ||
383             (disk_block != idata->disk_block + idata->num_blocks)) {
384                 if (idata->num_blocks > 0) {
385                         ret = record_file_blocks(idata, idata->first_block,
386                                                  idata->disk_block,
387                                                  idata->num_blocks);
388                         if (ret)
389                                 goto fail;
390                         idata->first_block += idata->num_blocks;
391                         idata->num_blocks = 0;
392                 }
393                 if (file_block > idata->first_block) {
394                         ret = record_file_blocks(idata, idata->first_block,
395                                         0, file_block - idata->first_block);
396                         if (ret)
397                                 goto fail;
398                 }
399
400                 if (sb_region) {
401                         bytenr += BTRFS_STRIPE_LEN - 1;
402                         bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1);
403                 } else {
404                         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
405                         BUG_ON(!cache);
406                         bytenr = cache->key.objectid + cache->key.offset;
407                 }
408
409                 idata->first_block = file_block;
410                 idata->disk_block = disk_block;
411                 idata->boundary = bytenr / root->sectorsize;
412         }
413         idata->num_blocks++;
414 fail:
415         return ret;
416 }
417
418 static int create_image_file_range(struct btrfs_trans_handle *trans,
419                                       struct btrfs_root *root,
420                                       struct cache_tree *used,
421                                       struct btrfs_inode_item *inode,
422                                       u64 ino, u64 bytenr, u64 *ret_len,
423                                       int datacsum)
424 {
425         struct cache_extent *cache;
426         struct btrfs_block_group_cache *bg_cache;
427         u64 len = *ret_len;
428         u64 disk_bytenr;
429         int i;
430         int ret;
431
432         if (bytenr != round_down(bytenr, root->sectorsize)) {
433                 error("bytenr not sectorsize aligned: %llu",
434                                 (unsigned long long)bytenr);
435                 return -EINVAL;
436         }
437         if (len != round_down(len, root->sectorsize)) {
438                 error("length not sectorsize aligned: %llu",
439                                 (unsigned long long)len);
440                 return -EINVAL;
441         }
442         len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
443
444         /*
445          * Skip sb ranges first
446          * [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K].
447          *
448          * Or we will insert a hole into current image file, and later
449          * migrate block will fail as there is already a file extent.
450          */
451         if (bytenr < 1024 * 1024) {
452                 *ret_len = 1024 * 1024 - bytenr;
453                 return 0;
454         }
455         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
456                 u64 cur = btrfs_sb_offset(i);
457
458                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
459                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
460                         return 0;
461                 }
462         }
463         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
464                 u64 cur = btrfs_sb_offset(i);
465
466                 /*
467                  *      |--reserved--|
468                  * |----range-------|
469                  * May still need to go through file extent inserts
470                  */
471                 if (bytenr < cur && bytenr + len >= cur) {
472                         len = min_t(u64, len, cur - bytenr);
473                         break;
474                 }
475                 /*
476                  * |--reserved--|
477                  *      |---range---|
478                  * Drop out, no need to insert anything
479                  */
480                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
481                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
482                         return 0;
483                 }
484         }
485
486         cache = search_cache_extent(used, bytenr);
487         if (cache) {
488                 if (cache->start <= bytenr) {
489                         /*
490                          * |///////Used///////|
491                          *      |<--insert--->|
492                          *      bytenr
493                          */
494                         len = min_t(u64, len, cache->start + cache->size -
495                                     bytenr);
496                         disk_bytenr = bytenr;
497                 } else {
498                         /*
499                          *              |//Used//|
500                          *  |<-insert-->|
501                          *  bytenr
502                          */
503                         len = min(len, cache->start - bytenr);
504                         disk_bytenr = 0;
505                         datacsum = 0;
506                 }
507         } else {
508                 /*
509                  * |//Used//|           |EOF
510                  *          |<-insert-->|
511                  *          bytenr
512                  */
513                 disk_bytenr = 0;
514                 datacsum = 0;
515         }
516
517         if (disk_bytenr) {
518                 /* Check if the range is in a data block group */
519                 bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
520                 if (!bg_cache)
521                         return -ENOENT;
522                 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
523                         return -EINVAL;
524
525                 /* The extent should never cross block group boundary */
526                 len = min_t(u64, len, bg_cache->key.objectid +
527                             bg_cache->key.offset - bytenr);
528         }
529
530         if (len != round_down(len, root->sectorsize)) {
531                 error("remaining length not sectorsize aligned: %llu",
532                                 (unsigned long long)len);
533                 return -EINVAL;
534         }
535         ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
536                                        disk_bytenr, len);
537         if (ret < 0)
538                 return ret;
539
540         if (datacsum)
541                 ret = csum_disk_extent(trans, root, bytenr, len);
542         *ret_len = len;
543         return ret;
544 }
545
546 /*
547  * Relocate old fs data in one reserved ranges
548  *
549  * Since all old fs data in reserved range is not covered by any chunk nor
550  * data extent, we don't need to handle any reference but add new
551  * extent/reference, which makes codes more clear
552  */
553 static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
554                                       struct btrfs_root *root,
555                                       struct cache_tree *used,
556                                       struct btrfs_inode_item *inode, int fd,
557                                       u64 ino, u64 start, u64 len, int datacsum)
558 {
559         u64 cur_off = start;
560         u64 cur_len = len;
561         u64 hole_start = start;
562         u64 hole_len;
563         struct cache_extent *cache;
564         struct btrfs_key key;
565         struct extent_buffer *eb;
566         int ret = 0;
567
568         while (cur_off < start + len) {
569                 cache = lookup_cache_extent(used, cur_off, cur_len);
570                 if (!cache)
571                         break;
572                 cur_off = max(cache->start, cur_off);
573                 cur_len = min(cache->start + cache->size, start + len) -
574                           cur_off;
575                 BUG_ON(cur_len < root->sectorsize);
576
577                 /* reserve extent for the data */
578                 ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
579                                            &key, 1);
580                 if (ret < 0)
581                         break;
582
583                 eb = malloc(sizeof(*eb) + cur_len);
584                 if (!eb) {
585                         ret = -ENOMEM;
586                         break;
587                 }
588
589                 ret = pread(fd, eb->data, cur_len, cur_off);
590                 if (ret < cur_len) {
591                         ret = (ret < 0 ? ret : -EIO);
592                         free(eb);
593                         break;
594                 }
595                 eb->start = key.objectid;
596                 eb->len = key.offset;
597
598                 /* Write the data */
599                 ret = write_and_map_eb(trans, root, eb);
600                 free(eb);
601                 if (ret < 0)
602                         break;
603
604                 /* Now handle extent item and file extent things */
605                 ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
606                                                key.objectid, key.offset);
607                 if (ret < 0)
608                         break;
609                 /* Finally, insert csum items */
610                 if (datacsum)
611                         ret = csum_disk_extent(trans, root, key.objectid,
612                                                key.offset);
613
614                 /* Don't forget to insert hole */
615                 hole_len = cur_off - hole_start;
616                 if (hole_len) {
617                         ret = btrfs_record_file_extent(trans, root, ino, inode,
618                                         hole_start, 0, hole_len);
619                         if (ret < 0)
620                                 break;
621                 }
622
623                 cur_off += key.offset;
624                 hole_start = cur_off;
625                 cur_len = start + len - cur_off;
626         }
627         /* Last hole */
628         if (start + len - hole_start > 0)
629                 ret = btrfs_record_file_extent(trans, root, ino, inode,
630                                 hole_start, 0, start + len - hole_start);
631         return ret;
632 }
633
634 /*
635  * Relocate the used ext2 data in reserved ranges
636  * [0,1M)
637  * [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN)
638  * [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN)
639  */
640 static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
641                                    struct btrfs_root *root,
642                                    struct cache_tree *used,
643                                    struct btrfs_inode_item *inode, int fd,
644                                    u64 ino, u64 total_bytes, int datacsum)
645 {
646         u64 cur_off;
647         u64 cur_len;
648         int ret = 0;
649
650         /* 0 ~ 1M */
651         cur_off = 0;
652         cur_len = 1024 * 1024;
653         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
654                                          cur_off, cur_len, datacsum);
655         if (ret < 0)
656                 return ret;
657
658         /* second sb(fisrt sb is included in 0~1M) */
659         cur_off = btrfs_sb_offset(1);
660         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
661         if (cur_off > total_bytes)
662                 return ret;
663         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
664                                          cur_off, cur_len, datacsum);
665         if (ret < 0)
666                 return ret;
667
668         /* Last sb */
669         cur_off = btrfs_sb_offset(2);
670         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
671         if (cur_off > total_bytes)
672                 return ret;
673         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
674                                          cur_off, cur_len, datacsum);
675         return ret;
676 }
677
678 /*
679  * Helper for expand and merge extent_cache for wipe_one_reserved_range() to
680  * handle wiping a range that exists in cache.
681  */
682 static int _expand_extent_cache(struct cache_tree *tree,
683                                 struct cache_extent *entry,
684                                 u64 min_stripe_size, int backward)
685 {
686         struct cache_extent *ce;
687         int diff;
688
689         if (entry->size >= min_stripe_size)
690                 return 0;
691         diff = min_stripe_size - entry->size;
692
693         if (backward) {
694                 ce = prev_cache_extent(entry);
695                 if (!ce)
696                         goto expand_back;
697                 if (ce->start + ce->size >= entry->start - diff) {
698                         /* Directly merge with previous extent */
699                         ce->size = entry->start + entry->size - ce->start;
700                         remove_cache_extent(tree, entry);
701                         free(entry);
702                         return 0;
703                 }
704 expand_back:
705                 /* No overlap, normal extent */
706                 if (entry->start < diff) {
707                         error("cannot find space for data chunk layout");
708                         return -ENOSPC;
709                 }
710                 entry->start -= diff;
711                 entry->size += diff;
712                 return 0;
713         }
714         ce = next_cache_extent(entry);
715         if (!ce)
716                 goto expand_after;
717         if (entry->start + entry->size + diff >= ce->start) {
718                 /* Directly merge with next extent */
719                 entry->size = ce->start + ce->size - entry->start;
720                 remove_cache_extent(tree, ce);
721                 free(ce);
722                 return 0;
723         }
724 expand_after:
725         entry->size += diff;
726         return 0;
727 }
728
729 /*
730  * Remove one reserve range from given cache tree
731  * if min_stripe_size is non-zero, it will ensure for split case,
732  * all its split cache extent is no smaller than @min_strip_size / 2.
