Consolidate arch-specific mem_malloc_init() implementations
[platform/kernel/u-boot.git] / common / dlmalloc.c
1 #include <common.h>
2
3 #if 0   /* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12
13    Note: There may be an updated version of this malloc obtainable at
14            ftp://g.oswego.edu/pub/misc/malloc.c
15          Check before installing!
16
17 * Why use this malloc?
18
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25
26 * Synopsis of public routines
27
28   (Much fuller descriptions are contained in the program documentation below.)
29
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72
73 * Vital statistics:
74
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92                           8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104                           8-byte size_t: 2^63 - 16 bytes
105
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120          1. Because requests for zero bytes allocate non-zero space,
121             the worst case wastage for a request of zero bytes is 24 bytes.
122          2. For requests >= mmap_threshold that are serviced via
123             mmap(), the worst case wastage is 8 bytes plus the remainder
124             from a system page (the minimal mmap unit); typically 4096 bytes.
125
126 * Limitations
127
128     Here are some features that are NOT currently supported
129
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134
135 * Synopsis of compile-time options:
136
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      True (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219
220
221 */
222
223 \f
224
225
226 /* Preliminaries */
227
228 #ifndef __STD_C
229 #ifdef __STDC__
230 #define __STD_C     1
231 #else
232 #if __cplusplus
233 #define __STD_C     1
234 #else
235 #define __STD_C     0
236 #endif /*__cplusplus*/
237 #endif /*__STDC__*/
238 #endif /*__STD_C*/
239
240 #ifndef Void_t
241 #if (__STD_C || defined(WIN32))
242 #define Void_t      void
243 #else
244 #define Void_t      char
245 #endif
246 #endif /*Void_t*/
247
248 #if __STD_C
249 #include <stddef.h>   /* for size_t */
250 #else
251 #include <sys/types.h>
252 #endif
253
254 #ifdef __cplusplus
255 extern "C" {
256 #endif
257
258 #include <stdio.h>    /* needed for malloc_stats */
259
260
261 /*
262   Compile-time options
263 */
264
265
266 /*
267     Debugging:
268
269     Because freed chunks may be overwritten with link fields, this
270     malloc will often die when freed memory is overwritten by user
271     programs.  This can be very effective (albeit in an annoying way)
272     in helping track down dangling pointers.
273
274     If you compile with -DDEBUG, a number of assertion checks are
275     enabled that will catch more memory errors. You probably won't be
276     able to make much sense of the actual assertion errors, but they
277     should help you locate incorrectly overwritten memory.  The
278     checking is fairly extensive, and will slow down execution
279     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
280     attempt to check every non-mmapped allocated and free chunk in the
281     course of computing the summmaries. (By nature, mmapped regions
282     cannot be checked very much automatically.)
283
284     Setting DEBUG may also be helpful if you are trying to modify
285     this code. The assertions in the check routines spell out in more
286     detail the assumptions and invariants underlying the algorithms.
287
288 */
289
290 #ifdef DEBUG
291 #include <assert.h>
292 #else
293 #define assert(x) ((void)0)
294 #endif
295
296
297 /*
298   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
299   of chunk sizes. On a 64-bit machine, you can reduce malloc
300   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
301   at the expense of not being able to handle requests greater than
302   2^31. This limitation is hardly ever a concern; you are encouraged
303   to set this. However, the default version is the same as size_t.
304 */
305
306 #ifndef INTERNAL_SIZE_T
307 #define INTERNAL_SIZE_T size_t
308 #endif
309
310 /*
311   REALLOC_ZERO_BYTES_FREES should be set if a call to
312   realloc with zero bytes should be the same as a call to free.
313   Some people think it should. Otherwise, since this malloc
314   returns a unique pointer for malloc(0), so does realloc(p, 0).
315 */
316
317
318 /*   #define REALLOC_ZERO_BYTES_FREES */
319
320
321 /*
322   WIN32 causes an emulation of sbrk to be compiled in
323   mmap-based options are not currently supported in WIN32.
