3 * COPYRIGHT: Written by John Cunningham Bowler, 2015.
4 * Revised by Glenn Randers-Pehrson, 2017, to add buffer-size check.
5 * To the extent possible under law, the authors have waived all copyright and
6 * related or neighboring rights to this work. This work is published from:
9 * Generate a PNG with an alpha channel, correctly.
11 * This is a test case generator; the resultant PNG files are only of interest
12 * to those of us who care about whether the edges of circles are green, red,
15 * The program generates an RGB+Alpha PNG of a given size containing the given
16 * shapes on a transparent background:
18 * genpng width height { shape }
19 * shape ::= color width shape x1 y1 x2 y2
23 * black white red green yellow blue brown purple pink orange gray cyan
25 * The point is to have colors that are linguistically meaningful plus that old
26 * bugbear of the department store dress murders, Cyan, the only color we argue
33 * line: a straight line
35 * Each shape is followed by four numbers, these are two points in the output
36 * coordinate space (as real numbers) which describe the circle, square, or
37 * line. The shape is filled if it is preceded by 'filled' (not valid for
38 * 'line') or is drawn with a line, in which case the width of the line must
41 * The whole set of information can be repeated as many times as desired:
43 * shape ::= color width shape x1 y1 x2 y2
45 * color ::= black|white|red|green|yellow|blue
46 * color ::= brown|purple|pink|orange|gray|cyan
49 * shape ::= circle|square|line
55 * The output PNG is generated by down-sampling a 4x supersampled image using
56 * a bi-cubic filter. The bi-cubic has a 2 (output) pixel width, so an 8x8
57 * array of super-sampled points contribute to each output pixel. The value of
58 * a super-sampled point is found using an unfiltered, aliased, infinite
59 * precision image: Each shape from the last to the first is checked to see if
60 * the point is in the drawn area and, if it is, the color of the point is the
61 * color of the shape and the alpha is 1, if not the previous shape is checked.
63 * This is an aliased algorithm because no filtering is done; a point is either
64 * inside or outside each shape and 'close' points do not contribute to the
65 * sample. The down-sampling is relied on to correct the error of not using
68 * The line end-caps are 'flat'; they go through the points. The square line
69 * joins are mitres; the outside of the lines are continued to the point of
79 /* Normally use <png.h> here to get the installed libpng, but this is done to
80 * ensure the code picks up the local libpng implementation:
82 #include "../../png.h"
84 #if defined(PNG_SIMPLIFIED_WRITE_SUPPORTED) && defined(PNG_STDIO_SUPPORTED)
86 static const struct color
93 /* color ::= black|white|red|green|yellow|blue
94 * color ::= brown|purple|pink|orange|gray|cyan
100 { "green", 0, 1, 0 },
101 { "yellow", 1, 1, 0 },
103 { "brown", .5, .125, 0 },
104 { "purple", 1, 0, 1 },
105 { "pink", 1, .5, .5 },
106 { "orange", 1, .5, 0 },
107 { "gray", 0, .5, .5 },
110 #define color_count ((sizeof colors)/(sizeof colors[0]))
112 static const struct color *
113 color_of(const char *arg)
115 int icolor = color_count;
117 while (--icolor >= 0)
119 if (strcmp(colors[icolor].name, arg) == 0)
120 return colors+icolor;
123 fprintf(stderr, "genpng: invalid color %s\n", arg);
128 width_of(const char *arg)
130 if (strcmp(arg, "filled") == 0)
136 double w = strtod(arg, &ep);
138 if (ep != NULL && *ep == 0 && w > 0)
142 fprintf(stderr, "genpng: invalid line width %s\n", arg);
147 coordinate_of(const char *arg)
150 double w = strtod(arg, &ep);
152 if (ep != NULL && *ep == 0)
155 fprintf(stderr, "genpng: invalid coordinate value %s\n", arg);
159 struct arg; /* forward declaration */
161 typedef int (*shape_fn_ptr)(const struct arg *arg, double x, double y);
162 /* A function to determine if (x,y) is inside the shape.