733  */
734 static int wipe_one_reserved_range(struct cache_tree *tree,
735                                    u64 start, u64 len, u64 min_stripe_size,
736                                    int ensure_size)
737 {
738         struct cache_extent *cache;
739         int ret;
740
741         BUG_ON(ensure_size && min_stripe_size == 0);
742         /*
743          * The logical here is simplified to handle special cases only
744          * So we don't need to consider merge case for ensure_size
745          */
746         BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
747                min_stripe_size / 2 < BTRFS_STRIPE_LEN));
748
749         /* Also, wipe range should already be aligned */
750         BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
751                start + len != round_up(start + len, BTRFS_STRIPE_LEN));
752
753         min_stripe_size /= 2;
754
755         cache = lookup_cache_extent(tree, start, len);
756         if (!cache)
757                 return 0;
758
759         if (start <= cache->start) {
760                 /*
761                  *      |--------cache---------|
762                  * |-wipe-|
763                  */
764                 BUG_ON(start + len <= cache->start);
765
766                 /*
767                  * The wipe size is smaller than min_stripe_size / 2,
768                  * so the result length should still meet min_stripe_size
769                  * And no need to do alignment
770                  */
771                 cache->size -= (start + len - cache->start);
772                 if (cache->size == 0) {
773                         remove_cache_extent(tree, cache);
774                         free(cache);
775                         return 0;
776                 }
777
778                 BUG_ON(ensure_size && cache->size < min_stripe_size);
779
780                 cache->start = start + len;
781                 return 0;
782         } else if (start > cache->start && start + len < cache->start +
783                    cache->size) {
784                 /*
785                  * |-------cache-----|
786                  *      |-wipe-|
787                  */
788                 u64 old_start = cache->start;
789                 u64 old_len = cache->size;
790                 u64 insert_start = start + len;
791                 u64 insert_len;
792
793                 cache->size = start - cache->start;
794                 /* Expand the leading half part if needed */
795                 if (ensure_size && cache->size < min_stripe_size) {
796                         ret = _expand_extent_cache(tree, cache,
797                                         min_stripe_size, 1);
798                         if (ret < 0)
799                                 return ret;
800                 }
801
802                 /* And insert the new one */
803                 insert_len = old_start + old_len - start - len;
804                 ret = add_merge_cache_extent(tree, insert_start, insert_len);
805                 if (ret < 0)
806                         return ret;
807
808                 /* Expand the last half part if needed */
809                 if (ensure_size && insert_len < min_stripe_size) {
810                         cache = lookup_cache_extent(tree, insert_start,
811                                                     insert_len);
812                         if (!cache || cache->start != insert_start ||
813                             cache->size != insert_len)
814                                 return -ENOENT;
815                         ret = _expand_extent_cache(tree, cache,
816                                         min_stripe_size, 0);
817                 }
818
819                 return ret;
820         }
821         /*
822          * |----cache-----|
823          *              |--wipe-|
824          * Wipe len should be small enough and no need to expand the
825          * remaining extent
826          */
827         cache->size = start - cache->start;
828         BUG_ON(ensure_size && cache->size < min_stripe_size);
829         return 0;
830 }
831
832 /*
833  * Remove reserved ranges from given cache_tree
834  *
835  * It will remove the following ranges
836  * 1) 0~1M
837  * 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
838  * 3) 3rd superblock, +64K
839  *
840  * @min_stripe must be given for safety check
841  * and if @ensure_size is given, it will ensure affected cache_extent will be
842  * larger than min_stripe_size
843  */
844 static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
845                                 int ensure_size)
846 {
847         int ret;
848
849         ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size,
850                                       ensure_size);
851         if (ret < 0)
852                 return ret;
853         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1),
854                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
855         if (ret < 0)
856                 return ret;
857         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2),
858                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
859         return ret;
860 }
861
862 static int calculate_available_space(struct btrfs_convert_context *cctx)
863 {
864         struct cache_tree *used = &cctx->used;
865         struct cache_tree *data_chunks = &cctx->data_chunks;
866         struct cache_tree *free = &cctx->free;
867         struct cache_extent *cache;
868         u64 cur_off = 0;
869         /*
870          * Twice the minimal chunk size, to allow later wipe_reserved_ranges()
871          * works without need to consider overlap
872          */
873         u64 min_stripe_size = 2 * 16 * 1024 * 1024;
874         int ret;
875
876         /* Calculate data_chunks */
877         for (cache = first_cache_extent(used); cache;
878              cache = next_cache_extent(cache)) {
879                 u64 cur_len;
880
881                 if (cache->start + cache->size < cur_off)
882                         continue;
883                 if (cache->start > cur_off + min_stripe_size)
884                         cur_off = cache->start;
885                 cur_len = max(cache->start + cache->size - cur_off,
886                               min_stripe_size);
887                 ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
888                 if (ret < 0)
889                         goto out;
890                 cur_off += cur_len;
891         }
892         /*
893          * remove reserved ranges, so we won't ever bother relocating an old
894          * filesystem extent to other place.
895          */
896         ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
897         if (ret < 0)
898                 goto out;
899
900         cur_off = 0;
901         /*
902          * Calculate free space
903          * Always round up the start bytenr, to avoid metadata extent corss
904          * stripe boundary, as later mkfs_convert() won't have all the extent
905          * allocation check
906          */
907         for (cache = first_cache_extent(data_chunks); cache;
908              cache = next_cache_extent(cache)) {
909                 if (cache->start < cur_off)
910                         continue;
911                 if (cache->start > cur_off) {
912                         u64 insert_start;
913                         u64 len;
914
915                         len = cache->start - round_up(cur_off,
916                                                       BTRFS_STRIPE_LEN);
917                         insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
918
919                         ret = add_merge_cache_extent(free, insert_start, len);
920                         if (ret < 0)
921                                 goto out;
922                 }
923                 cur_off = cache->start + cache->size;
924         }
925         /* Don't forget the last range */
926         if (cctx->total_bytes > cur_off) {
927                 u64 len = cctx->total_bytes - cur_off;
928                 u64 insert_start;
929
930                 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
931
932                 ret = add_merge_cache_extent(free, insert_start, len);
933                 if (ret < 0)
934                         goto out;
935         }
936
937         /* Remove reserved bytes */
938         ret = wipe_reserved_ranges(free, min_stripe_size, 0);
939 out:
940         return ret;
941 }
942
943 /*
944  * Read used space, and since we have the used space,
945  * calcuate data_chunks and free for later mkfs
946  */
947 static int convert_read_used_space(struct btrfs_convert_context *cctx)
948 {
949         int ret;
950
951         ret = cctx->convert_ops->read_used_space(cctx);
952         if (ret)
953                 return ret;
954
955         ret = calculate_available_space(cctx);
956         return ret;
957 }
958
959 /*
960  * Create the fs image file of old filesystem.
961  *
962  * This is completely fs independent as we have cctx->used, only
963  * need to create file extents pointing to all the positions.
964  */
965 static int create_image(struct btrfs_root *root,
966                            struct btrfs_mkfs_config *cfg,
967                            struct btrfs_convert_context *cctx, int fd,
968                            u64 size, char *name, int datacsum)
969 {
970         struct btrfs_inode_item buf;
971         struct btrfs_trans_handle *trans;
972         struct btrfs_path path;
973         struct btrfs_key key;
974         struct cache_extent *cache;
975         struct cache_tree used_tmp;
976         u64 cur;
977         u64 ino;
978         u64 flags = BTRFS_INODE_READONLY;
979         int ret;
980
981         if (!datacsum)
982                 flags |= BTRFS_INODE_NODATASUM;
983
984         trans = btrfs_start_transaction(root, 1);
985         if (!trans)
986                 return -ENOMEM;
987
988         cache_tree_init(&used_tmp);
989         btrfs_init_path(&path);
990
991         ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
992                                        &ino);
993         if (ret < 0)
994                 goto out;
995         ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
996         if (ret < 0)
997                 goto out;
998         ret = btrfs_change_inode_flags(trans, root, ino, flags);
999         if (ret < 0)
1000                 goto out;
1001         ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
1002                              strlen(name), BTRFS_FT_REG_FILE, NULL, 1);
1003         if (ret < 0)
1004                 goto out;
1005
1006         key.objectid = ino;
1007         key.type = BTRFS_INODE_ITEM_KEY;
1008         key.offset = 0;
1009
1010         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1011         if (ret) {
1012                 ret = (ret > 0 ? -ENOENT : ret);
1013                 goto out;
1014         }
1015         read_extent_buffer(path.nodes[0], &buf,
1016                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1017                         sizeof(buf));
1018         btrfs_release_path(&path);
1019
1020         /*
1021          * Create a new used space cache, which doesn't contain the reserved
1022          * range
1023          */
1024         for (cache = first_cache_extent(&cctx->used); cache;
1025              cache = next_cache_extent(cache)) {
1026                 ret = add_cache_extent(&used_tmp, cache->start, cache->size);
1027                 if (ret < 0)
1028                         goto out;
1029         }
1030         ret = wipe_reserved_ranges(&used_tmp, 0, 0);
1031         if (ret < 0)
1032                 goto out;
1033
1034         /*
1035          * Start from 1M, as 0~1M is reserved, and create_image_file_range()
1036          * can't handle bytenr 0(will consider it as a hole)
1037          */
1038         cur = 1024 * 1024;
1039         while (cur < size) {
1040                 u64 len = size - cur;
1041
1042                 ret = create_image_file_range(trans, root, &used_tmp,
1043                                                 &buf, ino, cur, &len, datacsum);
1044                 if (ret < 0)
1045                         goto out;
1046                 cur += len;
1047         }
1048         /* Handle the reserved ranges */
1049         ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino,
1050                                       cfg->num_bytes, datacsum);
1051
1052
1053         key.objectid = ino;
1054         key.type = BTRFS_INODE_ITEM_KEY;
1055         key.offset = 0;
1056         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1057         if (ret) {
1058                 ret = (ret > 0 ? -ENOENT : ret);
1059                 goto out;
1060         }
1061         btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
1062         write_extent_buffer(path.nodes[0], &buf,
1063                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1064                         sizeof(buf));
1065 out:
1066         free_extent_cache_tree(&used_tmp);
1067         btrfs_release_path(&path);
1068         btrfs_commit_transaction(trans, root);
1069         return ret;
1070 }
1071
1072 static struct btrfs_root* link_subvol(struct btrfs_root *root,
1073                 const char *base, u64 root_objectid)
1074 {
1075         struct btrfs_trans_handle *trans;
1076         struct btrfs_fs_info *fs_info = root->fs_info;
1077         struct btrfs_root *tree_root = fs_info->tree_root;
1078         struct btrfs_root *new_root = NULL;
1079         struct btrfs_path path;
1080         struct btrfs_inode_item *inode_item;
1081         struct extent_buffer *leaf;
1082         struct btrfs_key key;
1083         u64 dirid = btrfs_root_dirid(&root->root_item);
1084         u64 index = 2;
1085         char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */
1086         int len;
1087         int i;
1088         int ret;
1089
1090         len = strlen(base);
1091         if (len == 0 || len > BTRFS_NAME_LEN)
1092                 return NULL;
1093
1094         btrfs_init_path(&path);
1095         key.objectid = dirid;
1096         key.type = BTRFS_DIR_INDEX_KEY;
1097         key.offset = (u64)-1;
1098
1099         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1100         if (ret <= 0) {
1101                 error("search for DIR_INDEX dirid %llu failed: %d",
1102                                 (unsigned long long)dirid, ret);
1103                 goto fail;
1104         }
1105
1106         if (path.slots[0] > 0) {
1107                 path.slots[0]--;
1108                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1109                 if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY)
1110                         index = key.offset + 1;
1111         }
1112         btrfs_release_path(&path);
1113
1114         trans = btrfs_start_transaction(root, 1);
1115         if (!trans) {
1116                 error("unable to start transaction");
1117                 goto fail;
1118         }
1119
1120         key.objectid = dirid;
1121         key.offset = 0;
1122         key.type =  BTRFS_INODE_ITEM_KEY;
1123
1124         ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
1125         if (ret) {
1126                 error("search for INODE_ITEM %llu failed: %d",
1127                                 (unsigned long long)dirid, ret);
1128                 goto fail;
1129         }
1130         leaf = path.nodes[0];
1131         inode_item = btrfs_item_ptr(leaf, path.slots[0],
1132                                     struct btrfs_inode_item);
1133
1134         key.objectid = root_objectid;
1135         key.offset = (u64)-1;
1136         key.type = BTRFS_ROOT_ITEM_KEY;
1137
1138         memcpy(buf, base, len);
1139         for (i = 0; i < 1024; i++) {
1140                 ret = btrfs_insert_dir_item(trans, root, buf, len,
1141                                             dirid, &key, BTRFS_FT_DIR, index);
1142                 if (ret != -EEXIST)
1143                         break;
1144                 len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i);
1145                 if (len < 1 || len > BTRFS_NAME_LEN) {
1146                         ret = -EINVAL;
1147                         break;
1148                 }
1149         }
1150         if (ret)
1151                 goto fail;
1152
1153         btrfs_set_inode_size(leaf, inode_item, len * 2 +
1154                              btrfs_inode_size(leaf, inode_item));
1155         btrfs_mark_buffer_dirty(leaf);
1156         btrfs_release_path(&path);
1157
1158         /* add the backref first */
1159         ret = btrfs_add_root_ref(trans, tree_root, root_objectid,
1160                                  BTRFS_ROOT_BACKREF_KEY,
1161                                  root->root_key.objectid,
1162                                  dirid, index, buf, len);
1163         if (ret) {
1164                 error("unable to add root backref for %llu: %d",
1165                                 root->root_key.objectid, ret);
1166                 goto fail;
1167         }
1168
1169         /* now add the forward ref */
1170         ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid,
1171                                  BTRFS_ROOT_REF_KEY, root_objectid,
1172                                  dirid, index, buf, len);
1173         if (ret) {
1174                 error("unable to add root ref for %llu: %d",
1175                                 root->root_key.objectid, ret);
1176                 goto fail;
1177         }
1178
1179         ret = btrfs_commit_transaction(trans, root);
1180         if (ret) {
1181                 error("transaction commit failed: %d", ret);
1182                 goto fail;
1183         }
1184
1185         new_root = btrfs_read_fs_root(fs_info, &key);
1186         if (IS_ERR(new_root)) {
1187                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1188                 new_root = NULL;
1189         }
1190 fail:
1191         btrfs_init_path(&path);
1192         return new_root;
1193 }
1194
1195 static int create_subvol(struct btrfs_trans_handle *trans,
1196                          struct btrfs_root *root, u64 root_objectid)
1197 {
1198         struct extent_buffer *tmp;
1199         struct btrfs_root *new_root;
1200         struct btrfs_key key;
1201         struct btrfs_root_item root_item;
1202         int ret;
1203
1204         ret = btrfs_copy_root(trans, root, root->node, &tmp,
1205                               root_objectid);
1206         if (ret)
1207                 return ret;
1208
1209         memcpy(&root_item, &root->root_item, sizeof(root_item));
1210         btrfs_set_root_bytenr(&root_item, tmp->start);
1211         btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
1212         btrfs_set_root_generation(&root_item, trans->transid);
1213         free_extent_buffer(tmp);
1214
1215         key.objectid = root_objectid;
1216         key.type = BTRFS_ROOT_ITEM_KEY;
1217         key.offset = trans->transid;
1218         ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1219                                 &key, &root_item);
1220
1221         key.offset = (u64)-1;
1222         new_root = btrfs_read_fs_root(root->fs_info, &key);
1223         if (!new_root || IS_ERR(new_root)) {
1224                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1225                 return PTR_ERR(new_root);
1226         }
1227
1228         ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
1229
1230         return ret;
1231 }
1232
1233 /*
1234  * New make_btrfs() has handle system and meta chunks quite well.
