btrfs-progs: move fs features declarations to own header from utils
[platform/upstream/btrfs-progs.git] / convert / main.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20
21 #include <sys/ioctl.h>
22 #include <sys/mount.h>
23 #include <stdio.h>
24 #include <stdlib.h>
25 #include <sys/types.h>
26 #include <sys/stat.h>
27 #include <fcntl.h>
28 #include <unistd.h>
29 #include <uuid/uuid.h>
30 #include <linux/limits.h>
31 #include <getopt.h>
32
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "volumes.h"
36 #include "transaction.h"
37 #include "crc32c.h"
38 #include "utils.h"
39 #include "task-utils.h"
40 #include "help.h"
41 #include "mkfs/common.h"
42 #include "convert/common.h"
43 #include "fsfeatures.h"
44
45 #if BTRFSCONVERT_EXT2
46 #include <ext2fs/ext2_fs.h>
47 #include <ext2fs/ext2fs.h>
48 #include <ext2fs/ext2_ext_attr.h>
49
50 #define INO_OFFSET (BTRFS_FIRST_FREE_OBJECTID - EXT2_ROOT_INO)
51
52 /*
53  * Compatibility code for e2fsprogs 1.41 which doesn't support RO compat flag
54  * BIGALLOC.
55  * Unlike normal RO compat flag, BIGALLOC affects how e2fsprogs check used
56  * space, and btrfs-convert heavily relies on it.
57  */
58 #ifdef HAVE_OLD_E2FSPROGS
59 #define EXT2FS_CLUSTER_RATIO(fs)        (1)
60 #define EXT2_CLUSTERS_PER_GROUP(s)      (EXT2_BLOCKS_PER_GROUP(s))
61 #define EXT2FS_B2C(fs, blk)             (blk)
62 #endif
63
64 #endif
65
66 #define CONV_IMAGE_SUBVOL_OBJECTID BTRFS_FIRST_FREE_OBJECTID
67
68 struct task_ctx {
69         uint32_t max_copy_inodes;
70         uint32_t cur_copy_inodes;
71         struct task_info *info;
72 };
73
74 static void *print_copied_inodes(void *p)
75 {
76         struct task_ctx *priv = p;
77         const char work_indicator[] = { '.', 'o', 'O', 'o' };
78         uint32_t count = 0;
79
80         task_period_start(priv->info, 1000 /* 1s */);
81         while (1) {
82                 count++;
83                 printf("copy inodes [%c] [%10d/%10d]\r",
84                        work_indicator[count % 4], priv->cur_copy_inodes,
85                        priv->max_copy_inodes);
86                 fflush(stdout);
87                 task_period_wait(priv->info);
88         }
89
90         return NULL;
91 }
92
93 static int after_copied_inodes(void *p)
94 {
95         printf("\n");
96         fflush(stdout);
97
98         return 0;
99 }
100
101 struct btrfs_convert_context;
102 struct btrfs_convert_operations {
103         const char *name;
104         int (*open_fs)(struct btrfs_convert_context *cctx, const char *devname);
105         int (*read_used_space)(struct btrfs_convert_context *cctx);
106         int (*copy_inodes)(struct btrfs_convert_context *cctx,
107                          struct btrfs_root *root, int datacsum,
108                          int packing, int noxattr, struct task_ctx *p);
109         void (*close_fs)(struct btrfs_convert_context *cctx);
110         int (*check_state)(struct btrfs_convert_context *cctx);
111 };
112
113 static void init_convert_context(struct btrfs_convert_context *cctx)
114 {
115         cache_tree_init(&cctx->used);
116         cache_tree_init(&cctx->data_chunks);
117         cache_tree_init(&cctx->free);
118 }
119
120 static void clean_convert_context(struct btrfs_convert_context *cctx)
121 {
122         free_extent_cache_tree(&cctx->used);
123         free_extent_cache_tree(&cctx->data_chunks);
124         free_extent_cache_tree(&cctx->free);
125 }
126
127 static inline int copy_inodes(struct btrfs_convert_context *cctx,
128                               struct btrfs_root *root, int datacsum,
129                               int packing, int noxattr, struct task_ctx *p)
130 {
131         return cctx->convert_ops->copy_inodes(cctx, root, datacsum, packing,
132                                              noxattr, p);
133 }
134
135 static inline void convert_close_fs(struct btrfs_convert_context *cctx)
136 {
137         cctx->convert_ops->close_fs(cctx);
138 }
139
140 static inline int convert_check_state(struct btrfs_convert_context *cctx)
141 {
142         return cctx->convert_ops->check_state(cctx);
143 }
144
145 static int intersect_with_sb(u64 bytenr, u64 num_bytes)
146 {
147         int i;
148         u64 offset;
149
150         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
151                 offset = btrfs_sb_offset(i);
152                 offset &= ~((u64)BTRFS_STRIPE_LEN - 1);
153
154                 if (bytenr < offset + BTRFS_STRIPE_LEN &&
155                     bytenr + num_bytes > offset)
156                         return 1;
157         }
158         return 0;
159 }
160
161 static int convert_insert_dirent(struct btrfs_trans_handle *trans,
162                                  struct btrfs_root *root,
163                                  const char *name, size_t name_len,
164                                  u64 dir, u64 objectid,
165                                  u8 file_type, u64 index_cnt,
166                                  struct btrfs_inode_item *inode)
167 {
168         int ret;
169         u64 inode_size;
170         struct btrfs_key location = {
171                 .objectid = objectid,
172                 .offset = 0,
173                 .type = BTRFS_INODE_ITEM_KEY,
174         };
175
176         ret = btrfs_insert_dir_item(trans, root, name, name_len,
177                                     dir, &location, file_type, index_cnt);
178         if (ret)
179                 return ret;
180         ret = btrfs_insert_inode_ref(trans, root, name, name_len,
181                                      objectid, dir, index_cnt);
182         if (ret)
183                 return ret;
184         inode_size = btrfs_stack_inode_size(inode) + name_len * 2;
185         btrfs_set_stack_inode_size(inode, inode_size);
186
187         return 0;
188 }
189
190 static int read_disk_extent(struct btrfs_root *root, u64 bytenr,
191                             u32 num_bytes, char *buffer)
192 {
193         int ret;
194         struct btrfs_fs_devices *fs_devs = root->fs_info->fs_devices;
195
196         ret = pread(fs_devs->latest_bdev, buffer, num_bytes, bytenr);
197         if (ret != num_bytes)
198                 goto fail;
199         ret = 0;
200 fail:
201         if (ret > 0)
202                 ret = -1;
203         return ret;
204 }
205
206 static int csum_disk_extent(struct btrfs_trans_handle *trans,
207                             struct btrfs_root *root,
208                             u64 disk_bytenr, u64 num_bytes)
209 {
210         u32 blocksize = root->sectorsize;
211         u64 offset;
212         char *buffer;
213         int ret = 0;
214
215         buffer = malloc(blocksize);
216         if (!buffer)
217                 return -ENOMEM;
218         for (offset = 0; offset < num_bytes; offset += blocksize) {
219                 ret = read_disk_extent(root, disk_bytenr + offset,
220                                         blocksize, buffer);
221                 if (ret)
222                         break;
223                 ret = btrfs_csum_file_block(trans,
224                                             root->fs_info->csum_root,
225                                             disk_bytenr + num_bytes,
226                                             disk_bytenr + offset,
227                                             buffer, blocksize);
228                 if (ret)
229                         break;
230         }
231         free(buffer);
232         return ret;
233 }
234
235 struct blk_iterate_data {
236         struct btrfs_trans_handle *trans;
237         struct btrfs_root *root;
238         struct btrfs_root *convert_root;
239         struct btrfs_inode_item *inode;
240         u64 convert_ino;
241         u64 objectid;
242         u64 first_block;
243         u64 disk_block;
244         u64 num_blocks;
245         u64 boundary;
246         int checksum;
247         int errcode;
248 };
249
250 static void init_blk_iterate_data(struct blk_iterate_data *data,
251                                   struct btrfs_trans_handle *trans,
252                                   struct btrfs_root *root,
253                                   struct btrfs_inode_item *inode,
254                                   u64 objectid, int checksum)
255 {
256         struct btrfs_key key;
257
258         data->trans             = trans;
259         data->root              = root;
260         data->inode             = inode;
261         data->objectid          = objectid;
262         data->first_block       = 0;
263         data->disk_block        = 0;
264         data->num_blocks        = 0;
265         data->boundary          = (u64)-1;
266         data->checksum          = checksum;
267         data->errcode           = 0;
268
269         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
270         key.type = BTRFS_ROOT_ITEM_KEY;
271         key.offset = (u64)-1;
272         data->convert_root = btrfs_read_fs_root(root->fs_info, &key);
273         /* Impossible as we just opened it before */
274         BUG_ON(!data->convert_root || IS_ERR(data->convert_root));
275         data->convert_ino = BTRFS_FIRST_FREE_OBJECTID + 1;
276 }
277
278 /*
279  * Record a file extent in original filesystem into btrfs one.
280  * The special point is, old disk_block can point to a reserved range.
281  * So here, we don't use disk_block directly but search convert_root
282  * to get the real disk_bytenr.
283  */
284 static int record_file_blocks(struct blk_iterate_data *data,
285                               u64 file_block, u64 disk_block, u64 num_blocks)
286 {
287         int ret = 0;
288         struct btrfs_root *root = data->root;
289         struct btrfs_root *convert_root = data->convert_root;
290         struct btrfs_path path;
291         u64 file_pos = file_block * root->sectorsize;
292         u64 old_disk_bytenr = disk_block * root->sectorsize;
293         u64 num_bytes = num_blocks * root->sectorsize;
294         u64 cur_off = old_disk_bytenr;
295
296         /* Hole, pass it to record_file_extent directly */
297         if (old_disk_bytenr == 0)
298                 return btrfs_record_file_extent(data->trans, root,
299                                 data->objectid, data->inode, file_pos, 0,
300                                 num_bytes);
301
302         btrfs_init_path(&path);
303
304         /*
305          * Search real disk bytenr from convert root
306          */
307         while (cur_off < old_disk_bytenr + num_bytes) {
308                 struct btrfs_key key;
309                 struct btrfs_file_extent_item *fi;
310                 struct extent_buffer *node;
311                 int slot;
312                 u64 extent_disk_bytenr;
313                 u64 extent_num_bytes;
314                 u64 real_disk_bytenr;
315                 u64 cur_len;
316
317                 key.objectid = data->convert_ino;
318                 key.type = BTRFS_EXTENT_DATA_KEY;
319                 key.offset = cur_off;
320
321                 ret = btrfs_search_slot(NULL, convert_root, &key, &path, 0, 0);
322                 if (ret < 0)
323                         break;
324                 if (ret > 0) {
325                         ret = btrfs_previous_item(convert_root, &path,
326                                                   data->convert_ino,
327                                                   BTRFS_EXTENT_DATA_KEY);
328                         if (ret < 0)
329                                 break;
330                         if (ret > 0) {
331                                 ret = -ENOENT;
332                                 break;
333                         }
334                 }
335                 node = path.nodes[0];
336                 slot = path.slots[0];
337                 btrfs_item_key_to_cpu(node, &key, slot);
338                 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY ||
339                        key.objectid != data->convert_ino ||
340                        key.offset > cur_off);
341                 fi = btrfs_item_ptr(node, slot, struct btrfs_file_extent_item);
342                 extent_disk_bytenr = btrfs_file_extent_disk_bytenr(node, fi);
343                 extent_num_bytes = btrfs_file_extent_num_bytes(node, fi);
344                 BUG_ON(cur_off - key.offset >= extent_num_bytes);
345                 btrfs_release_path(&path);
346
347                 if (extent_disk_bytenr)
348                         real_disk_bytenr = cur_off - key.offset +
349                                            extent_disk_bytenr;
350                 else
351                         real_disk_bytenr = 0;
352                 cur_len = min(key.offset + extent_num_bytes,
353                               old_disk_bytenr + num_bytes) - cur_off;
354                 ret = btrfs_record_file_extent(data->trans, data->root,
355                                         data->objectid, data->inode, file_pos,
356                                         real_disk_bytenr, cur_len);
357                 if (ret < 0)
358                         break;
359                 cur_off += cur_len;
360                 file_pos += cur_len;
361
362                 /*
363                  * No need to care about csum
364                  * As every byte of old fs image is calculated for csum, no
365                  * need to waste CPU cycles now.
366                  */
367         }
368         btrfs_release_path(&path);
369         return ret;
370 }
371
372 static int block_iterate_proc(u64 disk_block, u64 file_block,
373                               struct blk_iterate_data *idata)
374 {
375         int ret = 0;
376         int sb_region;
377         int do_barrier;
378         struct btrfs_root *root = idata->root;
379         struct btrfs_block_group_cache *cache;
380         u64 bytenr = disk_block * root->sectorsize;
381
382         sb_region = intersect_with_sb(bytenr, root->sectorsize);
383         do_barrier = sb_region || disk_block >= idata->boundary;
384         if ((idata->num_blocks > 0 && do_barrier) ||
385             (file_block > idata->first_block + idata->num_blocks) ||
386             (disk_block != idata->disk_block + idata->num_blocks)) {
387                 if (idata->num_blocks > 0) {
388                         ret = record_file_blocks(idata, idata->first_block,
389                                                  idata->disk_block,
390                                                  idata->num_blocks);
391                         if (ret)
392                                 goto fail;
393                         idata->first_block += idata->num_blocks;
394                         idata->num_blocks = 0;
395                 }
396                 if (file_block > idata->first_block) {
397                         ret = record_file_blocks(idata, idata->first_block,
398                                         0, file_block - idata->first_block);
399                         if (ret)
400                                 goto fail;
401                 }
402
403                 if (sb_region) {
404                         bytenr += BTRFS_STRIPE_LEN - 1;
405                         bytenr &= ~((u64)BTRFS_STRIPE_LEN - 1);
406                 } else {
407                         cache = btrfs_lookup_block_group(root->fs_info, bytenr);
408                         BUG_ON(!cache);
409                         bytenr = cache->key.objectid + cache->key.offset;
410                 }
411
412                 idata->first_block = file_block;
413                 idata->disk_block = disk_block;
414                 idata->boundary = bytenr / root->sectorsize;
415         }
416         idata->num_blocks++;
417 fail:
418         return ret;
419 }
420
421 static int create_image_file_range(struct btrfs_trans_handle *trans,
422                                       struct btrfs_root *root,
423                                       struct cache_tree *used,
424                                       struct btrfs_inode_item *inode,
425                                       u64 ino, u64 bytenr, u64 *ret_len,
426                                       int datacsum)
427 {
428         struct cache_extent *cache;
429         struct btrfs_block_group_cache *bg_cache;
430         u64 len = *ret_len;
431         u64 disk_bytenr;
432         int i;
433         int ret;
434
435         if (bytenr != round_down(bytenr, root->sectorsize)) {
436                 error("bytenr not sectorsize aligned: %llu",
437                                 (unsigned long long)bytenr);
438                 return -EINVAL;
439         }
440         if (len != round_down(len, root->sectorsize)) {
441                 error("length not sectorsize aligned: %llu",
442                                 (unsigned long long)len);
443                 return -EINVAL;
444         }
445         len = min_t(u64, len, BTRFS_MAX_EXTENT_SIZE);
446
447         /*
448          * Skip sb ranges first
449          * [0, 1M), [sb_offset(1), +64K), [sb_offset(2), +64K].