164 * There are two implementations:
166 * inside_fn: returns true if the point is inside
168 * -1: the point is outside the shape by more than the filter width (2)
169 * 0: the point may be inside the shape
170 * +1: the point is inside the shape by more than the filter width
177 const struct color *color;
178 shape_fn_ptr inside_fn;
179 shape_fn_ptr check_fn;
180 double width; /* line width, 0 for 'filled' */
181 double x1, y1, x2, y2;
184 /* IMPLEMENTATION NOTE:
186 * We want the contribution of each shape to the sample corresponding to each
187 * pixel. This could be obtained by super sampling the image to infinite
188 * dimensions, finding each point within the shape and assigning that a value
189 * '1' while leaving every point outside the shape with value '0' then
190 * downsampling to the image size with sinc; computationally very expensive.
192 * Approximations are as follows:
194 * 1) If the pixel coordinate is within the shape assume the sample has the
195 * shape color and is opaque, else assume there is no contribution from
198 * This is the equivalent of aliased rendering or resampling an image with
199 * a block filter. The maximum error in the calculated alpha (which will
200 * always be 0 or 1) is 0.5.
202 * 2) If the shape is within a square of size 1x1 centered on the pixel assume
203 * that the shape obscures an amount of the pixel equal to its area within
206 * This is the equivalent of 'pixel coverage' alpha calculation or resampling
207 * an image with a bi-linear filter. The maximum error is over 0.2, but the
208 * results are often acceptable.
210 * This can be approximated by applying (1) to a super-sampled image then
211 * downsampling with a bi-linear filter. The error in the super-sampled
212 * image is 0.5 per sample, but the resampling reduces this.
214 * 3) Use a better filter with a super-sampled image; in the limit this is the
217 * 4) Do the geometric calculation; a bivariate definite integral across the
218 * shape, unfortunately this means evaluating Si(x), the integral of sinc(x),
219 * which is still a lot of math.
221 * This code uses approach (3) with a bi-cubic filter and 8x super-sampling
222 * and method (1) for the super-samples. This means that the sample is either
223 * 0 or 1, depending on whether the sub-pixel is within or outside the shape.
224 * The bi-cubic weights are also fixed and the 16 required weights are
225 * pre-computed here (note that the 'scale' setting will need to be changed if
226 * 'super' is increased).
228 * The code also calculates a sum to the edge of the filter. This is not
229 * currently used by could be used to optimize the calculation.
235 if (x <= 1) return (1.5*x - 2.5)*x*x + 1;
236 if (x < 2) return (((2.5 - 0.5*x)*x - 4)*x + 2);
242 while (x < 2*super) {
243 s = s + bicubic(x/super);
250 b = bicubic(x/super);
253 print " /*", x, "*/ { ", b, ", ", s, " }";
259 if (x < 2*super) print ","
265 #define BICUBIC1(x) /* |x| <= 1 */ ((1.5*(x)* - 2.5)*(x)*(x) + 1)
266 #define BICUBIC2(x) /* 1 < |x| < 2 */ (((2.5 - 0.5*(x))*(x) - 4)*(x) + 2)
267 #define FILTER_WEIGHT 9 /* Twice the first sum below */
268 #define FILTER_WIDTH 2 /* Actually half the width; -2..+2 */
269 #define FILTER_STEPS 8 /* steps per filter unit */
273 /* These numbers are exact; the weight for the filter is 1/9, but this
274 * would make the numbers inexact, so it is not included here.