1235  * So only need to add remaining data chunks.
1236  */
1237 static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
1238                                           struct btrfs_fs_info *fs_info,
1239                                           struct btrfs_mkfs_config *cfg,
1240                                           struct btrfs_convert_context *cctx)
1241 {
1242         struct btrfs_root *extent_root = fs_info->extent_root;
1243         struct cache_tree *data_chunks = &cctx->data_chunks;
1244         struct cache_extent *cache;
1245         u64 max_chunk_size;
1246         int ret = 0;
1247
1248         /*
1249          * Don't create data chunk over 10% of the convert device
1250          * And for single chunk, don't create chunk larger than 1G.
1251          */
1252         max_chunk_size = cfg->num_bytes / 10;
1253         max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size);
1254         max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize);
1255
1256         for (cache = first_cache_extent(data_chunks); cache;
1257              cache = next_cache_extent(cache)) {
1258                 u64 cur = cache->start;
1259
1260                 while (cur < cache->start + cache->size) {
1261                         u64 len;
1262                         u64 cur_backup = cur;
1263
1264                         len = min(max_chunk_size,
1265                                   cache->start + cache->size - cur);
1266                         ret = btrfs_alloc_data_chunk(trans, extent_root,
1267                                         &cur_backup, len,
1268                                         BTRFS_BLOCK_GROUP_DATA, 1);
1269                         if (ret < 0)
1270                                 break;
1271                         ret = btrfs_make_block_group(trans, extent_root, 0,
1272                                         BTRFS_BLOCK_GROUP_DATA,
1273                                         BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1274                                         cur, len);
1275                         if (ret < 0)
1276                                 break;
1277                         cur += len;
1278                 }
1279         }
1280         return ret;
1281 }
1282
1283 /*
1284  * Init the temp btrfs to a operational status.
1285  *
1286  * It will fix the extent usage accounting(XXX: Do we really need?) and
1287  * insert needed data chunks, to ensure all old fs data extents are covered
1288  * by DATA chunks, preventing wrong chunks are allocated.
1289  *
1290  * And also create convert image subvolume and relocation tree.
1291  * (XXX: Not need again?)
1292  * But the convert image subvolume is *NOT* linked to fs tree yet.
1293  */
1294 static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
1295                          struct btrfs_convert_context *cctx, int datacsum,
1296                          int packing, int noxattr)
1297 {
1298         struct btrfs_key location;
1299         struct btrfs_trans_handle *trans;
1300         struct btrfs_fs_info *fs_info = root->fs_info;
1301         int ret;
1302
1303         /*
1304          * Don't alloc any metadata/system chunk, as we don't want
1305          * any meta/sys chunk allcated before all data chunks are inserted.
1306          * Or we screw up the chunk layout just like the old implement.
1307          */
1308         fs_info->avoid_sys_chunk_alloc = 1;
1309         fs_info->avoid_meta_chunk_alloc = 1;
1310         trans = btrfs_start_transaction(root, 1);
1311         if (!trans) {
1312                 error("unable to start transaction");
1313                 ret = -EINVAL;
1314                 goto err;
1315         }
1316         ret = btrfs_fix_block_accounting(trans, root);
1317         if (ret)
1318                 goto err;
1319         ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
1320         if (ret)
1321                 goto err;
1322         ret = btrfs_make_root_dir(trans, fs_info->tree_root,
1323                                   BTRFS_ROOT_TREE_DIR_OBJECTID);
1324         if (ret)
1325                 goto err;
1326         memcpy(&location, &root->root_key, sizeof(location));
1327         location.offset = (u64)-1;
1328         ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
1329                                 btrfs_super_root_dir(fs_info->super_copy),
1330                                 &location, BTRFS_FT_DIR, 0);
1331         if (ret)
1332                 goto err;
1333         ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
1334                                 location.objectid,
1335                                 btrfs_super_root_dir(fs_info->super_copy), 0);
1336         if (ret)
1337                 goto err;
1338         btrfs_set_root_dirid(&fs_info->fs_root->root_item,
1339                              BTRFS_FIRST_FREE_OBJECTID);
1340
1341         /* subvol for fs image file */
1342         ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
1343         if (ret < 0) {
1344                 error("failed to create subvolume image root: %d", ret);
1345                 goto err;
1346         }
1347         /* subvol for data relocation tree */
1348         ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
1349         if (ret < 0) {
1350                 error("failed to create DATA_RELOC root: %d", ret);
1351                 goto err;
1352         }
1353
1354         ret = btrfs_commit_transaction(trans, root);
1355         fs_info->avoid_sys_chunk_alloc = 0;
1356         fs_info->avoid_meta_chunk_alloc = 0;
1357 err:
1358         return ret;
1359 }
1360
1361 /*
1362  * Migrate super block to its default position and zero 0 ~ 16k
1363  */
1364 static int migrate_super_block(int fd, u64 old_bytenr)
1365 {
1366         int ret;
1367         struct extent_buffer *buf;
1368         struct btrfs_super_block *super;
1369         u32 len;
1370         u32 bytenr;
1371
1372         buf = malloc(sizeof(*buf) + BTRFS_SUPER_INFO_SIZE);
1373         if (!buf)
1374                 return -ENOMEM;
1375
1376         buf->len = BTRFS_SUPER_INFO_SIZE;
1377         ret = pread(fd, buf->data, BTRFS_SUPER_INFO_SIZE, old_bytenr);
1378         if (ret != BTRFS_SUPER_INFO_SIZE)
1379                 goto fail;
1380
1381         super = (struct btrfs_super_block *)buf->data;
1382         BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
1383         btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
1384
1385         csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
1386         ret = pwrite(fd, buf->data, BTRFS_SUPER_INFO_SIZE,
1387                 BTRFS_SUPER_INFO_OFFSET);
1388         if (ret != BTRFS_SUPER_INFO_SIZE)
1389                 goto fail;
1390
1391         ret = fsync(fd);
1392         if (ret)
1393                 goto fail;
1394
1395         memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
1396         for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
1397                 len = BTRFS_SUPER_INFO_OFFSET - bytenr;
1398                 if (len > BTRFS_SUPER_INFO_SIZE)
1399                         len = BTRFS_SUPER_INFO_SIZE;
1400                 ret = pwrite(fd, buf->data, len, bytenr);
1401                 if (ret != len) {
1402                         fprintf(stderr, "unable to zero fill device\n");
1403                         break;
1404                 }
1405                 bytenr += len;
1406         }
1407         ret = 0;
1408         fsync(fd);
1409 fail:
1410         free(buf);
1411         if (ret > 0)
1412                 ret = -1;
1413         return ret;
1414 }
1415
1416 static int prepare_system_chunk_sb(struct btrfs_super_block *super)
1417 {
1418         struct btrfs_chunk *chunk;
1419         struct btrfs_disk_key *key;
1420         u32 sectorsize = btrfs_super_sectorsize(super);
1421
1422         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1423         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1424                                        sizeof(struct btrfs_disk_key));
1425
1426         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1427         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1428         btrfs_set_disk_key_offset(key, 0);
1429
1430         btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super));
1431         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1432         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1433         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1434         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1435         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1436         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1437         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1438         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1439         chunk->stripe.devid = super->dev_item.devid;
1440         btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1441         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1442         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1443         return 0;
1444 }
1445
1446 #if BTRFSCONVERT_EXT2
1447
1448 /*
1449  * Open Ext2fs in readonly mode, read block allocation bitmap and
1450  * inode bitmap into memory.
1451  */
1452 static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name)
1453 {
1454         errcode_t ret;
1455         ext2_filsys ext2_fs;
1456         ext2_ino_t ino;
1457         u32 ro_feature;
1458
1459         ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs);
1460         if (ret) {
1461                 fprintf(stderr, "ext2fs_open: %s\n", error_message(ret));
1462                 return -1;
1463         }
1464         /*
1465          * We need to know exactly the used space, some RO compat flags like
1466          * BIGALLOC will affect how used space is present.
1467          * So we need manuall check any unsupported RO compat flags
1468          */
1469         ro_feature = ext2_fs->super->s_feature_ro_compat;
1470         if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
1471                 error(
1472 "unsupported RO features detected: %x, abort convert to avoid possible corruption",
1473                       ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP);
1474                 goto fail;
1475         }
1476         ret = ext2fs_read_inode_bitmap(ext2_fs);
1477         if (ret) {
1478                 fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n",
1479                         error_message(ret));
1480                 goto fail;
1481         }
1482         ret = ext2fs_read_block_bitmap(ext2_fs);
1483         if (ret) {
1484                 fprintf(stderr, "ext2fs_read_block_bitmap: %s\n",
1485                         error_message(ret));
1486                 goto fail;
1487         }
1488         /*
1489          * search each block group for a free inode. this set up
1490          * uninit block/inode bitmaps appropriately.