450          *
451          * Or we will insert a hole into current image file, and later
452          * migrate block will fail as there is already a file extent.
453          */
454         if (bytenr < 1024 * 1024) {
455                 *ret_len = 1024 * 1024 - bytenr;
456                 return 0;
457         }
458         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
459                 u64 cur = btrfs_sb_offset(i);
460
461                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
462                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
463                         return 0;
464                 }
465         }
466         for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) {
467                 u64 cur = btrfs_sb_offset(i);
468
469                 /*
470                  *      |--reserved--|
471                  * |----range-------|
472                  * May still need to go through file extent inserts
473                  */
474                 if (bytenr < cur && bytenr + len >= cur) {
475                         len = min_t(u64, len, cur - bytenr);
476                         break;
477                 }
478                 /*
479                  * |--reserved--|
480                  *      |---range---|
481                  * Drop out, no need to insert anything
482                  */
483                 if (bytenr >= cur && bytenr < cur + BTRFS_STRIPE_LEN) {
484                         *ret_len = cur + BTRFS_STRIPE_LEN - bytenr;
485                         return 0;
486                 }
487         }
488
489         cache = search_cache_extent(used, bytenr);
490         if (cache) {
491                 if (cache->start <= bytenr) {
492                         /*
493                          * |///////Used///////|
494                          *      |<--insert--->|
495                          *      bytenr
496                          */
497                         len = min_t(u64, len, cache->start + cache->size -
498                                     bytenr);
499                         disk_bytenr = bytenr;
500                 } else {
501                         /*
502                          *              |//Used//|
503                          *  |<-insert-->|
504                          *  bytenr
505                          */
506                         len = min(len, cache->start - bytenr);
507                         disk_bytenr = 0;
508                         datacsum = 0;
509                 }
510         } else {
511                 /*
512                  * |//Used//|           |EOF
513                  *          |<-insert-->|
514                  *          bytenr
515                  */
516                 disk_bytenr = 0;
517                 datacsum = 0;
518         }
519
520         if (disk_bytenr) {
521                 /* Check if the range is in a data block group */
522                 bg_cache = btrfs_lookup_block_group(root->fs_info, bytenr);
523                 if (!bg_cache)
524                         return -ENOENT;
525                 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_DATA))
526                         return -EINVAL;
527
528                 /* The extent should never cross block group boundary */
529                 len = min_t(u64, len, bg_cache->key.objectid +
530                             bg_cache->key.offset - bytenr);
531         }
532
533         if (len != round_down(len, root->sectorsize)) {
534                 error("remaining length not sectorsize aligned: %llu",
535                                 (unsigned long long)len);
536                 return -EINVAL;
537         }
538         ret = btrfs_record_file_extent(trans, root, ino, inode, bytenr,
539                                        disk_bytenr, len);
540         if (ret < 0)
541                 return ret;
542
543         if (datacsum)
544                 ret = csum_disk_extent(trans, root, bytenr, len);
545         *ret_len = len;
546         return ret;
547 }
548
549 /*
550  * Relocate old fs data in one reserved ranges
551  *
552  * Since all old fs data in reserved range is not covered by any chunk nor
553  * data extent, we don't need to handle any reference but add new
554  * extent/reference, which makes codes more clear
555  */
556 static int migrate_one_reserved_range(struct btrfs_trans_handle *trans,
557                                       struct btrfs_root *root,
558                                       struct cache_tree *used,
559                                       struct btrfs_inode_item *inode, int fd,
560                                       u64 ino, u64 start, u64 len, int datacsum)
561 {
562         u64 cur_off = start;
563         u64 cur_len = len;
564         u64 hole_start = start;
565         u64 hole_len;
566         struct cache_extent *cache;
567         struct btrfs_key key;
568         struct extent_buffer *eb;
569         int ret = 0;
570
571         while (cur_off < start + len) {
572                 cache = lookup_cache_extent(used, cur_off, cur_len);
573                 if (!cache)
574                         break;
575                 cur_off = max(cache->start, cur_off);
576                 cur_len = min(cache->start + cache->size, start + len) -
577                           cur_off;
578                 BUG_ON(cur_len < root->sectorsize);
579
580                 /* reserve extent for the data */
581                 ret = btrfs_reserve_extent(trans, root, cur_len, 0, 0, (u64)-1,
582                                            &key, 1);
583                 if (ret < 0)
584                         break;
585
586                 eb = malloc(sizeof(*eb) + cur_len);
587                 if (!eb) {
588                         ret = -ENOMEM;
589                         break;
590                 }
591
592                 ret = pread(fd, eb->data, cur_len, cur_off);
593                 if (ret < cur_len) {
594                         ret = (ret < 0 ? ret : -EIO);
595                         free(eb);
596                         break;
597                 }
598                 eb->start = key.objectid;
599                 eb->len = key.offset;
600
601                 /* Write the data */
602                 ret = write_and_map_eb(trans, root, eb);
603                 free(eb);
604                 if (ret < 0)
605                         break;
606
607                 /* Now handle extent item and file extent things */
608                 ret = btrfs_record_file_extent(trans, root, ino, inode, cur_off,
609                                                key.objectid, key.offset);
610                 if (ret < 0)
611                         break;
612                 /* Finally, insert csum items */
613                 if (datacsum)
614                         ret = csum_disk_extent(trans, root, key.objectid,
615                                                key.offset);
616
617                 /* Don't forget to insert hole */
618                 hole_len = cur_off - hole_start;
619                 if (hole_len) {
620                         ret = btrfs_record_file_extent(trans, root, ino, inode,
621                                         hole_start, 0, hole_len);
622                         if (ret < 0)
623                                 break;
624                 }
625
626                 cur_off += key.offset;
627                 hole_start = cur_off;
628                 cur_len = start + len - cur_off;
629         }
630         /* Last hole */
631         if (start + len - hole_start > 0)
632                 ret = btrfs_record_file_extent(trans, root, ino, inode,
633                                 hole_start, 0, start + len - hole_start);
634         return ret;
635 }
636
637 /*
638  * Relocate the used ext2 data in reserved ranges
639  * [0,1M)
640  * [btrfs_sb_offset(1), +BTRFS_STRIPE_LEN)
641  * [btrfs_sb_offset(2), +BTRFS_STRIPE_LEN)
642  */
643 static int migrate_reserved_ranges(struct btrfs_trans_handle *trans,
644                                    struct btrfs_root *root,
645                                    struct cache_tree *used,
646                                    struct btrfs_inode_item *inode, int fd,
647                                    u64 ino, u64 total_bytes, int datacsum)
648 {
649         u64 cur_off;
650         u64 cur_len;
651         int ret = 0;
652
653         /* 0 ~ 1M */
654         cur_off = 0;
655         cur_len = 1024 * 1024;
656         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
657                                          cur_off, cur_len, datacsum);
658         if (ret < 0)
659                 return ret;
660
661         /* second sb(fisrt sb is included in 0~1M) */
662         cur_off = btrfs_sb_offset(1);
663         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
664         if (cur_off > total_bytes)
665                 return ret;
666         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
667                                          cur_off, cur_len, datacsum);
668         if (ret < 0)
669                 return ret;
670
671         /* Last sb */
672         cur_off = btrfs_sb_offset(2);
673         cur_len = min(total_bytes, cur_off + BTRFS_STRIPE_LEN) - cur_off;
674         if (cur_off > total_bytes)
675                 return ret;
676         ret = migrate_one_reserved_range(trans, root, used, inode, fd, ino,
677                                          cur_off, cur_len, datacsum);
678         return ret;
679 }
680
681 /*
682  * Helper for expand and merge extent_cache for wipe_one_reserved_range() to
683  * handle wiping a range that exists in cache.
684  */
685 static int _expand_extent_cache(struct cache_tree *tree,
686                                 struct cache_extent *entry,
687                                 u64 min_stripe_size, int backward)
688 {
689         struct cache_extent *ce;
690         int diff;
691
692         if (entry->size >= min_stripe_size)
693                 return 0;
694         diff = min_stripe_size - entry->size;
695
696         if (backward) {
697                 ce = prev_cache_extent(entry);
698                 if (!ce)
699                         goto expand_back;
700                 if (ce->start + ce->size >= entry->start - diff) {
701                         /* Directly merge with previous extent */
702                         ce->size = entry->start + entry->size - ce->start;
703                         remove_cache_extent(tree, entry);
704                         free(entry);
705                         return 0;
706                 }
707 expand_back:
708                 /* No overlap, normal extent */
709                 if (entry->start < diff) {
710                         error("cannot find space for data chunk layout");
711                         return -ENOSPC;
712                 }
713                 entry->start -= diff;
714                 entry->size += diff;
715                 return 0;
716         }
717         ce = next_cache_extent(entry);
718         if (!ce)
719                 goto expand_after;
720         if (entry->start + entry->size + diff >= ce->start) {
721                 /* Directly merge with next extent */
722                 entry->size = ce->start + ce->size - entry->start;
723                 remove_cache_extent(tree, ce);
724                 free(ce);
725                 return 0;
726         }
727 expand_after:
728         entry->size += diff;
729         return 0;
730 }
731
732 /*
733  * Remove one reserve range from given cache tree
734  * if min_stripe_size is non-zero, it will ensure for split case,
735  * all its split cache extent is no smaller than @min_strip_size / 2.
736  */
737 static int wipe_one_reserved_range(struct cache_tree *tree,
738                                    u64 start, u64 len, u64 min_stripe_size,
739                                    int ensure_size)
740 {
741         struct cache_extent *cache;
742         int ret;
743
744         BUG_ON(ensure_size && min_stripe_size == 0);
745         /*
746          * The logical here is simplified to handle special cases only
747          * So we don't need to consider merge case for ensure_size
748          */
749         BUG_ON(min_stripe_size && (min_stripe_size < len * 2 ||
750                min_stripe_size / 2 < BTRFS_STRIPE_LEN));
751
752         /* Also, wipe range should already be aligned */
753         BUG_ON(start != round_down(start, BTRFS_STRIPE_LEN) ||
754                start + len != round_up(start + len, BTRFS_STRIPE_LEN));
755
756         min_stripe_size /= 2;
757
758         cache = lookup_cache_extent(tree, start, len);
759         if (!cache)
760                 return 0;
761
762         if (start <= cache->start) {
763                 /*
764                  *      |--------cache---------|
765                  * |-wipe-|
766                  */
767                 BUG_ON(start + len <= cache->start);
768
769                 /*
770                  * The wipe size is smaller than min_stripe_size / 2,
771                  * so the result length should still meet min_stripe_size
772                  * And no need to do alignment
773                  */
774                 cache->size -= (start + len - cache->start);
775                 if (cache->size == 0) {
776                         remove_cache_extent(tree, cache);
777                         free(cache);
778                         return 0;
779                 }
780
781                 BUG_ON(ensure_size && cache->size < min_stripe_size);
782
783                 cache->start = start + len;
784                 return 0;
785         } else if (start > cache->start && start + len < cache->start +
786                    cache->size) {
787                 /*
788                  * |-------cache-----|
789                  *      |-wipe-|
790                  */
791                 u64 old_start = cache->start;
792                 u64 old_len = cache->size;
793                 u64 insert_start = start + len;
794                 u64 insert_len;
795
796                 cache->size = start - cache->start;
797                 /* Expand the leading half part if needed */
798                 if (ensure_size && cache->size < min_stripe_size) {
799                         ret = _expand_extent_cache(tree, cache,
800                                         min_stripe_size, 1);
801                         if (ret < 0)
802                                 return ret;
803                 }
804
805                 /* And insert the new one */
806                 insert_len = old_start + old_len - start - len;
807                 ret = add_merge_cache_extent(tree, insert_start, insert_len);
808                 if (ret < 0)
809                         return ret;
810
811                 /* Expand the last half part if needed */
812                 if (ensure_size && insert_len < min_stripe_size) {
813                         cache = lookup_cache_extent(tree, insert_start,
814                                                     insert_len);
815                         if (!cache || cache->start != insert_start ||
816                             cache->size != insert_len)
817                                 return -ENOENT;
818                         ret = _expand_extent_cache(tree, cache,
819                                         min_stripe_size, 0);
820                 }
821
822                 return ret;
823         }
824         /*
825          * |----cache-----|
826          *              |--wipe-|
827          * Wipe len should be small enough and no need to expand the
828          * remaining extent
829          */
830         cache->size = start - cache->start;
831         BUG_ON(ensure_size && cache->size < min_stripe_size);
832         return 0;
833 }
834
835 /*
836  * Remove reserved ranges from given cache_tree
837  *
838  * It will remove the following ranges
839  * 1) 0~1M
840  * 2) 2nd superblock, +64K (make sure chunks are 64K aligned)
841  * 3) 3rd superblock, +64K
842  *
843  * @min_stripe must be given for safety check
844  * and if @ensure_size is given, it will ensure affected cache_extent will be
845  * larger than min_stripe_size
846  */
847 static int wipe_reserved_ranges(struct cache_tree *tree, u64 min_stripe_size,
848                                 int ensure_size)
849 {
850         int ret;
851
852         ret = wipe_one_reserved_range(tree, 0, 1024 * 1024, min_stripe_size,
853                                       ensure_size);
854         if (ret < 0)
855                 return ret;
856         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(1),
857                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
858         if (ret < 0)
859                 return ret;
860         ret = wipe_one_reserved_range(tree, btrfs_sb_offset(2),
861                         BTRFS_STRIPE_LEN, min_stripe_size, ensure_size);
862         return ret;
863 }
864
865 static int calculate_available_space(struct btrfs_convert_context *cctx)
866 {
867         struct cache_tree *used = &cctx->used;
868         struct cache_tree *data_chunks = &cctx->data_chunks;
869         struct cache_tree *free = &cctx->free;
870         struct cache_extent *cache;
871         u64 cur_off = 0;
872         /*
873          * Twice the minimal chunk size, to allow later wipe_reserved_ranges()
874          * works without need to consider overlap
875          */
876         u64 min_stripe_size = 2 * 16 * 1024 * 1024;
877         int ret;
878
879         /* Calculate data_chunks */
880         for (cache = first_cache_extent(used); cache;
881              cache = next_cache_extent(cache)) {
882                 u64 cur_len;
883
884                 if (cache->start + cache->size < cur_off)
885                         continue;
886                 if (cache->start > cur_off + min_stripe_size)
887                         cur_off = cache->start;
888                 cur_len = max(cache->start + cache->size - cur_off,
889                               min_stripe_size);
890                 ret = add_merge_cache_extent(data_chunks, cur_off, cur_len);
891                 if (ret < 0)
892                         goto out;
893                 cur_off += cur_len;
894         }
895         /*
896          * remove reserved ranges, so we won't ever bother relocating an old
897          * filesystem extent to other place.