277 /* 0*/ { 1.0000000000, 4.5000000000 },
278 /* 1*/ { .9638671875, 3.5000000000 },
279 /* 2*/ { .8671875000, 2.5361328125 },
280 /* 3*/ { .7275390625, 1.6689453125 },
281 /* 4*/ { .5625000000, .9414062500 },
282 /* 5*/ { .3896484375, .3789062500 },
283 /* 6*/ { .2265625000, -.0107421875 },
284 /* 7*/ { .0908203125, -.2373046875 },
285 /* 8*/ { 0, -.3281250000 },
286 /* 9*/ { -.0478515625, -.3281250000 },
287 /*10*/ { -.0703125000, -.2802734375 },
288 /*11*/ { -.0732421875, -.2099609375 },
289 /*12*/ { -.0625000000, -.1367187500 },
290 /*13*/ { -.0439453125, -.0742187500 },
291 /*14*/ { -.0234375000, -.0302734375 },
292 /*15*/ { -.0068359375, -.0068359375 }
296 alpha_calc(const struct arg *arg, double x, double y)
298 /* For [x-2..x+2],[y-2,y+2] calculate the weighted bicubic given a function
299 * which tells us whether a point is inside or outside the shape. First
300 * check if we need to do this at all:
302 switch (arg->check_fn(arg, x, y))
305 return 0; /* all samples outside the shape */
308 return 1; /* all samples inside the shape */
315 # define FILTER_D (FILTER_WIDTH*FILTER_STEPS-1)
316 for (dy=-FILTER_D; dy<=FILTER_D; ++dy)
318 double wy = bicubic[abs(dy)][0];
325 for (dx=-FILTER_D; dx<=FILTER_D; ++dx)
327 double wx = bicubic[abs(dx)][0];
329 if (wx != 0 && arg->inside_fn(arg, x+dx/16, y+dy/16))
333 alpha += wy * alphay;
337 /* This needs to be weighted for each dimension: */
338 return alpha / (FILTER_WEIGHT*FILTER_WEIGHT);
343 /* These are the shape functions. */
345 * { inside_square_filled, check_square_filled },
346 * { inside_square, check_square }
349 square_check(double x, double y, double x1, double y1, double x2, double y2)
350 /* Is x,y inside the square (x1,y1)..(x2,y2)? */
352 /* Do a modified Cohen-Sutherland on one point, bit patterns that indicate
355 * x<x1 | x<y1 | x<x2 | x<y2
356 * 0 x 0 x To the right
357 * 1 x 1 x To the left
361 * So 'inside' is (x<x1) != (x<x2) && (y<y1) != (y<y2);
363 return ((x<x1) ^ (x<x2)) & ((y<y1) ^ (y<y2));
367 inside_square_filled(const struct arg *arg, double x, double y)
369 return square_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
373 square_check_line(const struct arg *arg, double x, double y, double w)
374 /* Check for a point being inside the boundaries implied by the given arg
375 * and assuming a width 2*w each side of the boundaries. This returns the
376 * 'check' INSIDE/OUTSIDE/0 result but note the semantics:
384 * And '0' means within the line boundaries.
387 double cx = (arg->x1+arg->x2)/2;
388 double wx = fabs(arg->x1-arg->x2)/2;
389 double cy = (arg->y1+arg->y2)/2;
390 double wy = fabs(arg->y1-arg->y2)/2;
392 if (square_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
394 /* Inside, but maybe too far; check for the redundant case where
399 if (wx > 0 && wy > 0 && square_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
400 return INSIDE; /* between (inside) the boundary lines. */
402 return 0; /* inside the lines themselves. */
405 return OUTSIDE; /* outside the boundary lines. */
409 check_square_filled(const struct arg *arg, double x, double y)
411 /* The filter extends +/-FILTER_WIDTH each side of each output point, so
412 * the check has to expand and contract the square by that amount; '0'
413 * means close enough to the edge of the square that the bicubic filter has
414 * to be run, OUTSIDE means alpha==0, INSIDE means alpha==1.
416 return square_check_line(arg, x, y, FILTER_WIDTH);
420 inside_square(const struct arg *arg, double x, double y)
422 /* Return true if within the drawn lines, else false, no need to distinguish
423 * INSIDE vs OUTSIDE here:
425 return square_check_line(arg, x, y, arg->width/2) == 0;
429 check_square(const struct arg *arg, double x, double y)
431 /* So for this function a result of 'INSIDE' means inside the actual lines.