1491          */
1492         ino = 1;
1493         while (ino <= ext2_fs->super->s_inodes_count) {
1494                 ext2_ino_t foo;
1495                 ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo);
1496                 ino += EXT2_INODES_PER_GROUP(ext2_fs->super);
1497         }
1498
1499         if (!(ext2_fs->super->s_feature_incompat &
1500               EXT2_FEATURE_INCOMPAT_FILETYPE)) {
1501                 error("filetype feature is missing");
1502                 goto fail;
1503         }
1504
1505         cctx->fs_data = ext2_fs;
1506         cctx->blocksize = ext2_fs->blocksize;
1507         cctx->block_count = ext2_fs->super->s_blocks_count;
1508         cctx->total_bytes = ext2_fs->blocksize * ext2_fs->super->s_blocks_count;
1509         cctx->volume_name = strndup(ext2_fs->super->s_volume_name, 16);
1510         cctx->first_data_block = ext2_fs->super->s_first_data_block;
1511         cctx->inodes_count = ext2_fs->super->s_inodes_count;
1512         cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count;
1513         return 0;
1514 fail:
1515         ext2fs_close(ext2_fs);
1516         return -1;
1517 }
1518
1519 static int __ext2_add_one_block(ext2_filsys fs, char *bitmap,
1520                                 unsigned long group_nr, struct cache_tree *used)
1521 {
1522         unsigned long offset;
1523         unsigned i;
1524         int ret = 0;
1525
1526         offset = fs->super->s_first_data_block;
1527         offset /= EXT2FS_CLUSTER_RATIO(fs);
1528         offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super);
1529         for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) {
1530                 if ((i + offset) >= ext2fs_blocks_count(fs->super))
1531                         break;
1532
1533                 if (ext2fs_test_bit(i, bitmap)) {
1534                         u64 start;
1535
1536                         start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs);
1537                         start *= fs->blocksize;
1538                         ret = add_merge_cache_extent(used, start,
1539                                                      fs->blocksize);
1540                         if (ret < 0)
1541                                 break;
1542                 }
1543         }
1544         return ret;
1545 }
1546
1547 /*
1548  * Read all used ext2 space into cctx->used cache tree
1549  */
1550 static int ext2_read_used_space(struct btrfs_convert_context *cctx)
1551 {
1552         ext2_filsys fs = (ext2_filsys)cctx->fs_data;
1553         blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block);
1554         struct cache_tree *used_tree = &cctx->used;
1555         char *block_bitmap = NULL;
1556         unsigned long i;
1557         int block_nbytes;
1558         int ret = 0;
1559
1560         block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8;
1561         /* Shouldn't happen */
1562         BUG_ON(!fs->block_map);
1563
1564         block_bitmap = malloc(block_nbytes);
1565         if (!block_bitmap)
1566                 return -ENOMEM;
1567
1568         for (i = 0; i < fs->group_desc_count; i++) {
1569                 ret = ext2fs_get_block_bitmap_range(fs->block_map, blk_itr,
1570                                                 block_nbytes * 8, block_bitmap);
1571                 if (ret) {
1572                         error("fail to get bitmap from ext2, %s",
1573                               strerror(-ret));
1574                         break;
1575                 }
1576                 ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree);
1577                 if (ret < 0) {
1578                         error("fail to build used space tree, %s",
1579                               strerror(-ret));
1580                         break;
1581                 }
1582                 blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super);
1583         }
1584
1585         free(block_bitmap);
1586         return ret;
1587 }
1588
1589 static void ext2_close_fs(struct btrfs_convert_context *cctx)
1590 {
1591         if (cctx->volume_name) {
1592                 free(cctx->volume_name);
1593                 cctx->volume_name = NULL;
1594         }
1595         ext2fs_close(cctx->fs_data);
1596 }
1597
1598 struct dir_iterate_data {
1599         struct btrfs_trans_handle *trans;
1600         struct btrfs_root *root;
1601         struct btrfs_inode_item *inode;
1602         u64 objectid;
1603         u64 index_cnt;
1604         u64 parent;
1605         int errcode;
1606 };
1607
1608 static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = {
1609         [EXT2_FT_UNKNOWN]       = BTRFS_FT_UNKNOWN,
1610         [EXT2_FT_REG_FILE]      = BTRFS_FT_REG_FILE,
1611         [EXT2_FT_DIR]           = BTRFS_FT_DIR,
1612         [EXT2_FT_CHRDEV]        = BTRFS_FT_CHRDEV,
1613         [EXT2_FT_BLKDEV]        = BTRFS_FT_BLKDEV,
1614         [EXT2_FT_FIFO]          = BTRFS_FT_FIFO,
1615         [EXT2_FT_SOCK]          = BTRFS_FT_SOCK,
1616         [EXT2_FT_SYMLINK]       = BTRFS_FT_SYMLINK,
1617 };
1618
1619 static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry,
1620                             struct ext2_dir_entry *dirent,
1621                             int offset, int blocksize,
1622                             char *buf,void *priv_data)
1623 {
1624         int ret;
1625         int file_type;
1626         u64 objectid;
1627         char dotdot[] = "..";
1628         struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data;
1629         int name_len;
1630
1631         name_len = dirent->name_len & 0xFF;
1632
1633         objectid = dirent->inode + INO_OFFSET;
1634         if (!strncmp(dirent->name, dotdot, name_len)) {
1635                 if (name_len == 2) {
1636                         BUG_ON(idata->parent != 0);
1637                         idata->parent = objectid;
1638                 }
1639                 return 0;
1640         }
1641         if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO)
1642                 return 0;
1643
1644         file_type = dirent->name_len >> 8;
1645         BUG_ON(file_type > EXT2_FT_SYMLINK);
1646
1647         ret = convert_insert_dirent(idata->trans, idata->root, dirent->name,
1648                                     name_len, idata->objectid, objectid,
1649                                     ext2_filetype_conversion_table[file_type],
1650                                     idata->index_cnt, idata->inode);
1651         if (ret < 0) {
1652                 idata->errcode = ret;
1653                 return BLOCK_ABORT;
1654         }
1655
1656         idata->index_cnt++;
1657         return 0;
1658 }
1659
1660 static int ext2_create_dir_entries(struct btrfs_trans_handle *trans,
1661                               struct btrfs_root *root, u64 objectid,
1662                               struct btrfs_inode_item *btrfs_inode,
1663                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
1664 {
1665         int ret;
1666         errcode_t err;
1667         struct dir_iterate_data data = {
1668                 .trans          = trans,
1669                 .root           = root,
1670                 .inode          = btrfs_inode,
1671                 .objectid       = objectid,
1672                 .index_cnt      = 2,
1673                 .parent         = 0,
1674                 .errcode        = 0,
1675         };
1676
1677         err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL,
1678                                   ext2_dir_iterate_proc, &data);
1679         if (err)
1680                 goto error;
1681         ret = data.errcode;
1682         if (ret == 0 && data.parent == objectid) {
1683                 ret = btrfs_insert_inode_ref(trans, root, "..", 2,
1684                                              objectid, objectid, 0);
1685         }
1686         return ret;
1687 error:
1688         fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err));
1689         return -1;
1690 }
1691
1692 static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr,
1693                                 e2_blkcnt_t blockcnt, blk_t ref_block,
1694                                 int ref_offset, void *priv_data)
1695 {
1696         int ret;
1697         struct blk_iterate_data *idata;
1698         idata = (struct blk_iterate_data *)priv_data;
1699         ret = block_iterate_proc(*blocknr, blockcnt, idata);
1700         if (ret) {
1701                 idata->errcode = ret;
1702                 return BLOCK_ABORT;
1703         }
1704         return 0;
1705 }
1706
1707 /*
1708  * traverse file's data blocks, record these data blocks as file extents.
1709  */
1710 static int ext2_create_file_extents(struct btrfs_trans_handle *trans,
1711                                struct btrfs_root *root, u64 objectid,
1712                                struct btrfs_inode_item *btrfs_inode,
1713                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1714                                int datacsum, int packing)
1715 {
1716         int ret;
1717         char *buffer = NULL;
1718         errcode_t err;
1719         u32 last_block;
1720         u32 sectorsize = root->sectorsize;
1721         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1722         struct blk_iterate_data data;
1723
1724         init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid,
1725                               datacsum);
1726
1727         err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY,
1728                                     NULL, ext2_block_iterate_proc, &data);
1729         if (err)
1730                 goto error;
1731         ret = data.errcode;
1732         if (ret)
1733                 goto fail;
1734         if (packing && data.first_block == 0 && data.num_blocks > 0 &&
1735             inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
1736                 u64 num_bytes = data.num_blocks * sectorsize;
1737                 u64 disk_bytenr = data.disk_block * sectorsize;
1738                 u64 nbytes;
1739
1740                 buffer = malloc(num_bytes);
1741                 if (!buffer)
1742                         return -ENOMEM;
1743                 ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer);
1744                 if (ret)
1745                         goto fail;
1746                 if (num_bytes > inode_size)
1747                         num_bytes = inode_size;
1748                 ret = btrfs_insert_inline_extent(trans, root, objectid,
1749                                                  0, buffer, num_bytes);
1750                 if (ret)
1751                         goto fail;
1752                 nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes;
1753                 btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes);
1754         } else if (data.num_blocks > 0) {
1755                 ret = record_file_blocks(&data, data.first_block,
1756                                          data.disk_block, data.num_blocks);
1757                 if (ret)
1758                         goto fail;
1759         }
1760         data.first_block += data.num_blocks;
1761         last_block = (inode_size + sectorsize - 1) / sectorsize;
1762         if (last_block > data.first_block) {
1763                 ret = record_file_blocks(&data, data.first_block, 0,
1764                                          last_block - data.first_block);
1765         }
1766 fail:
1767         free(buffer);
1768         return ret;
1769 error:
1770         fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err));
1771         return -1;
1772 }
1773
1774 static int ext2_create_symbol_link(struct btrfs_trans_handle *trans,
1775                               struct btrfs_root *root, u64 objectid,
1776                               struct btrfs_inode_item *btrfs_inode,
1777                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1778                               struct ext2_inode *ext2_inode)
1779 {
1780         int ret;
1781         char *pathname;
1782         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1783         if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) {
1784                 btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1);
1785                 ret = ext2_create_file_extents(trans, root, objectid,
1786                                 btrfs_inode, ext2_fs, ext2_ino, 1, 1);
1787                 btrfs_set_stack_inode_size(btrfs_inode, inode_size);
1788                 return ret;
1789         }
1790
1791         pathname = (char *)&(ext2_inode->i_block[0]);
1792         BUG_ON(pathname[inode_size] != 0);
1793         ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
1794                                          pathname, inode_size + 1);
1795         btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1);
1796         return ret;
1797 }
1798
1799 /*
1800  * Following xattr/acl related codes are based on codes in
1801  * fs/ext3/xattr.c and fs/ext3/acl.c
1802  */
1803 #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr))
1804 #define EXT2_XATTR_BFIRST(ptr) \
1805         ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1))
1806 #define EXT2_XATTR_IHDR(inode) \
1807         ((struct ext2_ext_attr_header *) ((void *)(inode) + \
1808                 EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize))
1809 #define EXT2_XATTR_IFIRST(inode) \
1810         ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \
1811                 sizeof(EXT2_XATTR_IHDR(inode)->h_magic)))
1812
1813 static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry,
1814                                   const void *end)
1815 {
1816         struct ext2_ext_attr_entry *next;
1817
1818         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
1819                 next = EXT2_EXT_ATTR_NEXT(entry);
1820                 if ((void *)next >= end)
1821                         return -EIO;
1822                 entry = next;
1823         }
1824         return 0;
1825 }
1826
1827 static int ext2_xattr_check_block(const char *buf, size_t size)
1828 {
1829         int error;
1830         struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf);
1831
1832         if (header->h_magic != EXT2_EXT_ATTR_MAGIC ||
1833             header->h_blocks != 1)
1834                 return -EIO;
1835         error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size);
1836         return error;
1837 }
1838
1839 static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry,
1840                                   size_t size)
1841 {
1842         size_t value_size = entry->e_value_size;
1843
1844         if (entry->e_value_block != 0 || value_size > size ||
1845             entry->e_value_offs + value_size > size)