898          */
899         ret = wipe_reserved_ranges(data_chunks, min_stripe_size, 1);
900         if (ret < 0)
901                 goto out;
902
903         cur_off = 0;
904         /*
905          * Calculate free space
906          * Always round up the start bytenr, to avoid metadata extent corss
907          * stripe boundary, as later mkfs_convert() won't have all the extent
908          * allocation check
909          */
910         for (cache = first_cache_extent(data_chunks); cache;
911              cache = next_cache_extent(cache)) {
912                 if (cache->start < cur_off)
913                         continue;
914                 if (cache->start > cur_off) {
915                         u64 insert_start;
916                         u64 len;
917
918                         len = cache->start - round_up(cur_off,
919                                                       BTRFS_STRIPE_LEN);
920                         insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
921
922                         ret = add_merge_cache_extent(free, insert_start, len);
923                         if (ret < 0)
924                                 goto out;
925                 }
926                 cur_off = cache->start + cache->size;
927         }
928         /* Don't forget the last range */
929         if (cctx->total_bytes > cur_off) {
930                 u64 len = cctx->total_bytes - cur_off;
931                 u64 insert_start;
932
933                 insert_start = round_up(cur_off, BTRFS_STRIPE_LEN);
934
935                 ret = add_merge_cache_extent(free, insert_start, len);
936                 if (ret < 0)
937                         goto out;
938         }
939
940         /* Remove reserved bytes */
941         ret = wipe_reserved_ranges(free, min_stripe_size, 0);
942 out:
943         return ret;
944 }
945
946 /*
947  * Read used space, and since we have the used space,
948  * calcuate data_chunks and free for later mkfs
949  */
950 static int convert_read_used_space(struct btrfs_convert_context *cctx)
951 {
952         int ret;
953
954         ret = cctx->convert_ops->read_used_space(cctx);
955         if (ret)
956                 return ret;
957
958         ret = calculate_available_space(cctx);
959         return ret;
960 }
961
962 /*
963  * Create the fs image file of old filesystem.
964  *
965  * This is completely fs independent as we have cctx->used, only
966  * need to create file extents pointing to all the positions.
967  */
968 static int create_image(struct btrfs_root *root,
969                            struct btrfs_mkfs_config *cfg,
970                            struct btrfs_convert_context *cctx, int fd,
971                            u64 size, char *name, int datacsum)
972 {
973         struct btrfs_inode_item buf;
974         struct btrfs_trans_handle *trans;
975         struct btrfs_path path;
976         struct btrfs_key key;
977         struct cache_extent *cache;
978         struct cache_tree used_tmp;
979         u64 cur;
980         u64 ino;
981         u64 flags = BTRFS_INODE_READONLY;
982         int ret;
983
984         if (!datacsum)
985                 flags |= BTRFS_INODE_NODATASUM;
986
987         trans = btrfs_start_transaction(root, 1);
988         if (!trans)
989                 return -ENOMEM;
990
991         cache_tree_init(&used_tmp);
992         btrfs_init_path(&path);
993
994         ret = btrfs_find_free_objectid(trans, root, BTRFS_FIRST_FREE_OBJECTID,
995                                        &ino);
996         if (ret < 0)
997                 goto out;
998         ret = btrfs_new_inode(trans, root, ino, 0400 | S_IFREG);
999         if (ret < 0)
1000                 goto out;
1001         ret = btrfs_change_inode_flags(trans, root, ino, flags);
1002         if (ret < 0)
1003                 goto out;
1004         ret = btrfs_add_link(trans, root, ino, BTRFS_FIRST_FREE_OBJECTID, name,
1005                              strlen(name), BTRFS_FT_REG_FILE, NULL, 1);
1006         if (ret < 0)
1007                 goto out;
1008
1009         key.objectid = ino;
1010         key.type = BTRFS_INODE_ITEM_KEY;
1011         key.offset = 0;
1012
1013         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1014         if (ret) {
1015                 ret = (ret > 0 ? -ENOENT : ret);
1016                 goto out;
1017         }
1018         read_extent_buffer(path.nodes[0], &buf,
1019                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1020                         sizeof(buf));
1021         btrfs_release_path(&path);
1022
1023         /*
1024          * Create a new used space cache, which doesn't contain the reserved
1025          * range
1026          */
1027         for (cache = first_cache_extent(&cctx->used); cache;
1028              cache = next_cache_extent(cache)) {
1029                 ret = add_cache_extent(&used_tmp, cache->start, cache->size);
1030                 if (ret < 0)
1031                         goto out;
1032         }
1033         ret = wipe_reserved_ranges(&used_tmp, 0, 0);
1034         if (ret < 0)
1035                 goto out;
1036
1037         /*
1038          * Start from 1M, as 0~1M is reserved, and create_image_file_range()
1039          * can't handle bytenr 0(will consider it as a hole)
1040          */
1041         cur = 1024 * 1024;
1042         while (cur < size) {
1043                 u64 len = size - cur;
1044
1045                 ret = create_image_file_range(trans, root, &used_tmp,
1046                                                 &buf, ino, cur, &len, datacsum);
1047                 if (ret < 0)
1048                         goto out;
1049                 cur += len;
1050         }
1051         /* Handle the reserved ranges */
1052         ret = migrate_reserved_ranges(trans, root, &cctx->used, &buf, fd, ino,
1053                                       cfg->num_bytes, datacsum);
1054
1055
1056         key.objectid = ino;
1057         key.type = BTRFS_INODE_ITEM_KEY;
1058         key.offset = 0;
1059         ret = btrfs_search_slot(trans, root, &key, &path, 0, 1);
1060         if (ret) {
1061                 ret = (ret > 0 ? -ENOENT : ret);
1062                 goto out;
1063         }
1064         btrfs_set_stack_inode_size(&buf, cfg->num_bytes);
1065         write_extent_buffer(path.nodes[0], &buf,
1066                         btrfs_item_ptr_offset(path.nodes[0], path.slots[0]),
1067                         sizeof(buf));
1068 out:
1069         free_extent_cache_tree(&used_tmp);
1070         btrfs_release_path(&path);
1071         btrfs_commit_transaction(trans, root);
1072         return ret;
1073 }
1074
1075 static struct btrfs_root* link_subvol(struct btrfs_root *root,
1076                 const char *base, u64 root_objectid)
1077 {
1078         struct btrfs_trans_handle *trans;
1079         struct btrfs_fs_info *fs_info = root->fs_info;
1080         struct btrfs_root *tree_root = fs_info->tree_root;
1081         struct btrfs_root *new_root = NULL;
1082         struct btrfs_path path;
1083         struct btrfs_inode_item *inode_item;
1084         struct extent_buffer *leaf;
1085         struct btrfs_key key;
1086         u64 dirid = btrfs_root_dirid(&root->root_item);
1087         u64 index = 2;
1088         char buf[BTRFS_NAME_LEN + 1]; /* for snprintf null */
1089         int len;
1090         int i;
1091         int ret;
1092
1093         len = strlen(base);
1094         if (len == 0 || len > BTRFS_NAME_LEN)
1095                 return NULL;
1096
1097         btrfs_init_path(&path);
1098         key.objectid = dirid;
1099         key.type = BTRFS_DIR_INDEX_KEY;
1100         key.offset = (u64)-1;
1101
1102         ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
1103         if (ret <= 0) {
1104                 error("search for DIR_INDEX dirid %llu failed: %d",
1105                                 (unsigned long long)dirid, ret);
1106                 goto fail;
1107         }
1108
1109         if (path.slots[0] > 0) {
1110                 path.slots[0]--;
1111                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
1112                 if (key.objectid == dirid && key.type == BTRFS_DIR_INDEX_KEY)
1113                         index = key.offset + 1;
1114         }
1115         btrfs_release_path(&path);
1116
1117         trans = btrfs_start_transaction(root, 1);
1118         if (!trans) {
1119                 error("unable to start transaction");
1120                 goto fail;
1121         }
1122
1123         key.objectid = dirid;
1124         key.offset = 0;
1125         key.type =  BTRFS_INODE_ITEM_KEY;
1126
1127         ret = btrfs_lookup_inode(trans, root, &path, &key, 1);
1128         if (ret) {
1129                 error("search for INODE_ITEM %llu failed: %d",
1130                                 (unsigned long long)dirid, ret);
1131                 goto fail;
1132         }
1133         leaf = path.nodes[0];
1134         inode_item = btrfs_item_ptr(leaf, path.slots[0],
1135                                     struct btrfs_inode_item);
1136
1137         key.objectid = root_objectid;
1138         key.offset = (u64)-1;
1139         key.type = BTRFS_ROOT_ITEM_KEY;
1140
1141         memcpy(buf, base, len);
1142         for (i = 0; i < 1024; i++) {
1143                 ret = btrfs_insert_dir_item(trans, root, buf, len,
1144                                             dirid, &key, BTRFS_FT_DIR, index);
1145                 if (ret != -EEXIST)
1146                         break;
1147                 len = snprintf(buf, ARRAY_SIZE(buf), "%s%d", base, i);
1148                 if (len < 1 || len > BTRFS_NAME_LEN) {
1149                         ret = -EINVAL;
1150                         break;
1151                 }
1152         }
1153         if (ret)
1154                 goto fail;
1155
1156         btrfs_set_inode_size(leaf, inode_item, len * 2 +
1157                              btrfs_inode_size(leaf, inode_item));
1158         btrfs_mark_buffer_dirty(leaf);
1159         btrfs_release_path(&path);
1160
1161         /* add the backref first */
1162         ret = btrfs_add_root_ref(trans, tree_root, root_objectid,
1163                                  BTRFS_ROOT_BACKREF_KEY,
1164                                  root->root_key.objectid,
1165                                  dirid, index, buf, len);
1166         if (ret) {
1167                 error("unable to add root backref for %llu: %d",
1168                                 root->root_key.objectid, ret);
1169                 goto fail;
1170         }
1171
1172         /* now add the forward ref */
1173         ret = btrfs_add_root_ref(trans, tree_root, root->root_key.objectid,
1174                                  BTRFS_ROOT_REF_KEY, root_objectid,
1175                                  dirid, index, buf, len);
1176         if (ret) {
1177                 error("unable to add root ref for %llu: %d",
1178                                 root->root_key.objectid, ret);
1179                 goto fail;
1180         }
1181
1182         ret = btrfs_commit_transaction(trans, root);
1183         if (ret) {
1184                 error("transaction commit failed: %d", ret);
1185                 goto fail;
1186         }
1187
1188         new_root = btrfs_read_fs_root(fs_info, &key);
1189         if (IS_ERR(new_root)) {
1190                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1191                 new_root = NULL;
1192         }
1193 fail:
1194         btrfs_init_path(&path);
1195         return new_root;
1196 }
1197
1198 static int create_subvol(struct btrfs_trans_handle *trans,
1199                          struct btrfs_root *root, u64 root_objectid)
1200 {
1201         struct extent_buffer *tmp;
1202         struct btrfs_root *new_root;
1203         struct btrfs_key key;
1204         struct btrfs_root_item root_item;
1205         int ret;
1206
1207         ret = btrfs_copy_root(trans, root, root->node, &tmp,
1208                               root_objectid);
1209         if (ret)
1210                 return ret;
1211
1212         memcpy(&root_item, &root->root_item, sizeof(root_item));
1213         btrfs_set_root_bytenr(&root_item, tmp->start);
1214         btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
1215         btrfs_set_root_generation(&root_item, trans->transid);
1216         free_extent_buffer(tmp);
1217
1218         key.objectid = root_objectid;
1219         key.type = BTRFS_ROOT_ITEM_KEY;
1220         key.offset = trans->transid;
1221         ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1222                                 &key, &root_item);
1223
1224         key.offset = (u64)-1;
1225         new_root = btrfs_read_fs_root(root->fs_info, &key);
1226         if (!new_root || IS_ERR(new_root)) {
1227                 error("unable to fs read root: %lu", PTR_ERR(new_root));
1228                 return PTR_ERR(new_root);
1229         }
1230
1231         ret = btrfs_make_root_dir(trans, new_root, BTRFS_FIRST_FREE_OBJECTID);
1232
1233         return ret;
1234 }
1235
1236 /*
1237  * New make_btrfs() has handle system and meta chunks quite well.
1238  * So only need to add remaining data chunks.
1239  */
1240 static int make_convert_data_block_groups(struct btrfs_trans_handle *trans,
1241                                           struct btrfs_fs_info *fs_info,
1242                                           struct btrfs_mkfs_config *cfg,
1243                                           struct btrfs_convert_context *cctx)
1244 {
1245         struct btrfs_root *extent_root = fs_info->extent_root;
1246         struct cache_tree *data_chunks = &cctx->data_chunks;
1247         struct cache_extent *cache;
1248         u64 max_chunk_size;
1249         int ret = 0;
1250
1251         /*
1252          * Don't create data chunk over 10% of the convert device
1253          * And for single chunk, don't create chunk larger than 1G.
1254          */
1255         max_chunk_size = cfg->num_bytes / 10;
1256         max_chunk_size = min((u64)(1024 * 1024 * 1024), max_chunk_size);
1257         max_chunk_size = round_down(max_chunk_size, extent_root->sectorsize);
1258
1259         for (cache = first_cache_extent(data_chunks); cache;
1260              cache = next_cache_extent(cache)) {
1261                 u64 cur = cache->start;
1262
1263                 while (cur < cache->start + cache->size) {
1264                         u64 len;
1265                         u64 cur_backup = cur;
1266
1267                         len = min(max_chunk_size,
1268                                   cache->start + cache->size - cur);
1269                         ret = btrfs_alloc_data_chunk(trans, extent_root,
1270                                         &cur_backup, len,
1271                                         BTRFS_BLOCK_GROUP_DATA, 1);
1272                         if (ret < 0)
1273                                 break;
1274                         ret = btrfs_make_block_group(trans, extent_root, 0,
1275                                         BTRFS_BLOCK_GROUP_DATA,
1276                                         BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1277                                         cur, len);
1278                         if (ret < 0)
1279                                 break;
1280                         cur += len;
1281                 }
1282         }
1283         return ret;
1284 }
1285
1286 /*
1287  * Init the temp btrfs to a operational status.
1288  *
1289  * It will fix the extent usage accounting(XXX: Do we really need?) and
1290  * insert needed data chunks, to ensure all old fs data extents are covered
1291  * by DATA chunks, preventing wrong chunks are allocated.
1292  *
1293  * And also create convert image subvolume and relocation tree.
1294  * (XXX: Not need again?)
1295  * But the convert image subvolume is *NOT* linked to fs tree yet.
1296  */
1297 static int init_btrfs(struct btrfs_mkfs_config *cfg, struct btrfs_root *root,
1298                          struct btrfs_convert_context *cctx, int datacsum,
1299                          int packing, int noxattr)
1300 {
1301         struct btrfs_key location;
1302         struct btrfs_trans_handle *trans;
1303         struct btrfs_fs_info *fs_info = root->fs_info;
1304         int ret;
1305
1306         /*
1307          * Don't alloc any metadata/system chunk, as we don't want
1308          * any meta/sys chunk allcated before all data chunks are inserted.