433 double w = arg->width/2;
435 if (square_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
437 /* Somewhere close to the boundary lines. If far enough inside one of
438 * them then we can return INSIDE:
442 if (w > 0 && square_check_line(arg, x, y, w) == 0)
445 /* Point is somewhere in the filter region: */
449 else /* Inside or outside the square by more than w+FILTER_WIDTH. */
454 * { inside_circle_filled, check_circle_filled },
455 * { inside_circle, check_circle }
457 * The functions here are analogous to the square ones; however, they check
458 * the corresponding ellipse as opposed to the rectangle.
461 circle_check(double x, double y, double x1, double y1, double x2, double y2)
463 if (square_check(x, y, x1, y1, x2, y2))
465 /* Inside the square, so maybe inside the circle too: */
466 const double cx = (x1 + x2)/2;
467 const double cy = (y1 + y2)/2;
468 const double dx = x1 - x2;
469 const double dy = y1 - y2;
474 /* It is outside if the distance from the center is more than half the
477 return x*x+y*y < .25;
480 return 0; /* outside */
484 inside_circle_filled(const struct arg *arg, double x, double y)
486 return circle_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2);
490 circle_check_line(const struct arg *arg, double x, double y, double w)
491 /* Check for a point being inside the boundaries implied by the given arg
492 * and assuming a width 2*w each side of the boundaries. This function has
493 * the same semantic as square_check_line but tests the circle.
496 double cx = (arg->x1+arg->x2)/2;
497 double wx = fabs(arg->x1-arg->x2)/2;
498 double cy = (arg->y1+arg->y2)/2;
499 double wy = fabs(arg->y1-arg->y2)/2;
501 if (circle_check(x, y, cx-wx-w, cy-wy-w, cx+wx+w, cy+wy+w))
503 /* Inside, but maybe too far; check for the redundant case where
508 if (wx > 0 && wy > 0 && circle_check(x, y, cx-wx, cy-wy, cx+wx, cy+wy))
509 return INSIDE; /* between (inside) the boundary lines. */
511 return 0; /* inside the lines themselves. */
514 return OUTSIDE; /* outside the boundary lines. */
518 check_circle_filled(const struct arg *arg, double x, double y)
520 return circle_check_line(arg, x, y, FILTER_WIDTH);
524 inside_circle(const struct arg *arg, double x, double y)
526 return circle_check_line(arg, x, y, arg->width/2) == 0;
530 check_circle(const struct arg *arg, double x, double y)
532 /* Exactly as the 'square' code. */
533 double w = arg->width/2;
535 if (circle_check_line(arg, x, y, w+FILTER_WIDTH) == 0)
539 if (w > 0 && circle_check_line(arg, x, y, w) == 0)
542 /* Point is somewhere in the filter region: */
546 else /* Inside or outside the square by more than w+FILTER_WIDTH. */
551 * { NULL, NULL }, There is no 'filled' line.