324 */
325
326 /* #define WIN32 */
327 #ifdef WIN32
328 #define MORECORE wsbrk
329 #define HAVE_MMAP 0
330
331 #define LACKS_UNISTD_H
332 #define LACKS_SYS_PARAM_H
333
334 /*
335   Include 'windows.h' to get the necessary declarations for the
336   Microsoft Visual C++ data structures and routines used in the 'sbrk'
337   emulation.
338
339   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
340   Visual C++ header files are included.
341 */
342 #define WIN32_LEAN_AND_MEAN
343 #include <windows.h>
344 #endif
345
346
347 /*
348   HAVE_MEMCPY should be defined if you are not otherwise using
349   ANSI STD C, but still have memcpy and memset in your C library
350   and want to use them in calloc and realloc. Otherwise simple
351   macro versions are defined here.
352
353   USE_MEMCPY should be defined as 1 if you actually want to
354   have memset and memcpy called. People report that the macro
355   versions are often enough faster than libc versions on many
356   systems that it is better to use them.
357
358 */
359
360 #define HAVE_MEMCPY
361
362 #ifndef USE_MEMCPY
363 #ifdef HAVE_MEMCPY
364 #define USE_MEMCPY 1
365 #else
366 #define USE_MEMCPY 0
367 #endif
368 #endif
369
370 #if (__STD_C || defined(HAVE_MEMCPY))
371
372 #if __STD_C
373 void* memset(void*, int, size_t);
374 void* memcpy(void*, const void*, size_t);
375 #else
376 #ifdef WIN32
377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
378 /* 'windows.h' */
379 #else
380 Void_t* memset();
381 Void_t* memcpy();
382 #endif
383 #endif
384 #endif
385
386 #if USE_MEMCPY
387
388 /* The following macros are only invoked with (2n+1)-multiples of
389    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
390    for fast inline execution when n is small. */
391
392 #define MALLOC_ZERO(charp, nbytes)                                            \
393 do {                                                                          \
394   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
395   if(mzsz <= 9*sizeof(mzsz)) {                                                \
396     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
397     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
398                                      *mz++ = 0;                               \
399       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
400                                      *mz++ = 0;                               \
401         if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
402                                      *mz++ = 0; }}}                           \
403                                      *mz++ = 0;                               \
404                                      *mz++ = 0;                               \
405                                      *mz   = 0;                               \
406   } else memset((charp), 0, mzsz);                                            \
407 } while(0)
408
409 #define MALLOC_COPY(dest,src,nbytes)                                          \
410 do {                                                                          \
411   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
412   if(mcsz <= 9*sizeof(mcsz)) {                                                \
413     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
414     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
415     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
416                                      *mcdst++ = *mcsrc++;                     \
417       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
418                                      *mcdst++ = *mcsrc++;                     \
419         if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
420                                      *mcdst++ = *mcsrc++; }}}                 \
421                                      *mcdst++ = *mcsrc++;                     \
422                                      *mcdst++ = *mcsrc++;                     \
423                                      *mcdst   = *mcsrc  ;                     \
424   } else memcpy(dest, src, mcsz);                                             \
425 } while(0)
426
427 #else /* !USE_MEMCPY */
428
429 /* Use Duff's device for good zeroing/copying performance. */
430
431 #define MALLOC_ZERO(charp, nbytes)                                            \
432 do {                                                                          \
433   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
434   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
435   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
436   switch (mctmp) {                                                            \
437     case 0: for(;;) { *mzp++ = 0;                                             \
438     case 7:           *mzp++ = 0;                                             \
439     case 6:           *mzp++ = 0;                                             \
440     case 5:           *mzp++ = 0;                                             \
441     case 4:           *mzp++ = 0;                                             \
442     case 3:           *mzp++ = 0;                                             \
443     case 2:           *mzp++ = 0;                                             \
444     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
445   }                                                                           \
446 } while(0)
447
448 #define MALLOC_COPY(dest,src,nbytes)                                          \
449 do {                                                                          \
450   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
451   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
452   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
453   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
454   switch (mctmp) {                                                            \
455     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
456     case 7:           *mcdst++ = *mcsrc++;                                    \
457     case 6:           *mcdst++ = *mcsrc++;                                    \
458     case 5:           *mcdst++ = *mcsrc++;                                    \
459     case 4:           *mcdst++ = *mcsrc++;                                    \
460     case 3:           *mcdst++ = *mcsrc++;                                    \
461     case 2:           *mcdst++ = *mcsrc++;                                    \
462     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
463   }                                                                           \
464 } while(0)
465
466 #endif
467
468
469 /*
470   Define HAVE_MMAP to optionally make malloc() use mmap() to
471   allocate very large blocks.  These will be returned to the
472   operating system immediately after a free().