1309          * Or we screw up the chunk layout just like the old implement.
1310          */
1311         fs_info->avoid_sys_chunk_alloc = 1;
1312         fs_info->avoid_meta_chunk_alloc = 1;
1313         trans = btrfs_start_transaction(root, 1);
1314         if (!trans) {
1315                 error("unable to start transaction");
1316                 ret = -EINVAL;
1317                 goto err;
1318         }
1319         ret = btrfs_fix_block_accounting(trans, root);
1320         if (ret)
1321                 goto err;
1322         ret = make_convert_data_block_groups(trans, fs_info, cfg, cctx);
1323         if (ret)
1324                 goto err;
1325         ret = btrfs_make_root_dir(trans, fs_info->tree_root,
1326                                   BTRFS_ROOT_TREE_DIR_OBJECTID);
1327         if (ret)
1328                 goto err;
1329         memcpy(&location, &root->root_key, sizeof(location));
1330         location.offset = (u64)-1;
1331         ret = btrfs_insert_dir_item(trans, fs_info->tree_root, "default", 7,
1332                                 btrfs_super_root_dir(fs_info->super_copy),
1333                                 &location, BTRFS_FT_DIR, 0);
1334         if (ret)
1335                 goto err;
1336         ret = btrfs_insert_inode_ref(trans, fs_info->tree_root, "default", 7,
1337                                 location.objectid,
1338                                 btrfs_super_root_dir(fs_info->super_copy), 0);
1339         if (ret)
1340                 goto err;
1341         btrfs_set_root_dirid(&fs_info->fs_root->root_item,
1342                              BTRFS_FIRST_FREE_OBJECTID);
1343
1344         /* subvol for fs image file */
1345         ret = create_subvol(trans, root, CONV_IMAGE_SUBVOL_OBJECTID);
1346         if (ret < 0) {
1347                 error("failed to create subvolume image root: %d", ret);
1348                 goto err;
1349         }
1350         /* subvol for data relocation tree */
1351         ret = create_subvol(trans, root, BTRFS_DATA_RELOC_TREE_OBJECTID);
1352         if (ret < 0) {
1353                 error("failed to create DATA_RELOC root: %d", ret);
1354                 goto err;
1355         }
1356
1357         ret = btrfs_commit_transaction(trans, root);
1358         fs_info->avoid_sys_chunk_alloc = 0;
1359         fs_info->avoid_meta_chunk_alloc = 0;
1360 err:
1361         return ret;
1362 }
1363
1364 /*
1365  * Migrate super block to its default position and zero 0 ~ 16k
1366  */
1367 static int migrate_super_block(int fd, u64 old_bytenr)
1368 {
1369         int ret;
1370         struct extent_buffer *buf;
1371         struct btrfs_super_block *super;
1372         u32 len;
1373         u32 bytenr;
1374
1375         buf = malloc(sizeof(*buf) + BTRFS_SUPER_INFO_SIZE);
1376         if (!buf)
1377                 return -ENOMEM;
1378
1379         buf->len = BTRFS_SUPER_INFO_SIZE;
1380         ret = pread(fd, buf->data, BTRFS_SUPER_INFO_SIZE, old_bytenr);
1381         if (ret != BTRFS_SUPER_INFO_SIZE)
1382                 goto fail;
1383
1384         super = (struct btrfs_super_block *)buf->data;
1385         BUG_ON(btrfs_super_bytenr(super) != old_bytenr);
1386         btrfs_set_super_bytenr(super, BTRFS_SUPER_INFO_OFFSET);
1387
1388         csum_tree_block_size(buf, BTRFS_CRC32_SIZE, 0);
1389         ret = pwrite(fd, buf->data, BTRFS_SUPER_INFO_SIZE,
1390                 BTRFS_SUPER_INFO_OFFSET);
1391         if (ret != BTRFS_SUPER_INFO_SIZE)
1392                 goto fail;
1393
1394         ret = fsync(fd);
1395         if (ret)
1396                 goto fail;
1397
1398         memset(buf->data, 0, BTRFS_SUPER_INFO_SIZE);
1399         for (bytenr = 0; bytenr < BTRFS_SUPER_INFO_OFFSET; ) {
1400                 len = BTRFS_SUPER_INFO_OFFSET - bytenr;
1401                 if (len > BTRFS_SUPER_INFO_SIZE)
1402                         len = BTRFS_SUPER_INFO_SIZE;
1403                 ret = pwrite(fd, buf->data, len, bytenr);
1404                 if (ret != len) {
1405                         fprintf(stderr, "unable to zero fill device\n");
1406                         break;
1407                 }
1408                 bytenr += len;
1409         }
1410         ret = 0;
1411         fsync(fd);
1412 fail:
1413         free(buf);
1414         if (ret > 0)
1415                 ret = -1;
1416         return ret;
1417 }
1418
1419 static int prepare_system_chunk_sb(struct btrfs_super_block *super)
1420 {
1421         struct btrfs_chunk *chunk;
1422         struct btrfs_disk_key *key;
1423         u32 sectorsize = btrfs_super_sectorsize(super);
1424
1425         key = (struct btrfs_disk_key *)(super->sys_chunk_array);
1426         chunk = (struct btrfs_chunk *)(super->sys_chunk_array +
1427                                        sizeof(struct btrfs_disk_key));
1428
1429         btrfs_set_disk_key_objectid(key, BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1430         btrfs_set_disk_key_type(key, BTRFS_CHUNK_ITEM_KEY);
1431         btrfs_set_disk_key_offset(key, 0);
1432
1433         btrfs_set_stack_chunk_length(chunk, btrfs_super_total_bytes(super));
1434         btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
1435         btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
1436         btrfs_set_stack_chunk_type(chunk, BTRFS_BLOCK_GROUP_SYSTEM);
1437         btrfs_set_stack_chunk_io_align(chunk, sectorsize);
1438         btrfs_set_stack_chunk_io_width(chunk, sectorsize);
1439         btrfs_set_stack_chunk_sector_size(chunk, sectorsize);
1440         btrfs_set_stack_chunk_num_stripes(chunk, 1);
1441         btrfs_set_stack_chunk_sub_stripes(chunk, 0);
1442         chunk->stripe.devid = super->dev_item.devid;
1443         btrfs_set_stack_stripe_offset(&chunk->stripe, 0);
1444         memcpy(chunk->stripe.dev_uuid, super->dev_item.uuid, BTRFS_UUID_SIZE);
1445         btrfs_set_super_sys_array_size(super, sizeof(*key) + sizeof(*chunk));
1446         return 0;
1447 }
1448
1449 #if BTRFSCONVERT_EXT2
1450
1451 /*
1452  * Open Ext2fs in readonly mode, read block allocation bitmap and
1453  * inode bitmap into memory.
1454  */
1455 static int ext2_open_fs(struct btrfs_convert_context *cctx, const char *name)
1456 {
1457         errcode_t ret;
1458         ext2_filsys ext2_fs;
1459         ext2_ino_t ino;
1460         u32 ro_feature;
1461
1462         ret = ext2fs_open(name, 0, 0, 0, unix_io_manager, &ext2_fs);
1463         if (ret) {
1464                 fprintf(stderr, "ext2fs_open: %s\n", error_message(ret));
1465                 return -1;
1466         }
1467         /*
1468          * We need to know exactly the used space, some RO compat flags like
1469          * BIGALLOC will affect how used space is present.
1470          * So we need manuall check any unsupported RO compat flags
1471          */
1472         ro_feature = ext2_fs->super->s_feature_ro_compat;
1473         if (ro_feature & ~EXT2_LIB_FEATURE_RO_COMPAT_SUPP) {
1474                 error(
1475 "unsupported RO features detected: %x, abort convert to avoid possible corruption",
1476                       ro_feature & ~EXT2_LIB_FEATURE_COMPAT_SUPP);
1477                 goto fail;
1478         }
1479         ret = ext2fs_read_inode_bitmap(ext2_fs);
1480         if (ret) {
1481                 fprintf(stderr, "ext2fs_read_inode_bitmap: %s\n",
1482                         error_message(ret));
1483                 goto fail;
1484         }
1485         ret = ext2fs_read_block_bitmap(ext2_fs);
1486         if (ret) {
1487                 fprintf(stderr, "ext2fs_read_block_bitmap: %s\n",
1488                         error_message(ret));
1489                 goto fail;
1490         }
1491         /*
1492          * search each block group for a free inode. this set up
1493          * uninit block/inode bitmaps appropriately.
1494          */
1495         ino = 1;
1496         while (ino <= ext2_fs->super->s_inodes_count) {
1497                 ext2_ino_t foo;
1498                 ext2fs_new_inode(ext2_fs, ino, 0, NULL, &foo);
1499                 ino += EXT2_INODES_PER_GROUP(ext2_fs->super);
1500         }
1501
1502         if (!(ext2_fs->super->s_feature_incompat &
1503               EXT2_FEATURE_INCOMPAT_FILETYPE)) {
1504                 error("filetype feature is missing");
1505                 goto fail;
1506         }
1507
1508         cctx->fs_data = ext2_fs;
1509         cctx->blocksize = ext2_fs->blocksize;
1510         cctx->block_count = ext2_fs->super->s_blocks_count;
1511         cctx->total_bytes = ext2_fs->blocksize * ext2_fs->super->s_blocks_count;
1512         cctx->volume_name = strndup(ext2_fs->super->s_volume_name, 16);
1513         cctx->first_data_block = ext2_fs->super->s_first_data_block;
1514         cctx->inodes_count = ext2_fs->super->s_inodes_count;
1515         cctx->free_inodes_count = ext2_fs->super->s_free_inodes_count;
1516         return 0;
1517 fail:
1518         ext2fs_close(ext2_fs);
1519         return -1;
1520 }
1521
1522 static int __ext2_add_one_block(ext2_filsys fs, char *bitmap,
1523                                 unsigned long group_nr, struct cache_tree *used)
1524 {
1525         unsigned long offset;
1526         unsigned i;
1527         int ret = 0;
1528
1529         offset = fs->super->s_first_data_block;
1530         offset /= EXT2FS_CLUSTER_RATIO(fs);
1531         offset += group_nr * EXT2_CLUSTERS_PER_GROUP(fs->super);
1532         for (i = 0; i < EXT2_CLUSTERS_PER_GROUP(fs->super); i++) {
1533                 if ((i + offset) >= ext2fs_blocks_count(fs->super))
1534                         break;
1535
1536                 if (ext2fs_test_bit(i, bitmap)) {
1537                         u64 start;
1538
1539                         start = (i + offset) * EXT2FS_CLUSTER_RATIO(fs);
1540                         start *= fs->blocksize;
1541                         ret = add_merge_cache_extent(used, start,
1542                                                      fs->blocksize);
1543                         if (ret < 0)
1544                                 break;
1545                 }
1546         }
1547         return ret;
1548 }
1549
1550 /*
1551  * Read all used ext2 space into cctx->used cache tree
1552  */
1553 static int ext2_read_used_space(struct btrfs_convert_context *cctx)
1554 {
1555         ext2_filsys fs = (ext2_filsys)cctx->fs_data;
1556         blk64_t blk_itr = EXT2FS_B2C(fs, fs->super->s_first_data_block);
1557         struct cache_tree *used_tree = &cctx->used;
1558         char *block_bitmap = NULL;
1559         unsigned long i;
1560         int block_nbytes;
1561         int ret = 0;
1562
1563         block_nbytes = EXT2_CLUSTERS_PER_GROUP(fs->super) / 8;
1564         /* Shouldn't happen */
1565         BUG_ON(!fs->block_map);
1566
1567         block_bitmap = malloc(block_nbytes);
1568         if (!block_bitmap)
1569                 return -ENOMEM;
1570
1571         for (i = 0; i < fs->group_desc_count; i++) {
1572                 ret = ext2fs_get_block_bitmap_range(fs->block_map, blk_itr,
1573                                                 block_nbytes * 8, block_bitmap);
1574                 if (ret) {
1575                         error("fail to get bitmap from ext2, %s",
1576                               strerror(-ret));
1577                         break;
1578                 }
1579                 ret = __ext2_add_one_block(fs, block_bitmap, i, used_tree);
1580                 if (ret < 0) {
1581                         error("fail to build used space tree, %s",
1582                               strerror(-ret));
1583                         break;
1584                 }
1585                 blk_itr += EXT2_CLUSTERS_PER_GROUP(fs->super);
1586         }
1587
1588         free(block_bitmap);
1589         return ret;
1590 }
1591
1592 static void ext2_close_fs(struct btrfs_convert_context *cctx)
1593 {
1594         if (cctx->volume_name) {
1595                 free(cctx->volume_name);
1596                 cctx->volume_name = NULL;
1597         }
1598         ext2fs_close(cctx->fs_data);
1599 }
1600
1601 struct dir_iterate_data {
1602         struct btrfs_trans_handle *trans;
1603         struct btrfs_root *root;
1604         struct btrfs_inode_item *inode;
1605         u64 objectid;
1606         u64 index_cnt;
1607         u64 parent;
1608         int errcode;
1609 };
1610
1611 static u8 ext2_filetype_conversion_table[EXT2_FT_MAX] = {
1612         [EXT2_FT_UNKNOWN]       = BTRFS_FT_UNKNOWN,
1613         [EXT2_FT_REG_FILE]      = BTRFS_FT_REG_FILE,
1614         [EXT2_FT_DIR]           = BTRFS_FT_DIR,
1615         [EXT2_FT_CHRDEV]        = BTRFS_FT_CHRDEV,
1616         [EXT2_FT_BLKDEV]        = BTRFS_FT_BLKDEV,
1617         [EXT2_FT_FIFO]          = BTRFS_FT_FIFO,
1618         [EXT2_FT_SOCK]          = BTRFS_FT_SOCK,
1619         [EXT2_FT_SYMLINK]       = BTRFS_FT_SYMLINK,
1620 };
1621
1622 static int ext2_dir_iterate_proc(ext2_ino_t dir, int entry,
1623                             struct ext2_dir_entry *dirent,
1624                             int offset, int blocksize,
1625                             char *buf,void *priv_data)
1626 {
1627         int ret;
1628         int file_type;
1629         u64 objectid;
1630         char dotdot[] = "..";
1631         struct dir_iterate_data *idata = (struct dir_iterate_data *)priv_data;
1632         int name_len;
1633
1634         name_len = dirent->name_len & 0xFF;
1635
1636         objectid = dirent->inode + INO_OFFSET;
1637         if (!strncmp(dirent->name, dotdot, name_len)) {
1638                 if (name_len == 2) {
1639                         BUG_ON(idata->parent != 0);
1640                         idata->parent = objectid;
1641                 }
1642                 return 0;
1643         }
1644         if (dirent->inode < EXT2_GOOD_OLD_FIRST_INO)
1645                 return 0;
1646
1647         file_type = dirent->name_len >> 8;
1648         BUG_ON(file_type > EXT2_FT_SYMLINK);
1649
1650         ret = convert_insert_dirent(idata->trans, idata->root, dirent->name,
1651                                     name_len, idata->objectid, objectid,
1652                                     ext2_filetype_conversion_table[file_type],
1653                                     idata->index_cnt, idata->inode);
1654         if (ret < 0) {
1655                 idata->errcode = ret;
1656                 return BLOCK_ABORT;
1657         }
1658
1659         idata->index_cnt++;
1660         return 0;
1661 }
1662
1663 static int ext2_create_dir_entries(struct btrfs_trans_handle *trans,
1664                               struct btrfs_root *root, u64 objectid,
1665                               struct btrfs_inode_item *btrfs_inode,
1666                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
1667 {
1668         int ret;
1669         errcode_t err;
1670         struct dir_iterate_data data = {
1671                 .trans          = trans,
1672                 .root           = root,
1673                 .inode          = btrfs_inode,
1674                 .objectid       = objectid,
1675                 .index_cnt      = 2,
1676                 .parent         = 0,
1677                 .errcode        = 0,
1678         };
1679
1680         err = ext2fs_dir_iterate2(ext2_fs, ext2_ino, 0, NULL,
1681                                   ext2_dir_iterate_proc, &data);
1682         if (err)
1683                 goto error;
1684         ret = data.errcode;
1685         if (ret == 0 && data.parent == objectid) {
1686                 ret = btrfs_insert_inode_ref(trans, root, "..", 2,
1687                                              objectid, objectid, 0);
1688         }
1689         return ret;
1690 error:
1691         fprintf(stderr, "ext2fs_dir_iterate2: %s\n", error_message(err));
1692         return -1;
1693 }
1694
1695 static int ext2_block_iterate_proc(ext2_filsys fs, blk_t *blocknr,
1696                                 e2_blkcnt_t blockcnt, blk_t ref_block,
1697                                 int ref_offset, void *priv_data)
1698 {
1699         int ret;
1700         struct blk_iterate_data *idata;
1701         idata = (struct blk_iterate_data *)priv_data;
1702         ret = block_iterate_proc(*blocknr, blockcnt, idata);
1703         if (ret) {
1704                 idata->errcode = ret;
1705                 return BLOCK_ABORT;
1706         }
1707         return 0;
1708 }
1709
1710 /*
1711  * traverse file's data blocks, record these data blocks as file extents.