1846                 return -EIO;
1847         return 0;
1848 }
1849
1850 #define EXT2_ACL_VERSION        0x0001
1851
1852 /* 23.2.5 acl_tag_t values */
1853
1854 #define ACL_UNDEFINED_TAG       (0x00)
1855 #define ACL_USER_OBJ            (0x01)
1856 #define ACL_USER                (0x02)
1857 #define ACL_GROUP_OBJ           (0x04)
1858 #define ACL_GROUP               (0x08)
1859 #define ACL_MASK                (0x10)
1860 #define ACL_OTHER               (0x20)
1861
1862 /* 23.2.7 ACL qualifier constants */
1863
1864 #define ACL_UNDEFINED_ID        ((id_t)-1)
1865
1866 typedef struct {
1867         __le16          e_tag;
1868         __le16          e_perm;
1869         __le32          e_id;
1870 } ext2_acl_entry;
1871
1872 typedef struct {
1873         __le16          e_tag;
1874         __le16          e_perm;
1875 } ext2_acl_entry_short;
1876
1877 typedef struct {
1878         __le32          a_version;
1879 } ext2_acl_header;
1880
1881 static inline int ext2_acl_count(size_t size)
1882 {
1883         ssize_t s;
1884         size -= sizeof(ext2_acl_header);
1885         s = size - 4 * sizeof(ext2_acl_entry_short);
1886         if (s < 0) {
1887                 if (size % sizeof(ext2_acl_entry_short))
1888                         return -1;
1889                 return size / sizeof(ext2_acl_entry_short);
1890         } else {
1891                 if (s % sizeof(ext2_acl_entry))
1892                         return -1;
1893                 return s / sizeof(ext2_acl_entry) + 4;
1894         }
1895 }
1896
1897 #define ACL_EA_VERSION          0x0002
1898
1899 typedef struct {
1900         __le16          e_tag;
1901         __le16          e_perm;
1902         __le32          e_id;
1903 } acl_ea_entry;
1904
1905 typedef struct {
1906         __le32          a_version;
1907         acl_ea_entry    a_entries[0];
1908 } acl_ea_header;
1909
1910 static inline size_t acl_ea_size(int count)
1911 {
1912         return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry);
1913 }
1914
1915 static int ext2_acl_to_xattr(void *dst, const void *src,
1916                              size_t dst_size, size_t src_size)
1917 {
1918         int i, count;
1919         const void *end = src + src_size;
1920         acl_ea_header *ext_acl = (acl_ea_header *)dst;
1921         acl_ea_entry *dst_entry = ext_acl->a_entries;
1922         ext2_acl_entry *src_entry;
1923
1924         if (src_size < sizeof(ext2_acl_header))
1925                 goto fail;
1926         if (((ext2_acl_header *)src)->a_version !=
1927             cpu_to_le32(EXT2_ACL_VERSION))
1928                 goto fail;
1929         src += sizeof(ext2_acl_header);
1930         count = ext2_acl_count(src_size);
1931         if (count <= 0)
1932                 goto fail;
1933
1934         BUG_ON(dst_size < acl_ea_size(count));
1935         ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION);
1936         for (i = 0; i < count; i++, dst_entry++) {
1937                 src_entry = (ext2_acl_entry *)src;
1938                 if (src + sizeof(ext2_acl_entry_short) > end)
1939                         goto fail;
1940                 dst_entry->e_tag = src_entry->e_tag;
1941                 dst_entry->e_perm = src_entry->e_perm;
1942                 switch (le16_to_cpu(src_entry->e_tag)) {
1943                 case ACL_USER_OBJ:
1944                 case ACL_GROUP_OBJ:
1945                 case ACL_MASK:
1946                 case ACL_OTHER:
1947                         src += sizeof(ext2_acl_entry_short);
1948                         dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID);
1949                         break;
1950                 case ACL_USER:
1951                 case ACL_GROUP:
1952                         src += sizeof(ext2_acl_entry);
1953                         if (src > end)
1954                                 goto fail;
1955                         dst_entry->e_id = src_entry->e_id;
1956                         break;
1957                 default:
1958                         goto fail;
1959                 }
1960         }
1961         if (src != end)
1962                 goto fail;
1963         return 0;
1964 fail:
1965         return -EINVAL;
1966 }
1967
1968 static char *xattr_prefix_table[] = {
1969         [1] =   "user.",
1970         [2] =   "system.posix_acl_access",
1971         [3] =   "system.posix_acl_default",
1972         [4] =   "trusted.",
1973         [6] =   "security.",
1974 };
1975
1976 static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans,
1977                              struct btrfs_root *root, u64 objectid,
1978                              struct ext2_ext_attr_entry *entry,
1979                              const void *data, u32 datalen)
1980 {
1981         int ret = 0;
1982         int name_len;
1983         int name_index;
1984         void *databuf = NULL;
1985         char namebuf[XATTR_NAME_MAX + 1];
1986
1987         name_index = entry->e_name_index;
1988         if (name_index >= ARRAY_SIZE(xattr_prefix_table) ||
1989             xattr_prefix_table[name_index] == NULL)
1990                 return -EOPNOTSUPP;
1991         name_len = strlen(xattr_prefix_table[name_index]) +
1992                    entry->e_name_len;
1993         if (name_len >= sizeof(namebuf))
1994                 return -ERANGE;
1995
1996         if (name_index == 2 || name_index == 3) {
1997                 size_t bufsize = acl_ea_size(ext2_acl_count(datalen));
1998                 databuf = malloc(bufsize);
1999                 if (!databuf)
2000                        return -ENOMEM;
2001                 ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen);
2002                 if (ret)
2003                         goto out;
2004                 data = databuf;
2005                 datalen = bufsize;
2006         }
2007         strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX);
2008         strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len);
2009         if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) -
2010             sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) {
2011                 fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n",
2012                         objectid - INO_OFFSET, name_len, namebuf);
2013                 goto out;
2014         }
2015         ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len,
2016                                       data, datalen, objectid);
2017 out:
2018         free(databuf);
2019         return ret;
2020 }
2021
2022 static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans,
2023                                struct btrfs_root *root, u64 objectid,
2024                                struct btrfs_inode_item *btrfs_inode,
2025                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
2026 {
2027         int ret = 0;
2028         int inline_ea = 0;
2029         errcode_t err;
2030         u32 datalen;
2031         u32 block_size = ext2_fs->blocksize;
2032         u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super);
2033         struct ext2_inode_large *ext2_inode;
2034         struct ext2_ext_attr_entry *entry;
2035         void *data;
2036         char *buffer = NULL;
2037         char inode_buf[EXT2_GOOD_OLD_INODE_SIZE];
2038
2039         if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) {
2040                 ext2_inode = (struct ext2_inode_large *)inode_buf;
2041         } else {
2042                 ext2_inode = (struct ext2_inode_large *)malloc(inode_size);
2043                 if (!ext2_inode)
2044                        return -ENOMEM;
2045         }
2046         err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode,
2047                                      inode_size);
2048         if (err) {
2049                 fprintf(stderr, "ext2fs_read_inode_full: %s\n",
2050                         error_message(err));
2051                 ret = -1;
2052                 goto out;
2053         }
2054
2055         if (ext2_ino > ext2_fs->super->s_first_ino &&
2056             inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
2057                 if (EXT2_GOOD_OLD_INODE_SIZE +
2058                     ext2_inode->i_extra_isize > inode_size) {
2059                         ret = -EIO;
2060                         goto out;
2061                 }
2062                 if (ext2_inode->i_extra_isize != 0 &&
2063                     EXT2_XATTR_IHDR(ext2_inode)->h_magic ==
2064                     EXT2_EXT_ATTR_MAGIC) {
2065                         inline_ea = 1;
2066                 }
2067         }
2068         if (inline_ea) {
2069                 int total;
2070                 void *end = (void *)ext2_inode + inode_size;
2071                 entry = EXT2_XATTR_IFIRST(ext2_inode);
2072                 total = end - (void *)entry;
2073                 ret = ext2_xattr_check_names(entry, end);
2074                 if (ret)
2075                         goto out;
2076                 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2077                         ret = ext2_xattr_check_entry(entry, total);
2078                         if (ret)
2079                                 goto out;
2080                         data = (void *)EXT2_XATTR_IFIRST(ext2_inode) +
2081                                 entry->e_value_offs;
2082                         datalen = entry->e_value_size;
2083                         ret = ext2_copy_single_xattr(trans, root, objectid,
2084                                                 entry, data, datalen);
2085                         if (ret)
2086                                 goto out;
2087                         entry = EXT2_EXT_ATTR_NEXT(entry);
2088                 }
2089         }
2090
2091         if (ext2_inode->i_file_acl == 0)
2092                 goto out;
2093
2094         buffer = malloc(block_size);
2095         if (!buffer) {
2096                 ret = -ENOMEM;
2097                 goto out;
2098         }
2099         err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer);
2100         if (err) {
2101                 fprintf(stderr, "ext2fs_read_ext_attr: %s\n",
2102                         error_message(err));
2103                 ret = -1;
2104                 goto out;
2105         }
2106         ret = ext2_xattr_check_block(buffer, block_size);
2107         if (ret)
2108                 goto out;
2109
2110         entry = EXT2_XATTR_BFIRST(buffer);
2111         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2112                 ret = ext2_xattr_check_entry(entry, block_size);
2113                 if (ret)
2114                         goto out;
2115                 data = buffer + entry->e_value_offs;
2116                 datalen = entry->e_value_size;
2117                 ret = ext2_copy_single_xattr(trans, root, objectid,
2118                                         entry, data, datalen);
2119                 if (ret)
2120                         goto out;
2121                 entry = EXT2_EXT_ATTR_NEXT(entry);
2122         }
2123 out:
2124         free(buffer);
2125         if ((void *)ext2_inode != inode_buf)
2126                 free(ext2_inode);
2127         return ret;
2128 }
2129 #define MINORBITS       20
2130 #define MKDEV(ma, mi)   (((ma) << MINORBITS) | (mi))
2131
2132 static inline dev_t old_decode_dev(u16 val)
2133 {
2134         return MKDEV((val >> 8) & 255, val & 255);
2135 }
2136
2137 static inline dev_t new_decode_dev(u32 dev)
2138 {
2139         unsigned major = (dev & 0xfff00) >> 8;
2140         unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00);
2141         return MKDEV(major, minor);
2142 }
2143
2144 static void ext2_copy_inode_item(struct btrfs_inode_item *dst,
2145                            struct ext2_inode *src, u32 blocksize)
2146 {
2147         btrfs_set_stack_inode_generation(dst, 1);
2148         btrfs_set_stack_inode_sequence(dst, 0);
2149         btrfs_set_stack_inode_transid(dst, 1);
2150         btrfs_set_stack_inode_size(dst, src->i_size);
2151         btrfs_set_stack_inode_nbytes(dst, 0);
2152         btrfs_set_stack_inode_block_group(dst, 0);
2153         btrfs_set_stack_inode_nlink(dst, src->i_links_count);
2154         btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16));
2155         btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16));
2156         btrfs_set_stack_inode_mode(dst, src->i_mode);
2157         btrfs_set_stack_inode_rdev(dst, 0);
2158         btrfs_set_stack_inode_flags(dst, 0);
2159         btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime);
2160         btrfs_set_stack_timespec_nsec(&dst->atime, 0);
2161         btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime);
2162         btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
2163         btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime);
2164         btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
2165         btrfs_set_stack_timespec_sec(&dst->otime, 0);
2166         btrfs_set_stack_timespec_nsec(&dst->otime, 0);
2167
2168         if (S_ISDIR(src->i_mode)) {
2169                 btrfs_set_stack_inode_size(dst, 0);
2170                 btrfs_set_stack_inode_nlink(dst, 1);
2171         }
2172         if (S_ISREG(src->i_mode)) {
2173                 btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 |
2174                                            (u64)src->i_size);
2175         }
2176         if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) &&
2177             !S_ISLNK(src->i_mode)) {
2178                 if (src->i_block[0]) {
2179                         btrfs_set_stack_inode_rdev(dst,
2180                                 old_decode_dev(src->i_block[0]));
2181                 } else {
2182                         btrfs_set_stack_inode_rdev(dst,
2183                                 new_decode_dev(src->i_block[1]));
2184                 }
2185         }
2186         memset(&dst->reserved, 0, sizeof(dst->reserved));
2187 }
2188 static int ext2_check_state(struct btrfs_convert_context *cctx)
2189 {
2190         ext2_filsys fs = cctx->fs_data;
2191
2192         if (!(fs->super->s_state & EXT2_VALID_FS))
2193                 return 1;
2194         else if (fs->super->s_state & EXT2_ERROR_FS)
2195                 return 1;
2196         else
2197                 return 0;
2198 }
2199
2200 /* EXT2_*_FL to BTRFS_INODE_FLAG_* stringification helper */
2201 #define COPY_ONE_EXT2_FLAG(flags, ext2_inode, name) ({                  \
2202         if (ext2_inode->i_flags & EXT2_##name##_FL)                     \
2203                 flags |= BTRFS_INODE_##name;                            \
2204 })
2205
2206 /*
2207  * Convert EXT2_*_FL to corresponding BTRFS_INODE_* flags
2208  *
2209  * Only a subset of EXT_*_FL is supported in btrfs.