473 */
474
475 #ifndef HAVE_MMAP
476 #define HAVE_MMAP 1
477 #endif
478
479 /*
480   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
481   large blocks.  This is currently only possible on Linux with
482   kernel versions newer than 1.3.77.
483 */
484
485 #ifndef HAVE_MREMAP
486 #ifdef INTERNAL_LINUX_C_LIB
487 #define HAVE_MREMAP 1
488 #else
489 #define HAVE_MREMAP 0
490 #endif
491 #endif
492
493 #if HAVE_MMAP
494
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502
503 #endif /* HAVE_MMAP */
504
505 /*
506   Access to system page size. To the extent possible, this malloc
507   manages memory from the system in page-size units.
508
509   The following mechanics for getpagesize were adapted from
510   bsd/gnu getpagesize.h
511 */
512
513 #ifndef LACKS_UNISTD_H
514 #  include <unistd.h>
515 #endif
516
517 #ifndef malloc_getpagesize
518 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
519 #    ifndef _SC_PAGE_SIZE
520 #      define _SC_PAGE_SIZE _SC_PAGESIZE
521 #    endif
522 #  endif
523 #  ifdef _SC_PAGE_SIZE
524 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 #  else
526 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527        extern size_t getpagesize();
528 #      define malloc_getpagesize getpagesize()
529 #    else
530 #      ifdef WIN32
531 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 #      else
533 #        ifndef LACKS_SYS_PARAM_H
534 #          include <sys/param.h>
535 #        endif
536 #        ifdef EXEC_PAGESIZE
537 #          define malloc_getpagesize EXEC_PAGESIZE
538 #        else
539 #          ifdef NBPG
540 #            ifndef CLSIZE
541 #              define malloc_getpagesize NBPG
542 #            else
543 #              define malloc_getpagesize (NBPG * CLSIZE)
544 #            endif
545 #          else
546 #            ifdef NBPC
547 #              define malloc_getpagesize NBPC
548 #            else
549 #              ifdef PAGESIZE
550 #                define malloc_getpagesize PAGESIZE
551 #              else
552 #                define malloc_getpagesize (4096) /* just guess */
553 #              endif
554 #            endif
555 #          endif
556 #        endif
557 #      endif
558 #    endif
559 #  endif
560 #endif
561
562
563 /*
564
565   This version of malloc supports the standard SVID/XPG mallinfo
566   routine that returns a struct containing the same kind of
567   information you can get from malloc_stats. It should work on
568   any SVID/XPG compliant system that has a /usr/include/malloc.h
569   defining struct mallinfo. (If you'd like to install such a thing
570   yourself, cut out the preliminary declarations as described above
571   and below and save them in a malloc.h file. But there's no
572   compelling reason to bother to do this.)
573
574   The main declaration needed is the mallinfo struct that is returned
575   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
576   bunch of fields, most of which are not even meaningful in this
577   version of malloc. Some of these fields are are instead filled by
578   mallinfo() with other numbers that might possibly be of interest.
579
580   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581   /usr/include/malloc.h file that includes a declaration of struct
582   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
583   version is declared below.  These must be precisely the same for
584   mallinfo() to work.