1712  */
1713 static int ext2_create_file_extents(struct btrfs_trans_handle *trans,
1714                                struct btrfs_root *root, u64 objectid,
1715                                struct btrfs_inode_item *btrfs_inode,
1716                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1717                                int datacsum, int packing)
1718 {
1719         int ret;
1720         char *buffer = NULL;
1721         errcode_t err;
1722         u32 last_block;
1723         u32 sectorsize = root->sectorsize;
1724         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1725         struct blk_iterate_data data;
1726
1727         init_blk_iterate_data(&data, trans, root, btrfs_inode, objectid,
1728                               datacsum);
1729
1730         err = ext2fs_block_iterate2(ext2_fs, ext2_ino, BLOCK_FLAG_DATA_ONLY,
1731                                     NULL, ext2_block_iterate_proc, &data);
1732         if (err)
1733                 goto error;
1734         ret = data.errcode;
1735         if (ret)
1736                 goto fail;
1737         if (packing && data.first_block == 0 && data.num_blocks > 0 &&
1738             inode_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
1739                 u64 num_bytes = data.num_blocks * sectorsize;
1740                 u64 disk_bytenr = data.disk_block * sectorsize;
1741                 u64 nbytes;
1742
1743                 buffer = malloc(num_bytes);
1744                 if (!buffer)
1745                         return -ENOMEM;
1746                 ret = read_disk_extent(root, disk_bytenr, num_bytes, buffer);
1747                 if (ret)
1748                         goto fail;
1749                 if (num_bytes > inode_size)
1750                         num_bytes = inode_size;
1751                 ret = btrfs_insert_inline_extent(trans, root, objectid,
1752                                                  0, buffer, num_bytes);
1753                 if (ret)
1754                         goto fail;
1755                 nbytes = btrfs_stack_inode_nbytes(btrfs_inode) + num_bytes;
1756                 btrfs_set_stack_inode_nbytes(btrfs_inode, nbytes);
1757         } else if (data.num_blocks > 0) {
1758                 ret = record_file_blocks(&data, data.first_block,
1759                                          data.disk_block, data.num_blocks);
1760                 if (ret)
1761                         goto fail;
1762         }
1763         data.first_block += data.num_blocks;
1764         last_block = (inode_size + sectorsize - 1) / sectorsize;
1765         if (last_block > data.first_block) {
1766                 ret = record_file_blocks(&data, data.first_block, 0,
1767                                          last_block - data.first_block);
1768         }
1769 fail:
1770         free(buffer);
1771         return ret;
1772 error:
1773         fprintf(stderr, "ext2fs_block_iterate2: %s\n", error_message(err));
1774         return -1;
1775 }
1776
1777 static int ext2_create_symbol_link(struct btrfs_trans_handle *trans,
1778                               struct btrfs_root *root, u64 objectid,
1779                               struct btrfs_inode_item *btrfs_inode,
1780                               ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
1781                               struct ext2_inode *ext2_inode)
1782 {
1783         int ret;
1784         char *pathname;
1785         u64 inode_size = btrfs_stack_inode_size(btrfs_inode);
1786         if (ext2fs_inode_data_blocks(ext2_fs, ext2_inode)) {
1787                 btrfs_set_stack_inode_size(btrfs_inode, inode_size + 1);
1788                 ret = ext2_create_file_extents(trans, root, objectid,
1789                                 btrfs_inode, ext2_fs, ext2_ino, 1, 1);
1790                 btrfs_set_stack_inode_size(btrfs_inode, inode_size);
1791                 return ret;
1792         }
1793
1794         pathname = (char *)&(ext2_inode->i_block[0]);
1795         BUG_ON(pathname[inode_size] != 0);
1796         ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
1797                                          pathname, inode_size + 1);
1798         btrfs_set_stack_inode_nbytes(btrfs_inode, inode_size + 1);
1799         return ret;
1800 }
1801
1802 /*
1803  * Following xattr/acl related codes are based on codes in
1804  * fs/ext3/xattr.c and fs/ext3/acl.c
1805  */
1806 #define EXT2_XATTR_BHDR(ptr) ((struct ext2_ext_attr_header *)(ptr))
1807 #define EXT2_XATTR_BFIRST(ptr) \
1808         ((struct ext2_ext_attr_entry *)(EXT2_XATTR_BHDR(ptr) + 1))
1809 #define EXT2_XATTR_IHDR(inode) \
1810         ((struct ext2_ext_attr_header *) ((void *)(inode) + \
1811                 EXT2_GOOD_OLD_INODE_SIZE + (inode)->i_extra_isize))
1812 #define EXT2_XATTR_IFIRST(inode) \
1813         ((struct ext2_ext_attr_entry *) ((void *)EXT2_XATTR_IHDR(inode) + \
1814                 sizeof(EXT2_XATTR_IHDR(inode)->h_magic)))
1815
1816 static int ext2_xattr_check_names(struct ext2_ext_attr_entry *entry,
1817                                   const void *end)
1818 {
1819         struct ext2_ext_attr_entry *next;
1820
1821         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
1822                 next = EXT2_EXT_ATTR_NEXT(entry);
1823                 if ((void *)next >= end)
1824                         return -EIO;
1825                 entry = next;
1826         }
1827         return 0;
1828 }
1829
1830 static int ext2_xattr_check_block(const char *buf, size_t size)
1831 {
1832         int error;
1833         struct ext2_ext_attr_header *header = EXT2_XATTR_BHDR(buf);
1834
1835         if (header->h_magic != EXT2_EXT_ATTR_MAGIC ||
1836             header->h_blocks != 1)
1837                 return -EIO;
1838         error = ext2_xattr_check_names(EXT2_XATTR_BFIRST(buf), buf + size);
1839         return error;
1840 }
1841
1842 static int ext2_xattr_check_entry(struct ext2_ext_attr_entry *entry,
1843                                   size_t size)
1844 {
1845         size_t value_size = entry->e_value_size;
1846
1847         if (entry->e_value_block != 0 || value_size > size ||
1848             entry->e_value_offs + value_size > size)
1849                 return -EIO;
1850         return 0;
1851 }
1852
1853 #define EXT2_ACL_VERSION        0x0001
1854
1855 /* 23.2.5 acl_tag_t values */
1856
1857 #define ACL_UNDEFINED_TAG       (0x00)
1858 #define ACL_USER_OBJ            (0x01)
1859 #define ACL_USER                (0x02)
1860 #define ACL_GROUP_OBJ           (0x04)
1861 #define ACL_GROUP               (0x08)
1862 #define ACL_MASK                (0x10)
1863 #define ACL_OTHER               (0x20)
1864
1865 /* 23.2.7 ACL qualifier constants */
1866
1867 #define ACL_UNDEFINED_ID        ((id_t)-1)
1868
1869 typedef struct {
1870         __le16          e_tag;
1871         __le16          e_perm;
1872         __le32          e_id;
1873 } ext2_acl_entry;
1874
1875 typedef struct {
1876         __le16          e_tag;
1877         __le16          e_perm;
1878 } ext2_acl_entry_short;
1879
1880 typedef struct {
1881         __le32          a_version;
1882 } ext2_acl_header;
1883
1884 static inline int ext2_acl_count(size_t size)
1885 {
1886         ssize_t s;
1887         size -= sizeof(ext2_acl_header);
1888         s = size - 4 * sizeof(ext2_acl_entry_short);
1889         if (s < 0) {
1890                 if (size % sizeof(ext2_acl_entry_short))
1891                         return -1;
1892                 return size / sizeof(ext2_acl_entry_short);
1893         } else {
1894                 if (s % sizeof(ext2_acl_entry))
1895                         return -1;
1896                 return s / sizeof(ext2_acl_entry) + 4;
1897         }
1898 }
1899
1900 #define ACL_EA_VERSION          0x0002
1901
1902 typedef struct {
1903         __le16          e_tag;
1904         __le16          e_perm;
1905         __le32          e_id;
1906 } acl_ea_entry;
1907
1908 typedef struct {
1909         __le32          a_version;
1910         acl_ea_entry    a_entries[0];
1911 } acl_ea_header;
1912
1913 static inline size_t acl_ea_size(int count)
1914 {
1915         return sizeof(acl_ea_header) + count * sizeof(acl_ea_entry);
1916 }
1917
1918 static int ext2_acl_to_xattr(void *dst, const void *src,
1919                              size_t dst_size, size_t src_size)
1920 {
1921         int i, count;
1922         const void *end = src + src_size;
1923         acl_ea_header *ext_acl = (acl_ea_header *)dst;
1924         acl_ea_entry *dst_entry = ext_acl->a_entries;
1925         ext2_acl_entry *src_entry;
1926
1927         if (src_size < sizeof(ext2_acl_header))
1928                 goto fail;
1929         if (((ext2_acl_header *)src)->a_version !=
1930             cpu_to_le32(EXT2_ACL_VERSION))
1931                 goto fail;
1932         src += sizeof(ext2_acl_header);
1933         count = ext2_acl_count(src_size);
1934         if (count <= 0)
1935                 goto fail;
1936
1937         BUG_ON(dst_size < acl_ea_size(count));
1938         ext_acl->a_version = cpu_to_le32(ACL_EA_VERSION);
1939         for (i = 0; i < count; i++, dst_entry++) {
1940                 src_entry = (ext2_acl_entry *)src;
1941                 if (src + sizeof(ext2_acl_entry_short) > end)
1942                         goto fail;
1943                 dst_entry->e_tag = src_entry->e_tag;
1944                 dst_entry->e_perm = src_entry->e_perm;
1945                 switch (le16_to_cpu(src_entry->e_tag)) {
1946                 case ACL_USER_OBJ:
1947                 case ACL_GROUP_OBJ:
1948                 case ACL_MASK:
1949                 case ACL_OTHER:
1950                         src += sizeof(ext2_acl_entry_short);
1951                         dst_entry->e_id = cpu_to_le32(ACL_UNDEFINED_ID);
1952                         break;
1953                 case ACL_USER:
1954                 case ACL_GROUP:
1955                         src += sizeof(ext2_acl_entry);
1956                         if (src > end)
1957                                 goto fail;
1958                         dst_entry->e_id = src_entry->e_id;
1959                         break;
1960                 default:
1961                         goto fail;
1962                 }
1963         }
1964         if (src != end)
1965                 goto fail;
1966         return 0;
1967 fail:
1968         return -EINVAL;
1969 }
1970
1971 static char *xattr_prefix_table[] = {
1972         [1] =   "user.",
1973         [2] =   "system.posix_acl_access",
1974         [3] =   "system.posix_acl_default",
1975         [4] =   "trusted.",
1976         [6] =   "security.",
1977 };
1978
1979 static int ext2_copy_single_xattr(struct btrfs_trans_handle *trans,
1980                              struct btrfs_root *root, u64 objectid,
1981                              struct ext2_ext_attr_entry *entry,
1982                              const void *data, u32 datalen)
1983 {
1984         int ret = 0;
1985         int name_len;
1986         int name_index;
1987         void *databuf = NULL;
1988         char namebuf[XATTR_NAME_MAX + 1];
1989
1990         name_index = entry->e_name_index;
1991         if (name_index >= ARRAY_SIZE(xattr_prefix_table) ||
1992             xattr_prefix_table[name_index] == NULL)
1993                 return -EOPNOTSUPP;
1994         name_len = strlen(xattr_prefix_table[name_index]) +
1995                    entry->e_name_len;
1996         if (name_len >= sizeof(namebuf))
1997                 return -ERANGE;
1998
1999         if (name_index == 2 || name_index == 3) {
2000                 size_t bufsize = acl_ea_size(ext2_acl_count(datalen));
2001                 databuf = malloc(bufsize);
2002                 if (!databuf)
2003                        return -ENOMEM;
2004                 ret = ext2_acl_to_xattr(databuf, data, bufsize, datalen);
2005                 if (ret)
2006                         goto out;
2007                 data = databuf;