552 * { inside_line, check_line }
555 line_check(double x, double y, double x1, double y1, double x2, double y2,
556 double w, double expand)
558 /* Shift all the points to (arg->x1, arg->y1) */
561 double len2 = lx*lx + ly*ly;
567 /* The dot product is the distance down the line, the cross product is
568 * the distance away from the line:
570 * distance = |cross| / sqrt(len2)
572 cross = x * ly - y * lx;
574 /* If 'distance' is more than w the point is definitely outside the line:
577 * |cross| >= w * sqrt(len2)
578 * cross^2 >= w^2 * len2:
580 if (cross*cross >= (w+expand)*(w+expand)*len2)
581 return 0; /* outside */
583 /* Now find the distance *along* the line; this comes from the dot product
584 * lx.x+ly.y. The actual distance (in pixels) is:
586 * distance = dot / sqrt(len2)
588 dot = lx * x + ly * y;
590 /* The test for 'outside' is:
592 * distance < 0 || distance > sqrt(len2)
593 * -> dot / sqrt(len2) > sqrt(len2)
596 * But 'expand' is used for the filter width and needs to be handled too:
598 return dot > -expand && dot < len2+expand;
602 inside_line(const struct arg *arg, double x, double y)
604 return line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2, 0);
608 check_line(const struct arg *arg, double x, double y)
610 /* The end caps of the line must be checked too; it's not enough just to
611 * widen the line by FILTER_WIDTH; 'expand' exists for this purpose:
613 if (line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
616 /* Inside the line+filter; far enough inside that the filter isn't
619 if (arg->width > 2*FILTER_WIDTH &&
620 line_check(x, y, arg->x1, arg->y1, arg->x2, arg->y2, arg->width/2,
633 shape_fn_ptr function[2/*fill,line*/][2];
639 { { inside_square_filled, check_square_filled },
640 { inside_square, check_square } }
643 { { inside_circle_filled, check_circle_filled },
644 { inside_circle, check_circle } }
648 { inside_line, check_line } }
652 #define shape_count ((sizeof shape_defs)/(sizeof shape_defs[0]))
655 shape_of(const char *arg, double width, int f)
659 for (i=0; i<shape_count; ++i) if (strcmp(shape_defs[i].name, arg) == 0)
661 shape_fn_ptr fn = shape_defs[i].function[width != 0][f];
666 fprintf(stderr, "genpng: %s %s not supported\n",
667 width == 0 ? "filled" : "unfilled", arg);
671 fprintf(stderr, "genpng: %s: not a valid shape name\n", arg);
676 parse_arg(struct arg *arg, const char **argv/*7 arguments*/)
678 /* shape ::= color width shape x1 y1 x2 y2 */
679 arg->color = color_of(argv[0]);
680 arg->width = width_of(argv[1]);
681 arg->inside_fn = shape_of(argv[2], arg->width, FN_INSIDE);
682 arg->check_fn = shape_of(argv[2], arg->width, FN_CHECK);
683 arg->x1 = coordinate_of(argv[3]);
684 arg->y1 = coordinate_of(argv[4]);
685 arg->x2 = coordinate_of(argv[5]);
686 arg->y2 = coordinate_of(argv[6]);
690 read_wh(const char *name, const char *str)
691 /* read a PNG width or height */
694 unsigned long ul = strtoul(str, &ep, 10);
696 if (ep != NULL && *ep == 0 && ul > 0 && ul <= 0x7fffffff)
697 return (png_uint_32)/*SAFE*/ul;
699 fprintf(stderr, "genpng: %s: invalid number %s\n", name, str);
704 pixel(png_uint_16p p, struct arg *args, int nargs, double x, double y)
706 /* Fill in the pixel by checking each shape (args[nargs]) for effects on
707 * the corresponding sample:
709 double r=0, g=0, b=0, a=0;
711 while (--nargs >= 0 && a != 1)
713 /* NOTE: alpha_calc can return a value outside the range 0..1 with the
716 const double alpha = alpha_calc(args+nargs, x, y) * (1-a);
718 r += alpha * args[nargs].color->red;
719 g += alpha * args[nargs].color->green;
720 b += alpha * args[nargs].color->blue;
724 /* 'a' may be negative or greater than 1; if it is, negative clamp the
725 * pixel to 0 if >1 clamp r/g/b:
737 /* And fill in the pixel: */
738 p[0] = (png_uint_16)/*SAFE*/round(r * 65535);
739 p[1] = (png_uint_16)/*SAFE*/round(g * 65535);
740 p[2] = (png_uint_16)/*SAFE*/round(b * 65535);
741 p[3] = (png_uint_16)/*SAFE*/round(a * 65535);
745 p[3] = p[2] = p[1] = p[0] = 0;
749 main(int argc, const char **argv)
751 int convert_to_8bit = 0;
753 /* There is one option: --8bit: */
754 if (argc > 1 && strcmp(argv[1], "--8bit") == 0)
755 --argc, ++argv, convert_to_8bit = 1;
762 # define max_shapes 256
763 struct arg arg_list[max_shapes];
765 /* The libpng Simplified API write code requires a fully initialized
768 memset(&image, 0, sizeof image);
769 image.version = PNG_IMAGE_VERSION;
771 image.width = read_wh("width", argv[1]);
772 image.height = read_wh("height", argv[2]);
773 image.format = PNG_FORMAT_LINEAR_RGB_ALPHA;
775 image.colormap_entries = 0;
777 /* Check the remainder of the arguments */
778 for (nshapes=0; 3+7*(nshapes+1) <= argc && nshapes < max_shapes;
780 parse_arg(arg_list+nshapes, argv+3+7*nshapes);
782 if (3+7*nshapes != argc)
784 fprintf(stderr, "genpng: %s: too many arguments\n", argv[3+7*nshapes]);
789 /* TO do: determine whether this guard against overflow is necessary.