585
586 */
587
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589
590 #if HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593
594 /* SVID2/XPG mallinfo structure */
595
596 struct mallinfo {
597   int arena;    /* total space allocated from system */
598   int ordblks;  /* number of non-inuse chunks */
599   int smblks;   /* unused -- always zero */
600   int hblks;    /* number of mmapped regions */
601   int hblkhd;   /* total space in mmapped regions */
602   int usmblks;  /* unused -- always zero */
603   int fsmblks;  /* unused -- always zero */
604   int uordblks; /* total allocated space */
605   int fordblks; /* total non-inuse space */
606   int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608
609 /* SVID2/XPG mallopt options */
610
611 #define M_MXFAST  1    /* UNUSED in this malloc */
612 #define M_NLBLKS  2    /* UNUSED in this malloc */
613 #define M_GRAIN   3    /* UNUSED in this malloc */
614 #define M_KEEP    4    /* UNUSED in this malloc */
615
616 #endif
617
618 /* mallopt options that actually do something */
619
620 #define M_TRIM_THRESHOLD    -1
621 #define M_TOP_PAD           -2
622 #define M_MMAP_THRESHOLD    -3
623 #define M_MMAP_MAX          -4
624
625
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629
630 /*
631     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632       to keep before releasing via malloc_trim in free().
633
634       Automatic trimming is mainly useful in long-lived programs.
635       Because trimming via sbrk can be slow on some systems, and can
636       sometimes be wasteful (in cases where programs immediately
637       afterward allocate more large chunks) the value should be high
638       enough so that your overall system performance would improve by
639       releasing.
640
641       The trim threshold and the mmap control parameters (see below)
642       can be traded off with one another. Trimming and mmapping are
643       two different ways of releasing unused memory back to the
644       system. Between these two, it is often possible to keep
645       system-level demands of a long-lived program down to a bare
646       minimum. For example, in one test suite of sessions measuring
647       the XF86 X server on Linux, using a trim threshold of 128K and a
648       mmap threshold of 192K led to near-minimal long term resource
649       consumption.
650
651       If you are using this malloc in a long-lived program, it should
652       pay to experiment with these values.  As a rough guide, you
653       might set to a value close to the average size of a process
654       (program) running on your system.  Releasing this much memory
655       would allow such a process to run in memory.  Generally, it's
656       worth it to tune for trimming rather tham memory mapping when a
657       program undergoes phases where several large chunks are
658       allocated and released in ways that can reuse each other's
659       storage, perhaps mixed with phases where there are no such
660       chunks at all.  And in well-behaved long-lived programs,
661       controlling release of large blocks via trimming versus mapping
662       is usually faster.
663
664       However, in most programs, these parameters serve mainly as
665       protection against the system-level effects of carrying around
666       massive amounts of unneeded memory. Since frequent calls to
667       sbrk, mmap, and munmap otherwise degrade performance, the default
668       parameters are set to relatively high values that serve only as
669       safeguards.
670
671       The default trim value is high enough to cause trimming only in
672       fairly extreme (by current memory consumption standards) cases.
673       It must be greater than page size to have any useful effect.  To
674       disable trimming completely, you can set to (unsigned long)(-1);
675
676
677 */
678
679
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD        (0)
682 #endif
683
684 /*
685     M_TOP_PAD is the amount of extra `padding' space to allocate or
686       retain whenever sbrk is called. It is used in two ways internally:
687
688       * When sbrk is called to extend the top of the arena to satisfy
689         a new malloc request, this much padding is added to the sbrk
690         request.
691
692       * When malloc_trim is called automatically from free(),
693         it is used as the `pad' argument.
694
695       In both cases, the actual amount of padding is rounded
696       so that the end of the arena is always a system page boundary.
697
698       The main reason for using padding is to avoid calling sbrk so
699       often. Having even a small pad greatly reduces the likelihood
700       that nearly every malloc request during program start-up (or
701       after trimming) will invoke sbrk, which needlessly wastes
702       time.
703
704       Automatic rounding-up to page-size units is normally sufficient
705       to avoid measurable overhead, so the default is 0.  However, in
706       systems where sbrk is relatively slow, it can pay to increase
707       this value, at the expense of carrying around more memory than
708       the program needs.
709
710 */
711
712
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716
717 /*
718
719     M_MMAP_THRESHOLD is the request size threshold for using mmap()
720       to service a request. Requests of at least this size that cannot
721       be allocated using already-existing space will be serviced via mmap.
722       (If enough normal freed space already exists it is used instead.)