2008                 datalen = bufsize;
2009         }
2010         strncpy(namebuf, xattr_prefix_table[name_index], XATTR_NAME_MAX);
2011         strncat(namebuf, EXT2_EXT_ATTR_NAME(entry), entry->e_name_len);
2012         if (name_len + datalen > BTRFS_LEAF_DATA_SIZE(root) -
2013             sizeof(struct btrfs_item) - sizeof(struct btrfs_dir_item)) {
2014                 fprintf(stderr, "skip large xattr on inode %Lu name %.*s\n",
2015                         objectid - INO_OFFSET, name_len, namebuf);
2016                 goto out;
2017         }
2018         ret = btrfs_insert_xattr_item(trans, root, namebuf, name_len,
2019                                       data, datalen, objectid);
2020 out:
2021         free(databuf);
2022         return ret;
2023 }
2024
2025 static int ext2_copy_extended_attrs(struct btrfs_trans_handle *trans,
2026                                struct btrfs_root *root, u64 objectid,
2027                                struct btrfs_inode_item *btrfs_inode,
2028                                ext2_filsys ext2_fs, ext2_ino_t ext2_ino)
2029 {
2030         int ret = 0;
2031         int inline_ea = 0;
2032         errcode_t err;
2033         u32 datalen;
2034         u32 block_size = ext2_fs->blocksize;
2035         u32 inode_size = EXT2_INODE_SIZE(ext2_fs->super);
2036         struct ext2_inode_large *ext2_inode;
2037         struct ext2_ext_attr_entry *entry;
2038         void *data;
2039         char *buffer = NULL;
2040         char inode_buf[EXT2_GOOD_OLD_INODE_SIZE];
2041
2042         if (inode_size <= EXT2_GOOD_OLD_INODE_SIZE) {
2043                 ext2_inode = (struct ext2_inode_large *)inode_buf;
2044         } else {
2045                 ext2_inode = (struct ext2_inode_large *)malloc(inode_size);
2046                 if (!ext2_inode)
2047                        return -ENOMEM;
2048         }
2049         err = ext2fs_read_inode_full(ext2_fs, ext2_ino, (void *)ext2_inode,
2050                                      inode_size);
2051         if (err) {
2052                 fprintf(stderr, "ext2fs_read_inode_full: %s\n",
2053                         error_message(err));
2054                 ret = -1;
2055                 goto out;
2056         }
2057
2058         if (ext2_ino > ext2_fs->super->s_first_ino &&
2059             inode_size > EXT2_GOOD_OLD_INODE_SIZE) {
2060                 if (EXT2_GOOD_OLD_INODE_SIZE +
2061                     ext2_inode->i_extra_isize > inode_size) {
2062                         ret = -EIO;
2063                         goto out;
2064                 }
2065                 if (ext2_inode->i_extra_isize != 0 &&
2066                     EXT2_XATTR_IHDR(ext2_inode)->h_magic ==
2067                     EXT2_EXT_ATTR_MAGIC) {
2068                         inline_ea = 1;
2069                 }
2070         }
2071         if (inline_ea) {
2072                 int total;
2073                 void *end = (void *)ext2_inode + inode_size;
2074                 entry = EXT2_XATTR_IFIRST(ext2_inode);
2075                 total = end - (void *)entry;
2076                 ret = ext2_xattr_check_names(entry, end);
2077                 if (ret)
2078                         goto out;
2079                 while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2080                         ret = ext2_xattr_check_entry(entry, total);
2081                         if (ret)
2082                                 goto out;
2083                         data = (void *)EXT2_XATTR_IFIRST(ext2_inode) +
2084                                 entry->e_value_offs;
2085                         datalen = entry->e_value_size;
2086                         ret = ext2_copy_single_xattr(trans, root, objectid,
2087                                                 entry, data, datalen);
2088                         if (ret)
2089                                 goto out;
2090                         entry = EXT2_EXT_ATTR_NEXT(entry);
2091                 }
2092         }
2093
2094         if (ext2_inode->i_file_acl == 0)
2095                 goto out;
2096
2097         buffer = malloc(block_size);
2098         if (!buffer) {
2099                 ret = -ENOMEM;
2100                 goto out;
2101         }
2102         err = ext2fs_read_ext_attr(ext2_fs, ext2_inode->i_file_acl, buffer);
2103         if (err) {
2104                 fprintf(stderr, "ext2fs_read_ext_attr: %s\n",
2105                         error_message(err));
2106                 ret = -1;
2107                 goto out;
2108         }
2109         ret = ext2_xattr_check_block(buffer, block_size);
2110         if (ret)
2111                 goto out;
2112
2113         entry = EXT2_XATTR_BFIRST(buffer);
2114         while (!EXT2_EXT_IS_LAST_ENTRY(entry)) {
2115                 ret = ext2_xattr_check_entry(entry, block_size);
2116                 if (ret)
2117                         goto out;
2118                 data = buffer + entry->e_value_offs;
2119                 datalen = entry->e_value_size;
2120                 ret = ext2_copy_single_xattr(trans, root, objectid,
2121                                         entry, data, datalen);
2122                 if (ret)
2123                         goto out;
2124                 entry = EXT2_EXT_ATTR_NEXT(entry);
2125         }
2126 out:
2127         free(buffer);
2128         if ((void *)ext2_inode != inode_buf)
2129                 free(ext2_inode);
2130         return ret;
2131 }
2132 #define MINORBITS       20
2133 #define MKDEV(ma, mi)   (((ma) << MINORBITS) | (mi))
2134
2135 static inline dev_t old_decode_dev(u16 val)
2136 {
2137         return MKDEV((val >> 8) & 255, val & 255);
2138 }
2139
2140 static inline dev_t new_decode_dev(u32 dev)
2141 {
2142         unsigned major = (dev & 0xfff00) >> 8;
2143         unsigned minor = (dev & 0xff) | ((dev >> 12) & 0xfff00);
2144         return MKDEV(major, minor);
2145 }
2146
2147 static void ext2_copy_inode_item(struct btrfs_inode_item *dst,
2148                            struct ext2_inode *src, u32 blocksize)
2149 {
2150         btrfs_set_stack_inode_generation(dst, 1);
2151         btrfs_set_stack_inode_sequence(dst, 0);
2152         btrfs_set_stack_inode_transid(dst, 1);
2153         btrfs_set_stack_inode_size(dst, src->i_size);
2154         btrfs_set_stack_inode_nbytes(dst, 0);
2155         btrfs_set_stack_inode_block_group(dst, 0);
2156         btrfs_set_stack_inode_nlink(dst, src->i_links_count);
2157         btrfs_set_stack_inode_uid(dst, src->i_uid | (src->i_uid_high << 16));
2158         btrfs_set_stack_inode_gid(dst, src->i_gid | (src->i_gid_high << 16));
2159         btrfs_set_stack_inode_mode(dst, src->i_mode);
2160         btrfs_set_stack_inode_rdev(dst, 0);
2161         btrfs_set_stack_inode_flags(dst, 0);
2162         btrfs_set_stack_timespec_sec(&dst->atime, src->i_atime);
2163         btrfs_set_stack_timespec_nsec(&dst->atime, 0);
2164         btrfs_set_stack_timespec_sec(&dst->ctime, src->i_ctime);
2165         btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
2166         btrfs_set_stack_timespec_sec(&dst->mtime, src->i_mtime);
2167         btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
2168         btrfs_set_stack_timespec_sec(&dst->otime, 0);
2169         btrfs_set_stack_timespec_nsec(&dst->otime, 0);
2170
2171         if (S_ISDIR(src->i_mode)) {
2172                 btrfs_set_stack_inode_size(dst, 0);
2173                 btrfs_set_stack_inode_nlink(dst, 1);
2174         }
2175         if (S_ISREG(src->i_mode)) {
2176                 btrfs_set_stack_inode_size(dst, (u64)src->i_size_high << 32 |
2177                                            (u64)src->i_size);
2178         }
2179         if (!S_ISREG(src->i_mode) && !S_ISDIR(src->i_mode) &&
2180             !S_ISLNK(src->i_mode)) {
2181                 if (src->i_block[0]) {
2182                         btrfs_set_stack_inode_rdev(dst,
2183                                 old_decode_dev(src->i_block[0]));
2184                 } else {
2185                         btrfs_set_stack_inode_rdev(dst,
2186                                 new_decode_dev(src->i_block[1]));
2187                 }
2188         }
2189         memset(&dst->reserved, 0, sizeof(dst->reserved));
2190 }
2191 static int ext2_check_state(struct btrfs_convert_context *cctx)
2192 {
2193         ext2_filsys fs = cctx->fs_data;
2194
2195         if (!(fs->super->s_state & EXT2_VALID_FS))
2196                 return 1;
2197         else if (fs->super->s_state & EXT2_ERROR_FS)
2198                 return 1;
2199         else
2200                 return 0;
2201 }
2202
2203 /* EXT2_*_FL to BTRFS_INODE_FLAG_* stringification helper */
2204 #define COPY_ONE_EXT2_FLAG(flags, ext2_inode, name) ({                  \
2205         if (ext2_inode->i_flags & EXT2_##name##_FL)                     \
2206                 flags |= BTRFS_INODE_##name;                            \
2207 })
2208
2209 /*
2210  * Convert EXT2_*_FL to corresponding BTRFS_INODE_* flags
2211  *
2212  * Only a subset of EXT_*_FL is supported in btrfs.
2213  */
2214 static void ext2_convert_inode_flags(struct btrfs_inode_item *dst,
2215                                      struct ext2_inode *src)
2216 {
2217         u64 flags = 0;
2218
2219         COPY_ONE_EXT2_FLAG(flags, src, APPEND);
2220         COPY_ONE_EXT2_FLAG(flags, src, SYNC);
2221         COPY_ONE_EXT2_FLAG(flags, src, IMMUTABLE);
2222         COPY_ONE_EXT2_FLAG(flags, src, NODUMP);
2223         COPY_ONE_EXT2_FLAG(flags, src, NOATIME);
2224         COPY_ONE_EXT2_FLAG(flags, src, DIRSYNC);
2225         btrfs_set_stack_inode_flags(dst, flags);
2226 }
2227
2228 /*
2229  * copy a single inode. do all the required works, such as cloning
2230  * inode item, creating file extents and creating directory entries.
2231  */
2232 static int ext2_copy_single_inode(struct btrfs_trans_handle *trans,
2233                              struct btrfs_root *root, u64 objectid,
2234                              ext2_filsys ext2_fs, ext2_ino_t ext2_ino,
2235                              struct ext2_inode *ext2_inode,
2236                              int datacsum, int packing, int noxattr)
2237 {
2238         int ret;
2239         struct btrfs_inode_item btrfs_inode;
2240
2241         if (ext2_inode->i_links_count == 0)
2242                 return 0;
2243
2244         ext2_copy_inode_item(&btrfs_inode, ext2_inode, ext2_fs->blocksize);
2245         if (!datacsum && S_ISREG(ext2_inode->i_mode)) {
2246                 u32 flags = btrfs_stack_inode_flags(&btrfs_inode) |
2247                             BTRFS_INODE_NODATASUM;
2248                 btrfs_set_stack_inode_flags(&btrfs_inode, flags);
2249         }
2250         ext2_convert_inode_flags(&btrfs_inode, ext2_inode);
2251
2252         switch (ext2_inode->i_mode & S_IFMT) {
2253         case S_IFREG:
2254                 ret = ext2_create_file_extents(trans, root, objectid,
2255                         &btrfs_inode, ext2_fs, ext2_ino, datacsum, packing);
2256                 break;
2257         case S_IFDIR:
2258                 ret = ext2_create_dir_entries(trans, root, objectid,
2259                                 &btrfs_inode, ext2_fs, ext2_ino);
2260                 break;
2261         case S_IFLNK:
2262                 ret = ext2_create_symbol_link(trans, root, objectid,
2263                                 &btrfs_inode, ext2_fs, ext2_ino, ext2_inode);
2264                 break;
2265         default:
2266                 ret = 0;
2267                 break;
2268         }
2269         if (ret)
2270                 return ret;
2271
2272         if (!noxattr) {
2273                 ret = ext2_copy_extended_attrs(trans, root, objectid,
2274                                 &btrfs_inode, ext2_fs, ext2_ino);
2275                 if (ret)
2276                         return ret;
2277         }
2278         return btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
2279 }
2280
2281 /*
2282  * scan ext2's inode bitmap and copy all used inodes.