2210  */
2211 static void ext2_convert_inode_flags(struct btrfs_inode_item *dst,
2212                                      struct ext2_inode *src)
2213 {
2214         u64 flags = 0;
2215
2216         COPY_ONE_EXT2_FLAG(flags, src, APPEND);
2217         COPY_ONE_EXT2_FLAG(flags, src, SYNC);
2218         COPY_ONE_EXT2_FLAG(flags, src, IMMUTABLE);
2219         COPY_ONE_EXT2_FLAG(flags, src, NODUMP);
2220         COPY_ONE_EXT2_FLAG(flags, src, NOATIME);
2221         COPY_ONE_EXT2_FLAG(flags, src, DIRSYNC);
2222         btrfs_set_stack_inode_flags(dst, flags);
2223 }
2224
2225 /*
2226  * copy a single inode. do all the required works, such as cloning
2227  * inode item, creating file extents and creating directory entries.
2228  */
2229 static int ext2_copy_single_inode(struct btrfs_trans_handle *trans,
2230                              struct btrfs_root *root, u64 objectid,
2231                              ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
2232                              struct ext2_inode *ext2_inode,
2233                              int datacsum, int packing, int noxattr)
2234 {
2235         int ret;
2236         struct btrfs_inode_item btrfs_inode;
2237
2238         if (ext2_inode->i_links_count == 0)
2239                 return 0;
2240
2241         ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize);
2242         if (!datacsum && S_ISREG(ext2_inode->i_mode)) {
2243                 u32 flags = btrfs_stack_inode_flags(&btrfs_inode) |
2244                             BTRFS_INODE_NODATASUM;
2245                 btrfs_set_stack_inode_flags(&btrfs_inode, flags);
2246         }
2247         ext2_convert_inode_flags(&btrfs_inode, ext2_inode);
2248
2249         switch (ext2_inode->i_mode & S_IFMT) {
2250         case S_IFREG:
2251                 ret = ext2_create_file_extents(trans, root, objectid,
2252                         &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing);
2253                 break;
2254         case S_IFDIR:
2255                 ret = ext2_create_dir_entries(trans, root, objectid,
2256                                 &btrfs_inode, ext2_fs, ext2_ino);
2257                 break;
2258         case S_IFLNK:
2259                 ret = ext2_create_symbol_link(trans, root, objectid,
2260                                 &btrfs_inode, ext2_fs, ext2_ino, ext2_inode);
2261                 break;
2262         default:
2263                 ret = 0;
2264                 break;
2265         }
2266         if (ret)
2267                 return ret;
2268
2269         if (!noxattr) {
2270                 ret = ext2_copy_extended_attrs(trans, root, objectid,
2271                                 &btrfs_inode, ext2_fs, ext2_ino);
2272                 if (ret)
2273                         return ret;
2274         }
2275         return btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
2276 }
2277
2278 /*
2279  * scan ext2's inode bitmap and copy all used inodes.
2280  */
2281 static int ext2_copy_inodes(struct btrfs_convert_context *cctx,
2282                             struct btrfs_root *root,
2283                             int datacsum, int packing, int noxattr, struct task_ctx *p)
2284 {
2285         ext2_filsys ext2_fs = cctx->fs_data;
2286         int ret;
2287         errcode_t err;
2288         ext2_inode_scan ext2_scan;
2289         struct ext2_inode ext2_inode;
2290         ext2_ino_t ext2_ino;
2291         u64 objectid;
2292         struct btrfs_trans_handle *trans;
2293
2294         trans = btrfs_start_transaction(root, 1);
2295         if (!trans)
2296                 return -ENOMEM;
2297         err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan);
2298         if (err) {
2299                 fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err));
2300                 return -1;
2301         }
2302         while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino,
2303                                              &ext2_inode))) {
2304                 /* no more inodes */
2305                 if (ext2_ino == 0)
2306                         break;
2307                 /* skip special inode in ext2fs */
2308                 if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO &&
2309                     ext2_ino != EXT2_ROOT_INO)
2310                         continue;
2311                 objectid = ext2_ino + INO_OFFSET;
2312                 ret = ext2_copy_single_inode(trans, root,
2313                                         objectid, ext2_fs, ext2_ino,
2314                                         &ext2_inode, datacsum, packing,
2315                                         noxattr);
2316                 p->cur_copy_inodes++;
2317                 if (ret)
2318                         return ret;
2319                 if (trans->blocks_used >= 4096) {
2320                         ret = btrfs_commit_transaction(trans, root);
2321                         BUG_ON(ret);
2322                         trans = btrfs_start_transaction(root, 1);
2323                         BUG_ON(!trans);
2324                 }
2325         }
2326         if (err) {
2327                 fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err));
2328                 return -1;
2329         }
2330         ret = btrfs_commit_transaction(trans, root);
2331         BUG_ON(ret);
2332         ext2fs_close_inode_scan(ext2_scan);
2333
2334         return ret;
2335 }
2336
2337 static const struct btrfs_convert_operations ext2_convert_ops = {
2338         .name                   = "ext2",
2339         .open_fs                = ext2_open_fs,
2340         .read_used_space        = ext2_read_used_space,
2341         .copy_inodes            = ext2_copy_inodes,
2342         .close_fs               = ext2_close_fs,
2343         .check_state            = ext2_check_state,
2344 };
2345
2346 #endif
2347
2348 static const struct btrfs_convert_operations *convert_operations[] = {
2349 #if BTRFSCONVERT_EXT2
2350         &ext2_convert_ops,
2351 #endif
2352 };
2353
2354 static int convert_open_fs(const char *devname,
2355                            struct btrfs_convert_context *cctx)
2356 {
2357         int i;
2358
2359         memset(cctx, 0, sizeof(*cctx));
2360
2361         for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
2362                 int ret = convert_operations[i]->open_fs(cctx, devname);
2363
2364                 if (ret == 0) {
2365                         cctx->convert_ops = convert_operations[i];
2366                         return ret;
2367                 }
2368         }
2369
2370         error("no file system found to convert");
2371         return -1;
2372 }
2373
2374 static int do_convert(const char *devname, int datacsum, int packing,
2375                 int noxattr, u32 nodesize, int copylabel, const char *fslabel,
2376                 int progress, u64 features)
2377 {
2378         int ret;
2379         int fd = -1;
2380         u32 blocksize;
2381         u64 total_bytes;
2382         struct btrfs_root *root;
2383         struct btrfs_root *image_root;
2384         struct btrfs_convert_context cctx;
2385         struct btrfs_key key;
2386         char *subvol_name = NULL;
2387         struct task_ctx ctx;
2388         char features_buf[64];
2389         struct btrfs_mkfs_config mkfs_cfg;
2390
2391         init_convert_context(&cctx);
2392         ret = convert_open_fs(devname, &cctx);
2393         if (ret)
2394                 goto fail;
2395         ret = convert_check_state(&cctx);
2396         if (ret)
2397                 warning(
2398                 "source filesystem is not clean, running filesystem check is recommended");
2399         ret = convert_read_used_space(&cctx);
2400         if (ret)
2401                 goto fail;
2402
2403         blocksize = cctx.blocksize;
2404         total_bytes = (u64)blocksize * (u64)cctx.block_count;
2405         if (blocksize < 4096) {
2406                 error("block size is too small: %u < 4096", blocksize);
2407                 goto fail;
2408         }
2409         if (btrfs_check_nodesize(nodesize, blocksize, features))
2410                 goto fail;
2411         fd = open(devname, O_RDWR);
2412         if (fd < 0) {
2413                 error("unable to open %s: %s", devname, strerror(errno));
2414                 goto fail;
2415         }
2416         btrfs_parse_features_to_string(features_buf, features);
2417         if (features == BTRFS_MKFS_DEFAULT_FEATURES)
2418                 strcat(features_buf, " (default)");
2419
2420         printf("create btrfs filesystem:\n");
2421         printf("\tblocksize: %u\n", blocksize);
2422         printf("\tnodesize:  %u\n", nodesize);
2423         printf("\tfeatures:  %s\n", features_buf);
2424
2425         mkfs_cfg.label = cctx.volume_name;
2426         mkfs_cfg.num_bytes = total_bytes;
2427         mkfs_cfg.nodesize = nodesize;
2428         mkfs_cfg.sectorsize = blocksize;
2429         mkfs_cfg.stripesize = blocksize;
2430         mkfs_cfg.features = features;
2431         /* New convert need these space */
2432         memset(mkfs_cfg.chunk_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2433         memset(mkfs_cfg.fs_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2434
2435         ret = make_convert_btrfs(fd, &mkfs_cfg, &cctx);
2436         if (ret) {
2437                 error("unable to create initial ctree: %s", strerror(-ret));
2438                 goto fail;
2439         }
2440
2441         root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
2442                              OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2443         if (!root) {
2444                 error("unable to open ctree");
2445                 goto fail;
2446         }
2447         ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr);
2448         if (ret) {
2449                 error("unable to setup the root tree: %d", ret);
2450                 goto fail;
2451         }
2452
2453         printf("creating %s image file\n", cctx.convert_ops->name);
2454         ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name);
2455         if (ret < 0) {
2456                 error("memory allocation failure for subvolume name: %s_saved",
2457                         cctx.convert_ops->name);
2458                 goto fail;
2459         }
2460         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2461         key.offset = (u64)-1;
2462         key.type = BTRFS_ROOT_ITEM_KEY;
2463         image_root = btrfs_read_fs_root(root->fs_info, &key);
2464         if (!image_root) {
2465                 error("unable to create image subvolume");
2466                 goto fail;
2467         }
2468         ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
2469                               mkfs_cfg.num_bytes, "image", datacsum);
2470         if (ret) {
2471                 error("failed to create %s/image: %d", subvol_name, ret);
2472                 goto fail;
2473         }
2474
2475         printf("creating btrfs metadata");
2476         ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
2477         ctx.cur_copy_inodes = 0;
2478
2479         if (progress) {
2480                 ctx.info = task_init(print_copied_inodes, after_copied_inodes,
2481                                      &ctx);
2482                 task_start(ctx.info);
2483         }
2484         ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx);
2485         if (ret) {
2486                 error("error during copy_inodes %d", ret);
2487                 goto fail;
2488         }
2489         if (progress) {
2490                 task_stop(ctx.info);
2491                 task_deinit(ctx.info);
2492         }
2493
2494         image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID);
2495         if (!image_root) {
2496                 error("unable to link subvolume %s", subvol_name);
2497                 goto fail;
2498         }
2499
2500         free(subvol_name);
2501
2502         memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
2503         if (copylabel == 1) {
2504                 __strncpy_null(root->fs_info->super_copy->label,
2505                                 cctx.volume_name, BTRFS_LABEL_SIZE - 1);
2506                 printf("copy label '%s'\n", root->fs_info->super_copy->label);
2507         } else if (copylabel == -1) {
2508                 strcpy(root->fs_info->super_copy->label, fslabel);
2509                 printf("set label to '%s'\n", fslabel);
2510         }
2511
2512         ret = close_ctree(root);
2513         if (ret) {
2514                 error("close_ctree failed: %d", ret);
2515                 goto fail;
2516         }
2517         convert_close_fs(&cctx);
2518         clean_convert_context(&cctx);
2519
2520         /*
2521          * If this step succeed, we get a mountable btrfs. Otherwise
2522          * the source fs is left unchanged.