723
724       Using mmap segregates relatively large chunks of memory so that
725       they can be individually obtained and released from the host
726       system. A request serviced through mmap is never reused by any
727       other request (at least not directly; the system may just so
728       happen to remap successive requests to the same locations).
729
730       Segregating space in this way has the benefit that mmapped space
731       can ALWAYS be individually released back to the system, which
732       helps keep the system level memory demands of a long-lived
733       program low. Mapped memory can never become `locked' between
734       other chunks, as can happen with normally allocated chunks, which
735       menas that even trimming via malloc_trim would not release them.
736
737       However, it has the disadvantages that:
738
739          1. The space cannot be reclaimed, consolidated, and then
740             used to service later requests, as happens with normal chunks.
741          2. It can lead to more wastage because of mmap page alignment
742             requirements
743          3. It causes malloc performance to be more dependent on host
744             system memory management support routines which may vary in
745             implementation quality and may impose arbitrary
746             limitations. Generally, servicing a request via normal
747             malloc steps is faster than going through a system's mmap.
748
749       All together, these considerations should lead you to use mmap
750       only for relatively large requests.
751
752
753 */
754
755
756 #ifndef DEFAULT_MMAP_MAX
757 #if HAVE_MMAP
758 #define DEFAULT_MMAP_MAX       (64)
759 #else
760 #define DEFAULT_MMAP_MAX       (0)
761 #endif
762 #endif
763
764 /*
765     M_MMAP_MAX is the maximum number of requests to simultaneously
766       service using mmap. This parameter exists because:
767
768          1. Some systems have a limited number of internal tables for
769             use by mmap.
770          2. In most systems, overreliance on mmap can degrade overall
771             performance.
772          3. If a program allocates many large regions, it is probably
773             better off using normal sbrk-based allocation routines that
774             can reclaim and reallocate normal heap memory. Using a
775             small value allows transition into this mode after the
776             first few allocations.
777
778       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779       the default value is 0, and attempts to set it to non-zero values
780       in mallopt will fail.
781 */
782
783
784 /*
785     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786       Useful to quickly avoid procedure declaration conflicts and linker
787       symbol conflicts with existing memory allocation routines.
788
789 */
790
791 /* #define USE_DL_PREFIX */
792
793
794 /*
795
796   Special defines for linux libc
797
798   Except when compiled using these special defines for Linux libc
799   using weak aliases, this malloc is NOT designed to work in
800   multithreaded applications.  No semaphores or other concurrency
801   control are provided to ensure that multiple malloc or free calls
802   don't run at the same time, which could be disasterous. A single
803   semaphore could be used across malloc, realloc, and free (which is
804   essentially the effect of the linux weak alias approach). It would
805   be hard to obtain finer granularity.
806
807 */
808
809
810 #ifdef INTERNAL_LINUX_C_LIB
811
812 #if __STD_C
813
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816
817 #else
818
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821
822 #endif
823
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827
828 #else /* INTERNAL_LINUX_C_LIB */
829
830 #if __STD_C
831 extern Void_t*     sbrk(ptrdiff_t);
832 #else
833 extern Void_t*     sbrk();
834 #endif
835
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847
848 #endif /* INTERNAL_LINUX_C_LIB */
849
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851
852 #define cALLOc          __libc_calloc
853 #define fREe            __libc_free
854 #define mALLOc          __libc_malloc
855 #define mEMALIGn        __libc_memalign
856 #define rEALLOc         __libc_realloc
857 #define vALLOc          __libc_valloc
858 #define pvALLOc         __libc_pvalloc
859 #define mALLINFo        __libc_mallinfo
860 #define mALLOPt         __libc_mallopt
861
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872
873 #else
874
875 #ifdef USE_DL_PREFIX
876 #define cALLOc          dlcalloc
877 #define fREe            dlfree
878 #define mALLOc          dlmalloc
879 #define mEMALIGn        dlmemalign
880 #define rEALLOc         dlrealloc
881 #define vALLOc          dlvalloc
882 #define pvALLOc         dlpvalloc
883 #define mALLINFo        dlmallinfo
884 #define mALLOPt         dlmallopt