2283  */
2284 static int ext2_copy_inodes(struct btrfs_convert_context *cctx,
2285                             struct btrfs_root *root,
2286                             int datacsum, int packing, int noxattr, struct task_ctx *p)
2287 {
2288         ext2_filsys ext2_fs = cctx->fs_data;
2289         int ret;
2290         errcode_t err;
2291         ext2_inode_scan ext2_scan;
2292         struct ext2_inode ext2_inode;
2293         ext2_ino_t ext2_ino;
2294         u64 objectid;
2295         struct btrfs_trans_handle *trans;
2296
2297         trans = btrfs_start_transaction(root, 1);
2298         if (!trans)
2299                 return -ENOMEM;
2300         err = ext2fs_open_inode_scan(ext2_fs, 0, &ext2_scan);
2301         if (err) {
2302                 fprintf(stderr, "ext2fs_open_inode_scan: %s\n", error_message(err));
2303                 return -1;
2304         }
2305         while (!(err = ext2fs_get_next_inode(ext2_scan, &ext2_ino,
2306                                              &ext2_inode))) {
2307                 /* no more inodes */
2308                 if (ext2_ino == 0)
2309                         break;
2310                 /* skip special inode in ext2fs */
2311                 if (ext2_ino < EXT2_GOOD_OLD_FIRST_INO &&
2312                     ext2_ino != EXT2_ROOT_INO)
2313                         continue;
2314                 objectid = ext2_ino + INO_OFFSET;
2315                 ret = ext2_copy_single_inode(trans, root,
2316                                         objectid, ext2_fs, ext2_ino,
2317                                         &ext2_inode, datacsum, packing,
2318                                         noxattr);
2319                 p->cur_copy_inodes++;
2320                 if (ret)
2321                         return ret;
2322                 if (trans->blocks_used >= 4096) {
2323                         ret = btrfs_commit_transaction(trans, root);
2324                         BUG_ON(ret);
2325                         trans = btrfs_start_transaction(root, 1);
2326                         BUG_ON(!trans);
2327                 }
2328         }
2329         if (err) {
2330                 fprintf(stderr, "ext2fs_get_next_inode: %s\n", error_message(err));
2331                 return -1;
2332         }
2333         ret = btrfs_commit_transaction(trans, root);
2334         BUG_ON(ret);
2335         ext2fs_close_inode_scan(ext2_scan);
2336
2337         return ret;
2338 }
2339
2340 static const struct btrfs_convert_operations ext2_convert_ops = {
2341         .name                   = "ext2",
2342         .open_fs                = ext2_open_fs,
2343         .read_used_space        = ext2_read_used_space,
2344         .copy_inodes            = ext2_copy_inodes,
2345         .close_fs               = ext2_close_fs,
2346         .check_state            = ext2_check_state,
2347 };
2348
2349 #endif
2350
2351 static const struct btrfs_convert_operations *convert_operations[] = {
2352 #if BTRFSCONVERT_EXT2
2353         &ext2_convert_ops,
2354 #endif
2355 };
2356
2357 static int convert_open_fs(const char *devname,
2358                            struct btrfs_convert_context *cctx)
2359 {
2360         int i;
2361
2362         memset(cctx, 0, sizeof(*cctx));
2363
2364         for (i = 0; i < ARRAY_SIZE(convert_operations); i++) {
2365                 int ret = convert_operations[i]->open_fs(cctx, devname);
2366
2367                 if (ret == 0) {
2368                         cctx->convert_ops = convert_operations[i];
2369                         return ret;
2370                 }
2371         }
2372
2373         error("no file system found to convert");
2374         return -1;
2375 }
2376
2377 static int do_convert(const char *devname, int datacsum, int packing,
2378                 int noxattr, u32 nodesize, int copylabel, const char *fslabel,
2379                 int progress, u64 features)
2380 {
2381         int ret;
2382         int fd = -1;
2383         u32 blocksize;
2384         u64 total_bytes;
2385         struct btrfs_root *root;
2386         struct btrfs_root *image_root;
2387         struct btrfs_convert_context cctx;
2388         struct btrfs_key key;
2389         char *subvol_name = NULL;
2390         struct task_ctx ctx;
2391         char features_buf[64];
2392         struct btrfs_mkfs_config mkfs_cfg;
2393
2394         init_convert_context(&cctx);
2395         ret = convert_open_fs(devname, &cctx);
2396         if (ret)
2397                 goto fail;
2398         ret = convert_check_state(&cctx);
2399         if (ret)
2400                 warning(
2401                 "source filesystem is not clean, running filesystem check is recommended");
2402         ret = convert_read_used_space(&cctx);
2403         if (ret)
2404                 goto fail;
2405
2406         blocksize = cctx.blocksize;
2407         total_bytes = (u64)blocksize * (u64)cctx.block_count;
2408         if (blocksize < 4096) {
2409                 error("block size is too small: %u < 4096", blocksize);
2410                 goto fail;
2411         }
2412         if (btrfs_check_nodesize(nodesize, blocksize, features))
2413                 goto fail;
2414         fd = open(devname, O_RDWR);
2415         if (fd < 0) {
2416                 error("unable to open %s: %s", devname, strerror(errno));
2417                 goto fail;
2418         }
2419         btrfs_parse_features_to_string(features_buf, features);
2420         if (features == BTRFS_MKFS_DEFAULT_FEATURES)
2421                 strcat(features_buf, " (default)");
2422
2423         printf("create btrfs filesystem:\n");
2424         printf("\tblocksize: %u\n", blocksize);
2425         printf("\tnodesize:  %u\n", nodesize);
2426         printf("\tfeatures:  %s\n", features_buf);
2427
2428         mkfs_cfg.label = cctx.volume_name;
2429         mkfs_cfg.num_bytes = total_bytes;
2430         mkfs_cfg.nodesize = nodesize;
2431         mkfs_cfg.sectorsize = blocksize;
2432         mkfs_cfg.stripesize = blocksize;
2433         mkfs_cfg.features = features;
2434         /* New convert need these space */
2435         memset(mkfs_cfg.chunk_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2436         memset(mkfs_cfg.fs_uuid, 0, BTRFS_UUID_UNPARSED_SIZE);
2437
2438         ret = make_convert_btrfs(fd, &mkfs_cfg, &cctx);
2439         if (ret) {
2440                 error("unable to create initial ctree: %s", strerror(-ret));
2441                 goto fail;
2442         }
2443
2444         root = open_ctree_fd(fd, devname, mkfs_cfg.super_bytenr,
2445                              OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2446         if (!root) {
2447                 error("unable to open ctree");
2448                 goto fail;
2449         }
2450         ret = init_btrfs(&mkfs_cfg, root, &cctx, datacsum, packing, noxattr);
2451         if (ret) {
2452                 error("unable to setup the root tree: %d", ret);
2453                 goto fail;
2454         }
2455
2456         printf("creating %s image file\n", cctx.convert_ops->name);
2457         ret = asprintf(&subvol_name, "%s_saved", cctx.convert_ops->name);
2458         if (ret < 0) {
2459                 error("memory allocation failure for subvolume name: %s_saved",
2460                         cctx.convert_ops->name);
2461                 goto fail;
2462         }
2463         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2464         key.offset = (u64)-1;
2465         key.type = BTRFS_ROOT_ITEM_KEY;
2466         image_root = btrfs_read_fs_root(root->fs_info, &key);
2467         if (!image_root) {
2468                 error("unable to create image subvolume");
2469                 goto fail;
2470         }
2471         ret = create_image(image_root, &mkfs_cfg, &cctx, fd,
2472                               mkfs_cfg.num_bytes, "image", datacsum);
2473         if (ret) {
2474                 error("failed to create %s/image: %d", subvol_name, ret);
2475                 goto fail;
2476         }
2477
2478         printf("creating btrfs metadata");
2479         ctx.max_copy_inodes = (cctx.inodes_count - cctx.free_inodes_count);
2480         ctx.cur_copy_inodes = 0;
2481
2482         if (progress) {
2483                 ctx.info = task_init(print_copied_inodes, after_copied_inodes,
2484                                      &ctx);
2485                 task_start(ctx.info);
2486         }
2487         ret = copy_inodes(&cctx, root, datacsum, packing, noxattr, &ctx);
2488         if (ret) {
2489                 error("error during copy_inodes %d", ret);
2490                 goto fail;
2491         }
2492         if (progress) {
2493                 task_stop(ctx.info);
2494                 task_deinit(ctx.info);
2495         }
2496
2497         image_root = link_subvol(root, subvol_name, CONV_IMAGE_SUBVOL_OBJECTID);
2498         if (!image_root) {
2499                 error("unable to link subvolume %s", subvol_name);
2500                 goto fail;
2501         }
2502
2503         free(subvol_name);
2504
2505         memset(root->fs_info->super_copy->label, 0, BTRFS_LABEL_SIZE);
2506         if (copylabel == 1) {
2507                 __strncpy_null(root->fs_info->super_copy->label,
2508                                 cctx.volume_name, BTRFS_LABEL_SIZE - 1);
2509                 printf("copy label '%s'\n", root->fs_info->super_copy->label);
2510         } else if (copylabel == -1) {
2511                 strcpy(root->fs_info->super_copy->label, fslabel);
2512                 printf("set label to '%s'\n", fslabel);
2513         }
2514
2515         ret = close_ctree(root);
2516         if (ret) {
2517                 error("close_ctree failed: %d", ret);
2518                 goto fail;
2519         }
2520         convert_close_fs(&cctx);
2521         clean_convert_context(&cctx);
2522
2523         /*
2524          * If this step succeed, we get a mountable btrfs. Otherwise
2525          * the source fs is left unchanged.
2526          */
2527         ret = migrate_super_block(fd, mkfs_cfg.super_bytenr);
2528         if (ret) {
2529                 error("unable to migrate super block: %d", ret);
2530                 goto fail;
2531         }
2532
2533         root = open_ctree_fd(fd, devname, 0,
2534                         OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
2535         if (!root) {
2536                 error("unable to open ctree for finalization");
2537                 goto fail;
2538         }
2539         root->fs_info->finalize_on_close = 1;
2540         close_ctree(root);
2541         close(fd);
2542
2543         printf("conversion complete");
2544         return 0;
2545 fail:
2546         clean_convert_context(&cctx);
2547         if (fd != -1)
2548                 close(fd);
2549         warning(
2550 "an error occurred during conversion, filesystem is partially created but not finalized and not mountable");
2551         return -1;
2552 }
2553
2554 /*
2555  * Check if a non 1:1 mapped chunk can be rolled back.
2556  * For new convert, it's OK while for old convert it's not.
2557  */
2558 static int may_rollback_chunk(struct btrfs_fs_info *fs_info, u64 bytenr)
2559 {
2560         struct btrfs_block_group_cache *bg;
2561         struct btrfs_key key;
2562         struct btrfs_path path;
2563         struct btrfs_root *extent_root = fs_info->extent_root;
2564         u64 bg_start;
2565         u64 bg_end;
2566         int ret;
2567
2568         bg = btrfs_lookup_first_block_group(fs_info, bytenr);
2569         if (!bg)
2570                 return -ENOENT;
2571         bg_start = bg->key.objectid;
2572         bg_end = bg->key.objectid + bg->key.offset;
2573
2574         key.objectid = bg_end;
2575         key.type = BTRFS_METADATA_ITEM_KEY;
2576         key.offset = 0;
2577         btrfs_init_path(&path);
2578
2579         ret = btrfs_search_slot(NULL, extent_root, &key, &path, 0, 0);
2580         if (ret < 0)
2581                 return ret;
2582
2583         while (1) {
2584                 struct btrfs_extent_item *ei;
2585
2586                 ret = btrfs_previous_extent_item(extent_root, &path, bg_start);
2587                 if (ret > 0) {
2588                         ret = 0;
2589                         break;
2590                 }
2591                 if (ret < 0)
2592                         break;
2593
2594                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2595                 if (key.type == BTRFS_METADATA_ITEM_KEY)
2596                         continue;
2597                 /* Now it's EXTENT_ITEM_KEY only */
2598                 ei = btrfs_item_ptr(path.nodes[0], path.slots[0],
2599                                     struct btrfs_extent_item);
2600                 /*
2601                  * Found data extent, means this is old convert must follow 1:1
2602                  * mapping.
2603                  */
2604                 if (btrfs_extent_flags(path.nodes[0], ei)
2605                                 & BTRFS_EXTENT_FLAG_DATA) {
2606                         ret = -EINVAL;
2607                         break;
2608                 }
2609         }
2610         btrfs_release_path(&path);
2611         return ret;
2612 }
2613
2614 static int may_rollback(struct btrfs_root *root)
2615 {
2616         struct btrfs_fs_info *info = root->fs_info;
2617         struct btrfs_multi_bio *multi = NULL;
2618         u64 bytenr;
2619         u64 length;
2620         u64 physical;
2621         u64 total_bytes;
2622         int num_stripes;
2623         int ret;
2624
2625         if (btrfs_super_num_devices(info->super_copy) != 1)
2626                 goto fail;
2627
2628         bytenr = BTRFS_SUPER_INFO_OFFSET;
2629         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2630
2631         while (1) {
2632                 ret = btrfs_map_block(&info->mapping_tree, WRITE, bytenr,
2633                                       &length, &multi, 0, NULL);
2634                 if (ret) {
2635                         if (ret == -ENOENT) {
2636                                 /* removed block group at the tail */
2637                                 if (length == (u64)-1)
2638                                         break;
2639
2640                                 /* removed block group in the middle */
2641                                 goto next;
2642                         }
2643                         goto fail;
2644                 }
2645
2646                 num_stripes = multi->num_stripes;
2647                 physical = multi->stripes[0].physical;
2648                 free(multi);
2649
2650                 if (num_stripes != 1) {
2651                         error("num stripes for bytenr %llu is not 1", bytenr);
2652                         goto fail;
2653                 }
2654
2655                 /*
2656                  * Extra check for new convert, as metadata chunk from new
2657                  * convert is much more free than old convert, it doesn't need
2658                  * to do 1:1 mapping.
2659                  */
2660                 if (physical != bytenr) {
2661                         /*
2662                          * Check if it's a metadata chunk and has only metadata
2663                          * extent.
2664                          */
2665                         ret = may_rollback_chunk(info, bytenr);
2666                         if (ret < 0)
2667                                 goto fail;
2668                 }
2669 next:
2670                 bytenr += length;
2671                 if (bytenr >= total_bytes)
2672                         break;
2673         }
2674         return 0;
2675 fail:
2676         return -1;
2677 }
2678
2679 static int do_rollback(const char *devname)
2680 {
2681         int fd = -1;
2682         int ret;
2683         int i;
2684         struct btrfs_root *root;
2685         struct btrfs_root *image_root;
2686         struct btrfs_root *chunk_root;
2687         struct btrfs_dir_item *dir;
2688         struct btrfs_inode_item *inode;
2689         struct btrfs_file_extent_item *fi;
2690         struct btrfs_trans_handle *trans;
2691         struct extent_buffer *leaf;
2692         struct btrfs_block_group_cache *cache1;
2693         struct btrfs_block_group_cache *cache2;
2694         struct btrfs_key key;
2695         struct btrfs_path path;
2696         struct extent_io_tree io_tree;
2697         char *buf = NULL;
2698         char *name;
2699         u64 bytenr;
2700         u64 num_bytes;
2701         u64 root_dir;
2702         u64 objectid;
2703         u64 offset;
2704         u64 start;
2705         u64 end;
2706         u64 sb_bytenr;
2707         u64 first_free;
2708         u64 total_bytes;
2709         u32 sectorsize;
2710
2711         extent_io_tree_init(&io_tree);
2712
2713         fd = open(devname, O_RDWR);
2714         if (fd < 0) {
2715                 error("unable to open %s: %s", devname, strerror(errno));
2716                 goto fail;
2717         }
2718         root = open_ctree_fd(fd, devname, 0, OPEN_CTREE_WRITES);
2719         if (!root) {
2720                 error("unable to open ctree");
2721                 goto fail;
2722         }
2723         ret = may_rollback(root);
2724         if (ret < 0) {
2725                 error("unable to do rollback: %d", ret);
2726                 goto fail;
2727         }
2728
2729         sectorsize = root->sectorsize;
2730         buf = malloc(sectorsize);
2731         if (!buf) {
2732                 error("unable to allocate memory");
2733                 goto fail;
2734         }
2735
2736         btrfs_init_path(&path);
2737
2738         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2739         key.type = BTRFS_ROOT_BACKREF_KEY;
2740         key.offset = BTRFS_FS_TREE_OBJECTID;
2741         ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, &path, 0,
2742                                 0);
2743         btrfs_release_path(&path);
2744         if (ret > 0) {
2745                 error("unable to convert ext2 image subvolume, is it deleted?");
2746                 goto fail;
2747         } else if (ret < 0) {
2748                 error("unable to open ext2_saved, id %llu: %s",
2749                         (unsigned long long)key.objectid, strerror(-ret));
2750                 goto fail;
2751         }
2752
2753         key.objectid = CONV_IMAGE_SUBVOL_OBJECTID;
2754         key.type = BTRFS_ROOT_ITEM_KEY;
2755         key.offset = (u64)-1;
2756         image_root = btrfs_read_fs_root(root->fs_info, &key);
2757         if (!image_root || IS_ERR(image_root)) {
2758                 error("unable to open subvolume %llu: %ld",
2759                         (unsigned long long)key.objectid, PTR_ERR(image_root));
2760                 goto fail;
2761         }
2762
2763         name = "image";
2764         root_dir = btrfs_root_dirid(&root->root_item);
2765         dir = btrfs_lookup_dir_item(NULL, image_root, &path,
2766                                    root_dir, name, strlen(name), 0);
2767         if (!dir || IS_ERR(dir)) {
2768                 error("unable to find file %s: %ld", name, PTR_ERR(dir));
2769                 goto fail;
2770         }
2771         leaf = path.nodes[0];
2772         btrfs_dir_item_key_to_cpu(leaf, dir, &key);
2773         btrfs_release_path(&path);
2774
2775         objectid = key.objectid;
2776
2777         ret = btrfs_lookup_inode(NULL, image_root, &path, &key, 0);
2778         if (ret) {
2779                 error("unable to find inode item: %d", ret);
2780                 goto fail;
2781         }
2782         leaf = path.nodes[0];
2783         inode = btrfs_item_ptr(leaf, path.slots[0], struct btrfs_inode_item);
2784         total_bytes = btrfs_inode_size(leaf, inode);
2785         btrfs_release_path(&path);
2786
2787         key.objectid = objectid;
2788         key.offset = 0;
2789         key.type = BTRFS_EXTENT_DATA_KEY;
2790         ret = btrfs_search_slot(NULL, image_root, &key, &path, 0, 0);
2791         if (ret != 0) {
2792                 error("unable to find first file extent: %d", ret);
2793                 btrfs_release_path(&path);
2794                 goto fail;
2795         }
2796
2797         /* build mapping tree for the relocated blocks */
2798         for (offset = 0; offset < total_bytes; ) {
2799                 leaf = path.nodes[0];
2800                 if (path.slots[0] >= btrfs_header_nritems(leaf)) {
2801                         ret = btrfs_next_leaf(root, &path);
2802                         if (ret != 0)
2803                                 break;  
2804                         continue;
2805                 }
2806
2807                 btrfs_item_key_to_cpu(leaf, &key, path.slots[0]);
2808                 if (key.objectid != objectid || key.offset != offset ||
2809                     key.type != BTRFS_EXTENT_DATA_KEY)
2810                         break;
2811
2812                 fi = btrfs_item_ptr(leaf, path.slots[0],
2813                                     struct btrfs_file_extent_item);
2814                 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2815                         break;
2816                 if (btrfs_file_extent_compression(leaf, fi) ||
2817                     btrfs_file_extent_encryption(leaf, fi) ||
2818                     btrfs_file_extent_other_encoding(leaf, fi))
2819                         break;
2820
2821                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
2822                 /* skip holes and direct mapped extents */
2823                 if (bytenr == 0 || bytenr == offset)
2824                         goto next_extent;
2825
2826                 bytenr += btrfs_file_extent_offset(leaf, fi);
2827                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi);
2828
2829                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2830                 cache2 = btrfs_lookup_block_group(root->fs_info,
2831                                                   offset + num_bytes - 1);
2832                 /*
2833                  * Here we must take consideration of old and new convert
2834                  * behavior.
