2 * ECC algorithm for M-systems disk on chip. We use the excellent Reed
3 * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the
4 * GNU GPL License. The rest is simply to convert the disk on chip
5 * syndrom into a standard syndom.
7 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
8 * Copyright (C) 2000 Netgem S.A.
10 * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
34 #include <linux/mtd/doc2000.h>
36 /* need to undef it (from asm/termbits.h) */
39 #define MM 10 /* Symbol size in bits */
40 #define KK (1023-4) /* Number of data symbols per block */
41 #define B0 510 /* First root of generator polynomial, alpha form */
42 #define PRIM 1 /* power of alpha used to generate roots of generator poly */
43 #define NN ((1 << MM) - 1)
45 typedef unsigned short dtype;
48 static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 };
50 /* This defines the type used to store an element of the Galois Field
51 * used by the code. Make sure this is something larger than a char if
52 * if anything larger than GF(256) is used.
54 * Note: unsigned char will work up to GF(256) but int seems to run
55 * faster on the Pentium.
59 /* No legal value in index form represents zero, so
60 * we need a special value for this purpose
64 /* Compute x % NN, where NN is 2**MM - 1,
65 * without a slow divide
72 x = (x >> MM) + (x & NN);
79 for(ci=(n)-1;ci >=0;ci--)\
83 #define COPY(a,b,n) {\
85 for(ci=(n)-1;ci >=0;ci--)\
89 #define COPYDOWN(a,b,n) {\
91 for(ci=(n)-1;ci >=0;ci--)\
97 /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m]
98 lookup tables: index->polynomial form alpha_to[] contains j=alpha**i;
99 polynomial form -> index form index_of[j=alpha**i] = i
100 alpha=2 is the primitive element of GF(2**m)
101 HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows:
102 Let @ represent the primitive element commonly called "alpha" that
103 is the root of the primitive polynomial p(x). Then in GF(2^m), for any
105 @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
106 where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation
107 of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for
108 example the polynomial representation of @^5 would be given by the binary
109 representation of the integer "alpha_to[5]".
110 Similarily, index_of[] can be used as follows:
111 As above, let @ represent the primitive element of GF(2^m) that is
112 the root of the primitive polynomial p(x). In order to find the power
113 of @ (alpha) that has the polynomial representation
114 a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1)
115 we consider the integer "i" whose binary representation with a(0) being LSB
116 and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry
117 "index_of[i]". Now, @^index_of[i] is that element whose polynomial
118 representation is (a(0),a(1),a(2),...,a(m-1)).
120 The element alpha_to[2^m-1] = 0 always signifying that the
121 representation of "@^infinity" = 0 is (0,0,0,...,0).
122 Similarily, the element index_of[0] = A0 always signifying
123 that the power of alpha which has the polynomial representation
124 (0,0,...,0) is "infinity".
129 generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1])
131 register int i, mask;
135 for (i = 0; i < MM; i++) {
137 Index_of[Alpha_to[i]] = i;
138 /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */
140 Alpha_to[MM] ^= mask; /* Bit-wise EXOR operation */
141 mask <<= 1; /* single left-shift */
143 Index_of[Alpha_to[MM]] = MM;
145 * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by
146 * poly-repr of @^i shifted left one-bit and accounting for any @^MM
147 * term that may occur when poly-repr of @^i is shifted.
150 for (i = MM + 1; i < NN; i++) {
151 if (Alpha_to[i - 1] >= mask)
152 Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1);
154 Alpha_to[i] = Alpha_to[i - 1] << 1;
155 Index_of[Alpha_to[i]] = i;
162 * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content
163 * of the feedback shift register after having processed the data and
166 * Return number of symbols corrected, or -1 if codeword is illegal
167 * or uncorrectable. If eras_pos is non-null, the detected error locations
168 * are written back. NOTE! This array must be at least NN-KK elements long.
169 * The corrected data are written in eras_val[]. They must be xor with the data
170 * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] .
172 * First "no_eras" erasures are declared by the calling program. Then, the
173 * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2).
174 * If the number of channel errors is not greater than "t_after_eras" the
175 * transmitted codeword will be recovered. Details of algorithm can be found
176 * in R. Blahut's "Theory ... of Error-Correcting Codes".
178 * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure
179 * will result. The decoder *could* check for this condition, but it would involve
180 * extra time on every decoding operation.