885 #else /* USE_DL_PREFIX */
886 #define cALLOc          calloc
887 #define fREe            free
888 #define mALLOc          malloc
889 #define mEMALIGn        memalign
890 #define rEALLOc         realloc
891 #define vALLOc          valloc
892 #define pvALLOc         pvalloc
893 #define mALLINFo        mallinfo
894 #define mALLOPt         mallopt
895 #endif /* USE_DL_PREFIX */
896
897 #endif
898
899 /* Public routines */
900
901 #if __STD_C
902
903 Void_t* mALLOc(size_t);
904 void    fREe(Void_t*);
905 Void_t* rEALLOc(Void_t*, size_t);
906 Void_t* mEMALIGn(size_t, size_t);
907 Void_t* vALLOc(size_t);
908 Void_t* pvALLOc(size_t);
909 Void_t* cALLOc(size_t, size_t);
910 void    cfree(Void_t*);
911 int     malloc_trim(size_t);
912 size_t  malloc_usable_size(Void_t*);
913 void    malloc_stats();
914 int     mALLOPt(int, int);
915 struct mallinfo mALLINFo(void);
916 #else
917 Void_t* mALLOc();
918 void    fREe();
919 Void_t* rEALLOc();
920 Void_t* mEMALIGn();
921 Void_t* vALLOc();
922 Void_t* pvALLOc();
923 Void_t* cALLOc();
924 void    cfree();
925 int     malloc_trim();
926 size_t  malloc_usable_size();
927 void    malloc_stats();
928 int     mALLOPt();
929 struct mallinfo mALLINFo();
930 #endif
931
932
933 #ifdef __cplusplus
934 };  /* end of extern "C" */
935 #endif
936
937 /* ---------- To make a malloc.h, end cutting here ------------ */
938 #else                           /* Moved to malloc.h */
939
940 #include <malloc.h>
941 #if 0
942 #if __STD_C
943 static void malloc_update_mallinfo (void);
944 void malloc_stats (void);
945 #else
946 static void malloc_update_mallinfo ();
947 void malloc_stats();
948 #endif
949 #endif  /* 0 */
950
951 #endif  /* 0 */                 /* Moved to malloc.h */
952
953 DECLARE_GLOBAL_DATA_PTR;
954
955 /*
956   Emulation of sbrk for WIN32
957   All code within the ifdef WIN32 is untested by me.
958
959   Thanks to Martin Fong and others for supplying this.
960 */
961
962
963 #ifdef WIN32
964
965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
966 ~(malloc_getpagesize-1))
967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
968
969 /* resrve 64MB to insure large contiguous space */
970 #define RESERVED_SIZE (1024*1024*64)
971 #define NEXT_SIZE (2048*1024)
972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
973
974 struct GmListElement;
975 typedef struct GmListElement GmListElement;
976
977 struct GmListElement
978 {
979         GmListElement* next;
980         void* base;
981 };
982
983 static GmListElement* head = 0;
984 static unsigned int gNextAddress = 0;
985 static unsigned int gAddressBase = 0;
986 static unsigned int gAllocatedSize = 0;
987
988 static
989 GmListElement* makeGmListElement (void* bas)
990 {
991         GmListElement* this;
992         this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
993         assert (this);
994         if (this)
995         {
996                 this->base = bas;
997                 this->next = head;
998                 head = this;
999         }
1000         return this;
1001 }
1002
1003 void gcleanup ()
1004 {
1005         BOOL rval;
1006         assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007         if (gAddressBase && (gNextAddress - gAddressBase))
1008         {
1009                 rval = VirtualFree ((void*)gAddressBase,
1010                                                         gNextAddress - gAddressBase,
1011                                                         MEM_DECOMMIT);
1012         assert (rval);
1013         }
1014         while (head)
1015         {
1016                 GmListElement* next = head->next;
1017                 rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018                 assert (rval);
1019                 LocalFree (head);
1020                 head = next;
1021         }
1022 }
1023
1024 static
1025 void* findRegion (void* start_address, unsigned long size)
1026 {
1027         MEMORY_BASIC_INFORMATION info;
1028         if (size >= TOP_MEMORY) return NULL;
1029
1030         while ((unsigned long)start_address + size < TOP_MEMORY)
1031         {
1032                 VirtualQuery (start_address, &info, sizeof (info));
1033                 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034                         return start_address;
1035                 else
1036                 {
1037                         /* Requested region is not available so see if the */
1038                         /* next region is available.  Set 'start_address' */
1039                         /* to the next region and call 'VirtualQuery()' */
1040                         /* again. */
1041
1042                         start_address = (char*)info.BaseAddress + info.RegionSize;
1043
1044                         /* Make sure we start looking for the next region */
1045                         /* on the *next* 64K boundary.  Otherwise, even if */
