Imported Upstream version 1.18.0
[platform/core/ml/nnfw.git] / compiler / luci-interpreter / src / kernels / Sub.cpp
1 /*
2  * Copyright (c) 2020 Samsung Electronics Co., Ltd. All Rights Reserved
3  * Copyright 2019 The TensorFlow Authors. All Rights Reserved.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *    http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17
18 #include "kernels/Sub.h"
19 #include "kernels/Utils.h"
20
21 #include "PALSub.h"
22
23 #include <tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h>
24
25 #include <stdexcept>
26
27 namespace luci_interpreter
28 {
29 namespace kernels
30 {
31
32 Sub::Sub(const Tensor *input1, const Tensor *input2, Tensor *output, const SubParams &params)
33   : KernelWithParams<SubParams>({input1, input2}, {output}, params)
34 {
35 }
36
37 void Sub::configure()
38 {
39   LUCI_INTERPRETER_CHECK(!(input1()->element_type() != input2()->element_type()))
40   output()->resize(calculateShapeForBroadcast(input1()->shape(), input2()->shape()));
41 }
42
43 void Sub::execute() const
44 {
45   switch (input1()->element_type())
46   {
47     case DataType::FLOAT32:
48       evalFloat();
49       break;
50     case DataType::U8:
51       evalQuantized();
52       break;
53     default:
54       throw std::runtime_error("Unsupported type.");
55   }
56 }
57
58 void Sub::evalFloat() const
59 {
60   float activation_min{};
61   float activation_max{};
62   calculateActivationRange(_params.activation, &activation_min, &activation_max);
63
64   tflite::ArithmeticParams params{};
65   params.float_activation_min = activation_min;
66   params.float_activation_max = activation_max;
67
68   const bool need_broadcast = tflite::reference_ops::ProcessBroadcastShapes(
69     getTensorShape(input1()), getTensorShape(input2()), &params);
70
71   if (need_broadcast)
72   {
73     tflite::reference_ops::BroadcastSubSlow(
74       params, getTensorShape(input1()), getTensorData<float>(input1()), getTensorShape(input2()),
75       getTensorData<float>(input2()), getTensorShape(output()), getTensorData<float>(output()));
76   }
77   else
78   {
79     luci_interpreter_pal::Sub(params, getTensorShape(input1()), getTensorData<float>(input1()),
80                               getTensorShape(input2()), getTensorData<float>(input2()),
81                               getTensorShape(output()), getTensorData<float>(output()));
82   }
83 }
84
85 void Sub::evalQuantized() const
86 {
87   const auto input1_scale = static_cast<double>(input1()->scale());
88   const auto input2_scale = static_cast<double>(input2()->scale());
89   const auto output_scale = static_cast<double>(output()->scale());
90
91   const int left_shift = 20;
92   const double twice_max_input_scale = 2 * std::max(input1_scale, input2_scale);
93   const double real_input1_multiplier = input1_scale / twice_max_input_scale;
94   const double real_input2_multiplier = input2_scale / twice_max_input_scale;
95   const double real_output_multiplier = twice_max_input_scale / ((1 << left_shift) * output_scale);
96
97   int32_t input1_multiplier{}, input2_multiplier{}, output_multiplier{};
98   int input1_shift{}, input2_shift{}, output_shift{};
99   quantizeMultiplierSmallerThanOneExp(real_input1_multiplier, &input1_multiplier, &input1_shift);
100   quantizeMultiplierSmallerThanOneExp(real_input2_multiplier, &input2_multiplier, &input2_shift);
101   quantizeMultiplierSmallerThanOneExp(real_output_multiplier, &output_multiplier, &output_shift);
102
103   int32_t activation_min{};
104   int32_t activation_max{};
105   calculateActivationRangeQuantized(_params.activation, output(), &activation_min, &activation_max);
106
107   tflite::ArithmeticParams params{};
108   params.left_shift = left_shift;
109   // The kernel expects inputs' zero points to be negated.
110   params.input1_offset = -input1()->zero_point(); // Note the '-'.
111   params.input1_multiplier = input1_multiplier;
112   params.input1_shift = input1_shift;
113   params.input2_offset = -input2()->zero_point(); // Note the '-'.
114   params.input2_multiplier = input2_multiplier;
115   params.input2_shift = input2_shift;
116   params.output_offset = output()->zero_point();
117   params.output_multiplier = output_multiplier;
118   params.output_shift = output_shift;
119   params.quantized_activation_min = activation_min;
120   params.quantized_activation_max = activation_max;
121
122   const bool need_broadcast = tflite::reference_ops::ProcessBroadcastShapes(
123     getTensorShape(input1()), getTensorShape(input2()), &params);
124
125   if (need_broadcast)
126   {
127     tflite::reference_ops::BroadcastSubSlow(
128       params, getTensorShape(input1()), getTensorData<uint8_t>(input1()), getTensorShape(input2()),
129       getTensorData<uint8_t>(input2()), getTensorShape(output()), getTensorData<uint8_t>(output()));
130   }
131   else
132   {
133     tflite::reference_ops::Sub(params, getTensorShape(input1()), getTensorData<uint8_t>(input1()),
134                                getTensorShape(input2()), getTensorData<uint8_t>(input2()),
135                                getTensorShape(output()), getTensorData<uint8_t>(output()));
136   }
137 }
138
139 } // namespace kernels
140 } // namespace luci_interpreter