790 * This comment in png.h indicates that it should be safe: "libpng will
791 * refuse to process an image where such an overflow would occur", but
792 * I don't see where the image gets rejected when the buffer is too
793 * large before the malloc is attempted.
795 if (image.height > ((size_t)(-1))/(8*image.width)) {
796 fprintf(stderr, "genpng: image buffer would be too big");
801 /* Create the buffer: */
802 buffer = malloc(PNG_IMAGE_SIZE(image));
808 /* Write each row... */
809 for (y=0; y<image.height; ++y)
813 /* Each pixel in each row: */
814 for (x=0; x<image.width; ++x)
815 pixel(buffer + 4*(x + y*image.width), arg_list, nshapes, x, y);
818 /* Write the result (to stdout) */
819 if (png_image_write_to_stdio(&image, stdout, convert_to_8bit,
820 buffer, 0/*row_stride*/, NULL/*colormap*/))
823 return 0; /* success */
827 fprintf(stderr, "genpng: write stdout: %s\n", image.message);
833 fprintf(stderr, "genpng: out of memory: %lu bytes\n",
834 (unsigned long)PNG_IMAGE_SIZE(image));
839 /* Wrong number of arguments */
840 fprintf(stderr, "genpng: usage: genpng [--8bit] width height {shape}\n"
841 " Generate a transparent PNG in RGBA (truecolor+alpha) format\n"
842 " containing the given shape or shapes. Shapes are defined:\n"
844 " shape ::= color width shape x1 y1 x2 y2\n"
845 " color ::= black|white|red|green|yellow|blue\n"
846 " color ::= brown|purple|pink|orange|gray|cyan\n"
847 " width ::= filled|<number>\n"
848 " shape ::= circle|square|line\n"
849 " x1,x2 ::= <number>\n"
850 " y1,y2 ::= <number>\n"
852 " Numbers are floating point numbers describing points relative to\n"
853 " the top left of the output PNG as pixel coordinates. The 'width'\n"
854 " parameter is either the width of the line (in output pixels) used\n"
855 " to draw the shape or 'filled' to indicate that the shape should\n"
856 " be filled with the color.\n"
858 " Colors are interpreted loosely to give access to the eight full\n"
859 " intensity RGB values:\n"
861 " black, red, green, blue, yellow, cyan, purple, white,\n"
863 " Cyan is full intensity blue+green; RGB(0,1,1), plus the following\n"
864 " lower intensity values:\n"
866 " brown: red+orange: RGB(0.5, 0.125, 0) (dark red+orange)\n"
867 " pink: red+white: RGB(1.0, 0.5, 0.5)\n"
868 " orange: red+yellow: RGB(1.0, 0.5, 0)\n"
869 " gray: black+white: RGB(0.5, 0.5, 0.5)\n"
871 " The RGB values are selected to make detection of aliasing errors\n"
872 " easy. The names are selected to make the description of errors\n"
875 " The PNG is written to stdout, if --8bit is given a 32bpp RGBA sRGB\n"
876 " file is produced, otherwise a 64bpp RGBA linear encoded file is\n"
882 #endif /* SIMPLIFIED_WRITE && STDIO */