2523          */
2524         ret = migrate_super_block(fd, mkfs_cfg.super_bytenr);
2525         if (ret) {
2526                 error("unable to migrate super block: %d", ret);
2527                 goto fail;
2528         }
2529
2530         root = open_ctree_fd(fd, devname, 0,
2531                         OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2532         if (!root) {
2533                 error("unable to open ctree for finalization");
2534                 goto fail;
2535         }
2536         root->fs_info->finalize_on_close = 1;
2537         close_ctree(root);
2538         close(fd);
2539
2540         printf("conversion complete");
2541         return 0;
2542 fail:
2543         clean_convert_context(&cctx);
2544         if (fd != -1)
2545                 close(fd);
2546         warning(
2547 "an error occurred during conversion, filesystem is partially created but not finalized and not mountable");
2548         return -1;
2549 }
2550
2551 /*
2552  * Check if a non 1:1 mapped chunk can be rolled back.
2553  * For new convert, it's OK while for old convert it's not.
2554  */
2555 static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr)
2556 {
2557         struct btrfs_block_group_cache *bg;
2558         struct btrfs_key key;
2559         struct btrfs_path path;
2560         struct btrfs_root *extent_root = fs_info->extent_root;
2561         u64 bg_start;
2562         u64 bg_end;
2563         int ret;
2564
2565         bg = btrfs_lookup_first_block_group(fs_info, bytenr);
2566         if (!bg)
2567                 return -ENOENT;
2568         bg_start = bg->key.objectid;
2569         bg_end = bg->key.objectid + bg->key.offset;
2570
2571         key.objectid = bg_end;
2572         key.type = BTRFS_METADATA_ITEM_KEY;
2573         key.offset = 0;
2574         btrfs_init_path(&path);
2575
2576         ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0);
2577         if (ret < 0)
2578                 return ret;
2579
2580         while (1) {
2581                 struct btrfs_extent_item *ei;
2582
2583                 ret = btrfs_previous_extent_item(extent_root, &path, bg_start);
2584                 if (ret > 0) {
2585                         ret = 0;
2586                         break;
2587                 }
2588                 if (ret < 0)
2589                         break;
2590
2591                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2592                 if (key.type == BTRFS_METADATA_ITEM_KEY)
2593                         continue;
2594                 /* Now it's EXTENT_ITEM_KEY only */
2595                 ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
2596                                     struct btrfs_extent_item);
2597                 /*
2598                  * Found data extent, means this is old convert must follow 1:1
2599                  * mapping.
2600                  */
2601                 if (btrfs_extent_flags(path.nodes[0], ei)
2602                                 & BTRFS_EXTENT_FLAG_DATA) {
2603                         ret = -EINVAL;
2604                         break;
2605                 }
2606         }
2607         btrfs_release_path(&path);
2608         return ret;
2609 }
2610
2611 static int may_rollback(struct btrfs_root *root)
2612 {
2613         struct btrfs_fs_info *info = root->fs_info;
2614         struct btrfs_multi_bio *multi = NULL;
2615         u64 bytenr;
2616         u64 length;
2617         u64 physical;
2618         u64 total_bytes;
2619         int num_stripes;
2620         int ret;
2621
2622         if (btrfs_super_num_devices(info->super_copy) != 1)
2623                 goto fail;
2624
2625         bytenr = BTRFS_SUPER_INFO_OFFSET;
2626         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2627
2628         while (1) {
2629                 ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr,
2630                                       &length, &multi, 0, NULL);
2631                 if (ret) {
2632                         if (ret == -ENOENT) {
2633                                 /* removed block group at the tail */
2634                                 if (length == (u64)-1)
2635                                         break;
2636
2637                                 /* removed block group in the middle */
2638                                 goto next;
2639                         }
2640                         goto fail;
2641                 }
2642
2643                 num_stripes = multi->num_stripes;
2644                 physical = multi->stripes[0].physical;
2645                 free(multi);
2646
2647                 if (num_stripes != 1) {
2648                         error("num stripes for bytenr %llu is not 1", bytenr);
2649                         goto fail;
2650                 }
2651
2652                 /*
2653                  * Extra check for new convert, as metadata chunk from new
2654                  * convert is much more free than old convert, it doesn't need
2655                  * to do 1:1 mapping.
2656                  */
2657                 if (physical != bytenr) {
2658                         /*
2659                          * Check if it's a metadata chunk and has only metadata
2660                          * extent.
2661                          */
2662                         ret = may_rollback_chunk(info, bytenr);
2663                         if (ret < 0)
2664                                 goto fail;
2665                 }
2666 next:
2667                 bytenr += length;
2668                 if (bytenr >= total_bytes)
2669                         break;
2670         }
2671         return 0;
2672 fail:
2673         return -1;
2674 }
2675
2676 static int do_rollback(const char *devname)
2677 {
2678         int fd = -1;
2679         int ret;
2680         int i;
2681         struct btrfs_root *root;
2682         struct btrfs_root *image_root;
2683         struct btrfs_root *chunk_root;
2684         struct btrfs_dir_item *dir;
2685         struct btrfs_inode_item *inode;
2686         struct btrfs_file_extent_item *fi;
2687         struct btrfs_trans_handle *trans;
2688         struct extent_buffer *leaf;
2689         struct btrfs_block_group_cache *cache1;
2690         struct btrfs_block_group_cache *cache2;
2691         struct btrfs_key key;
2692         struct btrfs_path path;
2693         struct extent_io_tree io_tree;
2694         char *buf = NULL;
2695         char *name;
2696         u64 bytenr;
2697         u64 num_bytes;
2698         u64 root_dir;
2699         u64 objectid;
2700         u64 offset;
2701         u64 start;
2702         u64 end;
2703         u64 sb_bytenr;
2704         u64 first_free;
2705         u64 total_bytes;
2706         u32 sectorsize;
2707
2708         extent_io_tree_init(&io_tree);
2709
2710         fd = open(devname, O_RDWR);
2711         if (fd < 0) {
2712                 error("unable to open %s: %s", devname, strerror(errno));
2713                 goto fail;
2714         }
2715         root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES);
2716         if (!root) {
2717                 error("unable to open ctree");
2718                 goto fail;
2719         }
2720         ret = may_rollback(root);
2721         if (ret < 0) {
2722                 error("unable to do rollback: %d", ret);
2723                 goto fail;
2724         }
2725
2726         sectorsize = root->sectorsize;
2727         buf = malloc(sectorsize);
2728         if (!buf) {
2729                 error("unable to allocate memory");
2730                 goto fail;
2731         }
2732
2733         btrfs_init_path(&path);
2734
2735         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2736         key.type = BTRFS_ROOT_BACKREF_KEY;
2737         key.offset = BTRFS_FS_TREE_OBJECTID;
2738         ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0,
2739                                 0);
2740         btrfs_release_path(&path);
2741         if (ret > 0) {
2742                 error("unable to convert ext2 image subvolume, is it deleted?");
2743                 goto fail;
2744         } else if (ret < 0) {
2745                 error("unable to open ext2_saved, id %llu: %s",
2746                         (unsigned long long)key.objectid, strerror(-ret));
2747                 goto fail;
2748         }
2749
2750         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2751         key.type = BTRFS_ROOT_ITEM_KEY;
2752         key.offset = (u64)-1;
2753         image_root = btrfs_read_fs_root(root->fs_info, &key);
2754         if (!image_root || IS_ERR(image_root)) {
2755                 error("unable to open subvolume %llu: %ld",
2756                         (unsigned long long)key.objectid, PTR_ERR(image_root));
2757                 goto fail;
2758         }
2759
2760         name = "image";
2761         root_dir = btrfs_root_dirid(&root->root_item);
2762         dir = btrfs_lookup_dir_item(NULL, image_root, &path,
2763                                    root_dir, name, strlen(name), 0);
2764         if (!dir || IS_ERR(dir)) {
2765                 error("unable to find file %s: %ld", name, PTR_ERR(dir));
2766                 goto fail;
2767         }
2768         leaf = path.nodes[0];
2769         btrfs_dir_item_key_to_cpu(leaf, dir, &key);
2770         btrfs_release_path(&path);
2771
2772         objectid = key.objectid;
2773
2774         ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
2775         if (ret) {
2776                 error("unable to find inode item: %d", ret);
2777                 goto fail;
2778         }
2779         leaf = path.nodes[0];
2780         inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item);
2781         total_bytes = btrfs_inode_size(leaf, inode);
2782         btrfs_release_path(&path);
2783
2784         key.objectid = objectid;
2785         key.offset = 0;
2786         key.type = BTRFS_EXTENT_DATA_KEY;
2787         ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
2788         if (ret != 0) {
2789                 error("unable to find first file extent: %d", ret);
2790                 btrfs_release_path(&path);
2791                 goto fail;
2792         }
2793
2794         /* build mapping tree for the relocated blocks */
2795         for (offset = 0; offset < total_bytes; ) {
2796                 leaf = path.nodes[0];
2797                 if (path.slots[0] >= btrfs_header_nritems(leaf)) {
2798                         ret = btrfs_next_leaf(root, &path);
2799                         if (ret != 0)
2800                                 break;  
2801                         continue;
2802                 }
2803
2804                 btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
2805                 if (key.objectid != objectid || key.offset != offset ||
2806                     key.type != BTRFS_EXTENT_DATA_KEY)
2807                         break;
2808
2809                 fi = btrfs_item_ptr(leaf, path.slots[0],
2810                                     struct btrfs_file_extent_item);
2811                 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2812                         break;
2813                 if (btrfs_file_extent_compression(leaf, fi) ||
2814                     btrfs_file_extent_encryption(leaf, fi) ||
2815                     btrfs_file_extent_other_encoding(leaf, fi))
2816                         break;
2817
2818                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2819                 /* skip holes and direct mapped extents */
2820                 if (bytenr == 0 || bytenr == offset)
2821                         goto next_extent;
2822
2823                 bytenr += btrfs_file_extent_offset(leaf, fi);
2824                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
2825
2826                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2827                 cache2 = btrfs_lookup_block_group(root->fs_info,
2828                                                   offset + num_bytes - 1);
2829                 /*
2830                  * Here we must take consideration of old and new convert
2831                  * behavior.
2832                  * For old convert case, sign, there is no consist chunk type
2833                  * that will cover the extent. META/DATA/SYS are all possible.
2834                  * Just ensure relocate one is in SYS chunk.
2835                  * For new convert case, they are all covered by DATA chunk.
2836                  *
2837                  * So, there is not valid chunk type check for it now.