2835                  * For old convert case, sign, there is no consist chunk type
2836                  * that will cover the extent. META/DATA/SYS are all possible.
2837                  * Just ensure relocate one is in SYS chunk.
2838                  * For new convert case, they are all covered by DATA chunk.
2839                  *
2840                  * So, there is not valid chunk type check for it now.
2841                  */
2842                 if (cache1 != cache2)
2843                         break;
2844
2845                 set_extent_bits(&io_tree, offset, offset + num_bytes - 1,
2846                                 EXTENT_LOCKED, GFP_NOFS);
2847                 set_state_private(&io_tree, offset, bytenr);
2848 next_extent:
2849                 offset += btrfs_file_extent_num_bytes(leaf, fi);
2850                 path.slots[0]++;
2851         }
2852         btrfs_release_path(&path);
2853
2854         if (offset < total_bytes) {
2855                 error("unable to build extent mapping (offset %llu, total_bytes %llu)",
2856                                 (unsigned long long)offset,
2857                                 (unsigned long long)total_bytes);
2858                 error("converted filesystem after balance is unable to rollback");
2859                 goto fail;
2860         }
2861
2862         first_free = BTRFS_SUPER_INFO_OFFSET + 2 * sectorsize - 1;
2863         first_free &= ~((u64)sectorsize - 1);
2864         /* backup for extent #0 should exist */
2865         if(!test_range_bit(&io_tree, 0, first_free - 1, EXTENT_LOCKED, 1)) {
2866                 error("no backup for the first extent");
2867                 goto fail;
2868         }
2869         /* force no allocation from system block group */
2870         root->fs_info->system_allocs = -1;
2871         trans = btrfs_start_transaction(root, 1);
2872         if (!trans) {
2873                 error("unable to start transaction");
2874                 goto fail;
2875         }
2876         /*
2877          * recow the whole chunk tree, this will remove all chunk tree blocks
2878          * from system block group
2879          */
2880         chunk_root = root->fs_info->chunk_root;
2881         memset(&key, 0, sizeof(key));
2882         while (1) {
2883                 ret = btrfs_search_slot(trans, chunk_root, &key, &path, 0, 1);
2884                 if (ret < 0)
2885                         break;
2886
2887                 ret = btrfs_next_leaf(chunk_root, &path);
2888                 if (ret)
2889                         break;
2890
2891                 btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
2892                 btrfs_release_path(&path);
2893         }
2894         btrfs_release_path(&path);
2895
2896         offset = 0;
2897         num_bytes = 0;
2898         while(1) {
2899                 cache1 = btrfs_lookup_block_group(root->fs_info, offset);
2900                 if (!cache1)
2901                         break;
2902
2903                 if (cache1->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2904                         num_bytes += btrfs_block_group_used(&cache1->item);
2905
2906                 offset = cache1->key.objectid + cache1->key.offset;
2907         }
2908         /* only extent #0 left in system block group? */
2909         if (num_bytes > first_free) {
2910                 error(
2911         "unable to empty system block group (num_bytes %llu, first_free %llu",
2912                                 (unsigned long long)num_bytes,
2913                                 (unsigned long long)first_free);
2914                 goto fail;
2915         }
2916         /* create a system chunk that maps the whole device */
2917         ret = prepare_system_chunk_sb(root->fs_info->super_copy);
2918         if (ret) {
2919                 error("unable to update system chunk: %d", ret);
2920                 goto fail;
2921         }
2922
2923         ret = btrfs_commit_transaction(trans, root);
2924         if (ret) {
2925                 error("transaction commit failed: %d", ret);
2926                 goto fail;
2927         }
2928
2929         ret = close_ctree(root);
2930         if (ret) {
2931                 error("close_ctree failed: %d", ret);
2932                 goto fail;
2933         }
2934
2935         /* zero btrfs super block mirrors */
2936         memset(buf, 0, sectorsize);
2937         for (i = 1 ; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2938                 bytenr = btrfs_sb_offset(i);
2939                 if (bytenr >= total_bytes)
2940                         break;
2941                 ret = pwrite(fd, buf, sectorsize, bytenr);
2942                 if (ret != sectorsize) {
2943                         error("zeroing superblock mirror %d failed: %d",
2944                                         i, ret);
2945                         goto fail;
2946                 }
2947         }
2948
2949         sb_bytenr = (u64)-1;
2950         /* copy all relocated blocks back */
2951         while(1) {
2952                 ret = find_first_extent_bit(&io_tree, 0, &start, &end,
2953                                             EXTENT_LOCKED);
2954                 if (ret)
2955                         break;
2956
2957                 ret = get_state_private(&io_tree, start, &bytenr);
2958                 BUG_ON(ret);
2959
2960                 clear_extent_bits(&io_tree, start, end, EXTENT_LOCKED,
2961                                   GFP_NOFS);
2962
2963                 while (start <= end) {
2964                         if (start == BTRFS_SUPER_INFO_OFFSET) {
2965                                 sb_bytenr = bytenr;
2966                                 goto next_sector;
2967                         }
2968                         ret = pread(fd, buf, sectorsize, bytenr);
2969                         if (ret < 0) {
2970                                 error("reading superblock at %llu failed: %d",
2971                                                 (unsigned long long)bytenr, ret);
2972                                 goto fail;
2973                         }
2974                         BUG_ON(ret != sectorsize);
2975                         ret = pwrite(fd, buf, sectorsize, start);
2976                         if (ret < 0) {
2977                                 error("writing superblock at %llu failed: %d",
2978                                                 (unsigned long long)start, ret);
2979                                 goto fail;
2980                         }
2981                         BUG_ON(ret != sectorsize);
2982 next_sector:
2983                         start += sectorsize;
2984                         bytenr += sectorsize;
2985                 }
2986         }
2987
2988         ret = fsync(fd);
2989         if (ret < 0) {
2990                 error("fsync failed: %s", strerror(errno));
2991                 goto fail;
2992         }
2993         /*
2994          * finally, overwrite btrfs super block.
2995          */
2996         ret = pread(fd, buf, sectorsize, sb_bytenr);
2997         if (ret < 0) {
2998                 error("reading primary superblock failed: %s",
2999                                 strerror(errno));
3000                 goto fail;
3001         }
3002         BUG_ON(ret != sectorsize);
3003         ret = pwrite(fd, buf, sectorsize, BTRFS_SUPER_INFO_OFFSET);
3004         if (ret < 0) {
3005                 error("writing primary superblock failed: %s",
3006                                 strerror(errno));
3007                 goto fail;
3008         }
3009         BUG_ON(ret != sectorsize);
3010         ret = fsync(fd);
3011         if (ret < 0) {
3012                 error("fsync failed: %s", strerror(errno));
3013                 goto fail;
3014         }
3015
3016         close(fd);
3017         free(buf);
3018         extent_io_tree_cleanup(&io_tree);
3019         printf("rollback complete\n");
3020         return 0;
3021
3022 fail:
3023         if (fd != -1)
3024                 close(fd);
3025         free(buf);
3026         error("rollback aborted");
3027         return -1;
3028 }
3029
3030 static void print_usage(void)
3031 {
3032         printf("usage: btrfs-convert [options] device\n");
3033         printf("options:\n");
3034         printf("\t-d|--no-datasum        disable data checksum, sets NODATASUM\n");
3035         printf("\t-i|--no-xattr          ignore xattrs and ACLs\n");
3036         printf("\t-n|--no-inline         disable inlining of small files to metadata\n");
3037         printf("\t-N|--nodesize SIZE     set filesystem metadata nodesize\n");
3038         printf("\t-r|--rollback          roll back to the original filesystem\n");
3039         printf("\t-l|--label LABEL       set filesystem label\n");
3040         printf("\t-L|--copy-label        use label from converted filesystem\n");
3041         printf("\t-p|--progress          show converting progress (default)\n");
3042         printf("\t-O|--features LIST     comma separated list of filesystem features\n");
3043         printf("\t--no-progress          show only overview, not the detailed progress\n");
3044         printf("\n");
3045         printf("Supported filesystems:\n");
3046         printf("\text2/3/4: %s\n", BTRFSCONVERT_EXT2 ? "yes" : "no");
3047 }
3048
3049 int main(int argc, char *argv[])
3050 {
3051         int ret;
3052         int packing = 1;
3053         int noxattr = 0;
3054         int datacsum = 1;
3055         u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
3056                         BTRFS_MKFS_DEFAULT_NODE_SIZE);
3057         int rollback = 0;
3058         int copylabel = 0;
3059         int usage_error = 0;
3060         int progress = 1;
3061         char *file;
3062         char fslabel[BTRFS_LABEL_SIZE];
3063         u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
3064
3065         while(1) {
3066                 enum { GETOPT_VAL_NO_PROGRESS = 256 };
3067                 static const struct option long_options[] = {
3068                         { "no-progress", no_argument, NULL,
3069                                 GETOPT_VAL_NO_PROGRESS },
3070                         { "no-datasum", no_argument, NULL, 'd' },
3071                         { "no-inline", no_argument, NULL, 'n' },
3072                         { "no-xattr", no_argument, NULL, 'i' },
3073                         { "rollback", no_argument, NULL, 'r' },
3074                         { "features", required_argument, NULL, 'O' },
3075                         { "progress", no_argument, NULL, 'p' },
3076                         { "label", required_argument, NULL, 'l' },
3077                         { "copy-label", no_argument, NULL, 'L' },
3078                         { "nodesize", required_argument, NULL, 'N' },
3079                         { "help", no_argument, NULL, GETOPT_VAL_HELP},
3080                         { NULL, 0, NULL, 0 }
3081                 };
3082                 int c = getopt_long(argc, argv, "dinN:rl:LpO:", long_options, NULL);
3083
3084                 if (c < 0)
3085                         break;
3086                 switch(c) {
3087                         case 'd':
3088                                 datacsum = 0;
3089                                 break;
3090                         case 'i':
3091                                 noxattr = 1;
3092                                 break;
3093                         case 'n':
3094                                 packing = 0;
3095                                 break;
3096                         case 'N':
3097                                 nodesize = parse_size(optarg);
3098                                 break;
3099                         case 'r':
3100                                 rollback = 1;
3101                                 break;
3102                         case 'l':
3103                                 copylabel = -1;
3104                                 if (strlen(optarg) >= BTRFS_LABEL_SIZE) {
3105                                         warning(
3106                                         "label too long, trimmed to %d bytes",
3107                                                 BTRFS_LABEL_SIZE - 1);
3108                                 }
3109                                 __strncpy_null(fslabel, optarg, BTRFS_LABEL_SIZE - 1);
3110                                 break;
3111                         case 'L':
3112                                 copylabel = 1;
3113                                 break;
3114                         case 'p':
3115                                 progress = 1;
3116                                 break;
3117                         case 'O': {
3118                                 char *orig = strdup(optarg);
3119                                 char *tmp = orig;
3120
3121                                 tmp = btrfs_parse_fs_features(tmp, &features);
3122                                 if (tmp) {
3123                                         error("unrecognized filesystem feature: %s",
3124                                                         tmp);
3125                                         free(orig);
3126                                         exit(1);
3127                                 }
3128                                 free(orig);
3129                                 if (features & BTRFS_FEATURE_LIST_ALL) {
3130                                         btrfs_list_all_fs_features(
3131                                                 ~BTRFS_CONVERT_ALLOWED_FEATURES);
3132                                         exit(0);
3133                                 }
3134                                 if (features & ~BTRFS_CONVERT_ALLOWED_FEATURES) {
3135                                         char buf[64];
3136
3137                                         btrfs_parse_features_to_string(buf,
3138                                                 features & ~BTRFS_CONVERT_ALLOWED_FEATURES);
3139                                         error("features not allowed for convert: %s",
3140                                                 buf);
3141                                         exit(1);
3142                                 }
3143
3144                                 break;
3145                                 }
3146                         case GETOPT_VAL_NO_PROGRESS:
3147                                 progress = 0;
3148                                 break;
3149                         case GETOPT_VAL_HELP:
3150                         default:
3151                                 print_usage();
3152                                 return c != GETOPT_VAL_HELP;
3153                 }
3154         }
3155         set_argv0(argv);
3156         if (check_argc_exact(argc - optind, 1)) {
3157                 print_usage();
3158                 return 1;
3159         }
3160
3161         if (rollback && (!datacsum || noxattr || !packing)) {
3162                 fprintf(stderr,
3163                         "Usage error: -d, -i, -n options do not apply to rollback\n");
3164                 usage_error++;
3165         }
3166
3167         if (usage_error) {
3168                 print_usage();
3169                 return 1;
3170         }
3171
3172         file = argv[optind];
3173         ret = check_mounted(file);
3174         if (ret < 0) {
3175                 error("could not check mount status: %s", strerror(-ret));
3176                 return 1;
3177         } else if (ret) {
3178                 error("%s is mounted", file);
3179                 return 1;
3180         }
3181
3182         if (rollback) {
3183                 ret = do_rollback(file);
3184         } else {
3185                 ret = do_convert(file, datacsum, packing, noxattr, nodesize,
3186                                 copylabel, fslabel, progress, features);
3187         }
3188         if (ret)
3189                 return 1;
3190         return 0;
3191 }