183 eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1],
184 gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK],
187 int deg_lambda, el, deg_omega;
189 gf u,q,tmp,num1,num2,den,discr_r;
190 gf lambda[NN-KK + 1], s[NN-KK + 1]; /* Err+Eras Locator poly
191 * and syndrome poly */
192 gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1];
193 gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK];
194 int syn_error, count;
201 /* if remainder is zero, data[] is a codeword and there are no
202 * errors to correct. So return data[] unmodified
208 for(i=1;i<=NN-KK;i++){
211 for(j=1;j<NN-KK;j++){
214 tmp = Index_of[bb[j]];
216 for(i=1;i<=NN-KK;i++)
217 s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)];
220 /* undo the feedback register implicit multiplication and convert
221 syndromes to index form */
223 for(i=1;i<=NN-KK;i++) {
224 tmp = Index_of[s[i]];
226 tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM);
230 CLEAR(&lambda[1],NN-KK);
234 /* Init lambda to be the erasure locator polynomial */
235 lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])];
236 for (i = 1; i < no_eras; i++) {
237 u = modnn(PRIM*eras_pos[i]);
238 for (j = i+1; j > 0; j--) {
239 tmp = Index_of[lambda[j - 1]];
241 lambda[j] ^= Alpha_to[modnn(u + tmp)];
245 /* Test code that verifies the erasure locator polynomial just constructed
246 Needed only for decoder debugging. */
248 /* find roots of the erasure location polynomial */
249 for(i=1;i<=no_eras;i++)
250 reg[i] = Index_of[lambda[i]];
252 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
254 for (j = 1; j <= no_eras; j++)
256 reg[j] = modnn(reg[j] + j);
257 q ^= Alpha_to[reg[j]];
261 /* store root and error location number indices */
266 if (count != no_eras) {
267 printf("\n lambda(x) is WRONG\n");
272 printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
273 for (i = 0; i < count; i++)
274 printf("%d ", loc[i]);
279 for(i=0;i<NN-KK+1;i++)
280 b[i] = Index_of[lambda[i]];
283 * Begin Berlekamp-Massey algorithm to determine error+erasure
288 while (++r <= NN-KK) { /* r is the step number */
289 /* Compute discrepancy at the r-th step in poly-form */
291 for (i = 0; i < r; i++){
292 if ((lambda[i] != 0) && (s[r - i] != A0)) {
293 discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];
296 discr_r = Index_of[discr_r]; /* Index form */
298 /* 2 lines below: B(x) <-- x*B(x) */
299 COPYDOWN(&b[1],b,NN-KK);
302 /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
304 for (i = 0 ; i < NN-KK; i++) {
306 t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];
308 t[i+1] = lambda[i+1];
310 if (2 * el <= r + no_eras - 1) {
311 el = r + no_eras - el;
313 * 2 lines below: B(x) <-- inv(discr_r) *
316 for (i = 0; i <= NN-KK; i++)
317 b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);
319 /* 2 lines below: B(x) <-- x*B(x) */
320 COPYDOWN(&b[1],b,NN-KK);
323 COPY(lambda,t,NN-KK+1);
327 /* Convert lambda to index form and compute deg(lambda(x)) */
329 for(i=0;i<NN-KK+1;i++){
330 lambda[i] = Index_of[lambda[i]];
335 * Find roots of the error+erasure locator polynomial by Chien
338 COPY(®[1],&lambda[1],NN-KK);
339 count = 0; /* Number of roots of lambda(x) */
340 for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {
342 for (j = deg_lambda; j > 0; j--){
344 reg[j] = modnn(reg[j] + j);
345 q ^= Alpha_to[reg[j]];
350 /* store root (index-form) and error location number */
353 /* If we've already found max possible roots,
354 * abort the search to save time
356 if(++count == deg_lambda)
359 if (deg_lambda != count) {
361 * deg(lambda) unequal to number of roots => uncorrectable
368 * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
369 * x**(NN-KK)). in index form. Also find deg(omega).
372 for (i = 0; i < NN-KK;i++){
374 j = (deg_lambda < i) ? deg_lambda : i;
376 if ((s[i + 1 - j] != A0) && (lambda[j] != A0))
377 tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];
381 omega[i] = Index_of[tmp];
386 * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
387 * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form
389 for (j = count-1; j >=0; j--) {
391 for (i = deg_omega; i >= 0; i--) {
393 num1 ^= Alpha_to[modnn(omega[i] + i * root[j])];
395 num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];
398 /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
399 for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {
400 if(lambda[i+1] != A0)
401 den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];
405 printf("\n ERROR: denominator = 0\n");
407 /* Convert to dual- basis */
411 /* Apply error to data */
413 eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];
420 eras_pos[i] = loc[i];
424 /***************************************************************************/
425 /* The DOC specific code begins here */
427 #define SECTOR_SIZE 512
428 /* The sector bytes are packed into NB_DATA MM bits words */
429 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)
432 * Correct the errors in 'sector[]' by using 'ecc1[]' which is the
433 * content of the feedback shift register applyied to the sector and
434 * the ECC. Return the number of errors corrected (and correct them in
435 * sector), or -1 if error
437 int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6])
439 int parity, i, nb_errors;
442 int error_pos[NN-KK], pos, bitpos, index, val;
443 dtype *Alpha_to, *Index_of;
445 /* init log and exp tables here to save memory. However, it is slower */
446 Alpha_to = malloc((NN + 1) * sizeof(dtype));
450 Index_of = malloc((NN + 1) * sizeof(dtype));
456 generate_gf(Alpha_to, Index_of);
460 bb[0] = (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);
461 bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);
462 bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);
463 bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);
465 nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,
466 error_val, error_pos, 0);
470 /* correct the errors */
471 for(i=0;i<nb_errors;i++) {
473 if (pos >= NB_DATA && pos < KK) {
478 /* extract bit position (MSB first) */
479 pos = 10 * (NB_DATA - 1 - pos) - 6;
480 /* now correct the following 10 bits. At most two bytes
481 can be modified since pos is even */
482 index = (pos >> 3) ^ 1;
484 if ((index >= 0 && index < SECTOR_SIZE) ||
485 index == (SECTOR_SIZE + 1)) {
486 val = error_val[i] >> (2 + bitpos);
488 if (index < SECTOR_SIZE)
489 sector[index] ^= val;
491 index = ((pos >> 3) + 1) ^ 1;
492 bitpos = (bitpos + 10) & 7;
495 if ((index >= 0 && index < SECTOR_SIZE) ||
496 index == (SECTOR_SIZE + 1)) {
497 val = error_val[i] << (8 - bitpos);
499 if (index < SECTOR_SIZE)
500 sector[index] ^= val;
505 /* use parity to test extra errors */
506 if ((parity & 0xff) != 0)