2838                  */
2839                 if (cache1 != cache2)
2840                         break;
2841
2842                 set_extent_bits(&io_tree, offset, offset + num_bytes - 1,
2843                                 EXTENT_LOCKED, GFP_NOFS);
2844                 set_state_private(&io_tree, offset, bytenr);
2845 next_extent:
2846                 offset += btrfs_file_extent_num_bytes(leaf, fi);
2847                 path.slots[0]++;
2848         }
2849         btrfs_release_path(&path);
2850
2851         if (offset < total_bytes) {
2852                 error("unable to build extent mapping (offset %llu, total_bytes %llu)",
2853                                 (unsigned long long)offset,
2854                                 (unsigned long long)total_bytes);
2855                 error("converted filesystem after balance is unable to rollback");
2856                 goto fail;
2857         }
2858
2859         first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1;
2860         first_free &= ~((u64)sectorsize - 1);
2861         /* backup for extent #0 should exist */
2862         if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) {
2863                 error("no backup for the first extent");
2864                 goto fail;
2865         }
2866         /* force no allocation from system block group */
2867         root->fs_info->system_allocs = -1;
2868         trans = btrfs_start_transaction(root, 1);
2869         if (!trans) {
2870                 error("unable to start transaction");
2871                 goto fail;
2872         }
2873         /*
2874          * recow the whole chunk tree, this will remove all chunk tree blocks
2875          * from system block group
2876          */
2877         chunk_root = root->fs_info->chunk_root;
2878         memset(&key, 0, sizeof(key));
2879         while (1) {
2880                 ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
2881                 if (ret < 0)
2882                         break;
2883
2884                 ret = btrfs_next_leaf(chunk_root, &path);
2885                 if (ret)
2886                         break;
2887
2888                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2889                 btrfs_release_path(&path);
2890         }
2891         btrfs_release_path(&path);
2892
2893         offset = 0;
2894         num_bytes = 0;
2895         while(1) {
2896                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2897                 if (!cache1)
2898                         break;
2899
2900                 if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2901                         num_bytes += btrfs_block_group_used(&cache1->item);
2902
2903                 offset = cache1->key.objectid + cache1->key.offset;
2904         }
2905         /* only extent #0 left in system block group? */
2906         if (num_bytes > first_free) {
2907                 error(
2908         "unable to empty system block group (num_bytes %llu, first_free %llu",
2909                                 (unsigned long long)num_bytes,
2910                                 (unsigned long long)first_free);
2911                 goto fail;
2912         }
2913         /* create a system chunk that maps the whole device */
2914         ret = prepare_system_chunk_sb(root->fs_info->super_copy);
2915         if (ret) {
2916                 error("unable to update system chunk: %d", ret);
2917                 goto fail;
2918         }
2919
2920         ret = btrfs_commit_transaction(trans, root);
2921         if (ret) {
2922                 error("transaction commit failed: %d", ret);
2923                 goto fail;
2924         }
2925
2926         ret = close_ctree(root);
2927         if (ret) {
2928                 error("close_ctree failed: %d", ret);
2929                 goto fail;
2930         }
2931
2932         /* zero btrfs super block mirrors */
2933         memset(buf, 0, sectorsize);
2934         for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2935                 bytenr = btrfs_sb_offset(i);
2936                 if (bytenr >= total_bytes)
2937                         break;
2938                 ret = pwrite(fd, buf, sectorsize, bytenr);
2939                 if (ret != sectorsize) {
2940                         error("zeroing superblock mirror %d failed: %d",
2941                                         i, ret);
2942                         goto fail;
2943                 }
2944         }
2945
2946         sb_bytenr = (u64)-1;
2947         /* copy all relocated blocks back */
2948         while(1) {
2949                 ret = find_first_extent_bit(&io_tree, 0, &start, &end,
2950                                             EXTENT_LOCKED);
2951                 if (ret)
2952                         break;
2953
2954                 ret = get_state_private(&io_tree, start, &bytenr);
2955                 BUG_ON(ret);
2956
2957                 clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED,
2958                                   GFP_NOFS);
2959
2960                 while (start <= end) {
2961                         if (start == BTRFS_SUPER_INFO_OFFSET) {
2962                                 sb_bytenr = bytenr;
2963                                 goto next_sector;
2964                         }
2965                         ret = pread(fd, buf, sectorsize, bytenr);
2966                         if (ret < 0) {
2967                                 error("reading superblock at %llu failed: %d",
2968                                                 (unsigned long long)bytenr, ret);
2969                                 goto fail;
2970                         }
2971                         BUG_ON(ret != sectorsize);
2972                         ret = pwrite(fd, buf, sectorsize, start);
2973                         if (ret < 0) {
2974                                 error("writing superblock at %llu failed: %d",
2975                                                 (unsigned long long)start, ret);
2976                                 goto fail;
2977                         }
2978                         BUG_ON(ret != sectorsize);
2979 next_sector:
2980                         start += sectorsize;
2981                         bytenr += sectorsize;
2982                 }
2983         }
2984
2985         ret = fsync(fd);
2986         if (ret < 0) {
2987                 error("fsync failed: %s", strerror(errno));
2988                 goto fail;
2989         }
2990         /*
2991          * finally, overwrite btrfs super block.
2992          */
2993         ret = pread(fd, buf, sectorsize, sb_bytenr);
2994         if (ret < 0) {
2995                 error("reading primary superblock failed: %s",
2996                                 strerror(errno));
2997                 goto fail;
2998         }
2999         BUG_ON(ret != sectorsize);
3000         ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
3001         if (ret < 0) {
3002                 error("writing primary superblock failed: %s",
3003                                 strerror(errno));
3004                 goto fail;
3005         }
3006         BUG_ON(ret != sectorsize);
3007         ret = fsync(fd);
3008         if (ret < 0) {
3009                 error("fsync failed: %s", strerror(errno));
3010                 goto fail;
3011         }
3012
3013         close(fd);
3014         free(buf);
3015         extent_io_tree_cleanup(&io_tree);
3016         printf("rollback complete\n");
3017         return 0;
3018
3019 fail:
3020         if (fd != -1)
3021                 close(fd);
3022         free(buf);
3023         error("rollback aborted");
3024         return -1;
3025 }
3026
3027 static void print_usage(void)
3028 {
3029         printf("usage: btrfs-convert [options] device\n");
3030         printf("options:\n");
3031         printf("\t-d|--no-datasum        disable data checksum, sets NODATASUM\n");
3032         printf("\t-i|--no-xattr          ignore xattrs and ACLs\n");
3033         printf("\t-n|--no-inline         disable inlining of small files to metadata\n");
3034         printf("\t-N|--nodesize SIZE     set filesystem metadata nodesize\n");
3035         printf("\t-r|--rollback          roll back to the original filesystem\n");
3036         printf("\t-l|--label LABEL       set filesystem label\n");
3037         printf("\t-L|--copy-label        use label from converted filesystem\n");
3038         printf("\t-p|--progress          show converting progress (default)\n");
3039         printf("\t-O|--features LIST     comma separated list of filesystem features\n");
3040         printf("\t--no-progress          show only overview, not the detailed progress\n");
3041         printf("\n");
3042         printf("Supported filesystems:\n");
3043         printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
3044 }
3045
3046 int main(int argc, char *argv[])
3047 {
3048         int ret;
3049         int packing = 1;
3050         int noxattr = 0;
3051         int datacsum = 1;
3052         u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
3053                         BTRFS_MKFS_DEFAULT_NODE_SIZE);
3054         int rollback = 0;
3055         int copylabel = 0;
3056         int usage_error = 0;
3057         int progress = 1;
3058         char *file;
3059         char fslabel[BTRFS_LABEL_SIZE];
3060         u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
3061
3062         while(1) {
3063                 enum { GETOPT_VAL_NO_PROGRESS = 256 };
3064                 static const struct option long_options[] = {
3065                         { "no-progress", no_argument, NULL,
3066                                 GETOPT_VAL_NO_PROGRESS },
3067                         { "no-datasum", no_argument, NULL, 'd' },
3068                         { "no-inline", no_argument, NULL, 'n' },
3069                         { "no-xattr", no_argument, NULL, 'i' },
3070                         { "rollback", no_argument, NULL, 'r' },
3071                         { "features", required_argument, NULL, 'O' },
3072                         { "progress", no_argument, NULL, 'p' },
3073                         { "label", required_argument, NULL, 'l' },
3074                         { "copy-label", no_argument, NULL, 'L' },
3075                         { "nodesize", required_argument, NULL, 'N' },
3076                         { "help", no_argument, NULL, GETOPT_VAL_HELP},
3077                         { NULL, 0, NULL, 0 }
3078                 };
3079                 int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
3080
3081                 if (c < 0)
3082                         break;
3083                 switch(c) {
3084                         case 'd':
3085                                 datacsum = 0;
3086                                 break;
3087                         case 'i':
3088                                 noxattr = 1;
3089                                 break;
3090                         case 'n':
3091                                 packing = 0;
3092                                 break;
3093                         case 'N':
3094                                 nodesize = parse_size(optarg);
3095                                 break;
3096                         case 'r':
3097                                 rollback = 1;
3098                                 break;
3099                         case 'l':
3100                                 copylabel = -1;
3101                                 if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
3102                                         warning(
3103                                         "label too long, trimmed to %d bytes",
3104                                                 BTRFS_LABEL_SIZE - 1);
3105                                 }
3106                                 __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
3107                                 break;
3108                         case 'L':
3109                                 copylabel = 1;
3110                                 break;
3111                         case 'p':
3112                                 progress = 1;
3113                                 break;
3114                         case 'O': {
3115                                 char *orig = strdup(optarg);
3116                                 char *tmp = orig;
3117
3118                                 tmp = btrfs_parse_fs_features(tmp, &features);
3119                                 if (tmp) {
3120                                         error("unrecognized filesystem feature: %s",
3121                                                         tmp);
3122                                         free(orig);
3123                                         exit(1);
3124                                 }
3125                                 free(orig);
3126                                 if (features & BTRFS_FEATURE_LIST_ALL) {
3127                                         btrfs_list_all_fs_features(
3128                                                 ~BTRFS_CONVERT_ALLOWED_FEATURES);
3129                                         exit(0);
3130                                 }
3131                                 if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
3132                                         char buf[64];
3133
3134                                         btrfs_parse_features_to_string(buf,
3135                                                 features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
3136                                         error("features not allowed for convert: %s",
3137                                                 buf);
3138                                         exit(1);
3139                                 }
3140
3141                                 break;
3142                                 }
3143                         case GETOPT_VAL_NO_PROGRESS:
3144                                 progress = 0;
3145                                 break;
3146                         case GETOPT_VAL_HELP:
3147                         default:
3148                                 print_usage();
3149                                 return c != GETOPT_VAL_HELP;
3150                 }
3151         }
3152         set_argv0(argv);
3153         if (check_argc_exact(argc - optind, 1)) {
3154                 print_usage();
3155                 return 1;
3156         }
3157
3158         if (rollback && (!datacsum || noxattr || !packing)) {
3159                 fprintf(stderr,
3160                         "Usage error: -d, -i, -n options do not apply to rollback\n");
3161                 usage_error++;
3162         }
3163
3164         if (usage_error) {
3165                 print_usage();
3166                 return 1;
3167         }
3168
3169         file = argv[optind];
3170         ret = check_mounted(file);
3171         if (ret < 0) {
3172                 error("could not check mount status: %s", strerror(-ret));
3173                 return 1;
3174         } else if (ret) {
3175                 error("%s is mounted", file);
3176                 return 1;
3177         }
3178
3179         if (rollback) {
3180                 ret = do_rollback(file);
3181         } else {
3182                 ret = do_convert(file, datacsum, packing, noxattr, nodesize,
3183                                 copylabel, fslabel, progress, features);
3184         }
3185         if (ret)
3186                 return 1;
3187         return 0;
3188 }