1046                         /* the new region is free according to */
1047                         /* 'VirtualQuery()', the subsequent call to */
1048                         /* 'VirtualAlloc()' (which follows the call to */
1049                         /* this routine in 'wsbrk()') will round *down* */
1050                         /* the requested address to a 64K boundary which */
1051                         /* we already know is an address in the */
1052                         /* unavailable region.  Thus, the subsequent call */
1053                         /* to 'VirtualAlloc()' will fail and bring us back */
1054                         /* here, causing us to go into an infinite loop. */
1055
1056                         start_address =
1057                                 (void *) AlignPage64K((unsigned long) start_address);
1058                 }
1059         }
1060         return NULL;
1061
1062 }
1063
1064
1065 void* wsbrk (long size)
1066 {
1067         void* tmp;
1068         if (size > 0)
1069         {
1070                 if (gAddressBase == 0)
1071                 {
1072                         gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073                         gNextAddress = gAddressBase =
1074                                 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075                                                                                         MEM_RESERVE, PAGE_NOACCESS);
1076                 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077 gAllocatedSize))
1078                 {
1079                         long new_size = max (NEXT_SIZE, AlignPage (size));
1080                         void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081                         do
1082                         {
1083                                 new_address = findRegion (new_address, new_size);
1084
1085                                 if (new_address == 0)
1086                                         return (void*)-1;
1087
1088                                 gAddressBase = gNextAddress =
1089                                         (unsigned int)VirtualAlloc (new_address, new_size,
1090                                                                                                 MEM_RESERVE, PAGE_NOACCESS);
1091                                 /* repeat in case of race condition */
1092                                 /* The region that we found has been snagged */
1093                                 /* by another thread */
1094                         }
1095                         while (gAddressBase == 0);
1096
1097                         assert (new_address == (void*)gAddressBase);
1098
1099                         gAllocatedSize = new_size;
1100
1101                         if (!makeGmListElement ((void*)gAddressBase))
1102                                 return (void*)-1;
1103                 }
1104                 if ((size + gNextAddress) > AlignPage (gNextAddress))
1105                 {
1106                         void* res;
1107                         res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108                                                                 (size + gNextAddress -
1109                                                                  AlignPage (gNextAddress)),
1110                                                                 MEM_COMMIT, PAGE_READWRITE);
1111                         if (res == 0)
1112                                 return (void*)-1;
1113                 }
1114                 tmp = (void*)gNextAddress;
1115                 gNextAddress = (unsigned int)tmp + size;
1116                 return tmp;
1117         }
1118         else if (size < 0)
1119         {
1120                 unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121                 /* Trim by releasing the virtual memory */
1122                 if (alignedGoal >= gAddressBase)
1123                 {
1124                         VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125                                                  MEM_DECOMMIT);
1126                         gNextAddress = gNextAddress + size;
1127                         return (void*)gNextAddress;
1128                 }
1129                 else
1130                 {
1131                         VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132                                                  MEM_DECOMMIT);
1133                         gNextAddress = gAddressBase;
1134                         return (void*)-1;
1135                 }
1136         }
1137         else
1138         {
1139                 return (void*)gNextAddress;
1140         }
1141 }
1142
1143 #endif
1144
1145 \f
1146
1147 /*
1148   Type declarations
1149 */
1150
1151
1152 struct malloc_chunk
1153 {
1154   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1156   struct malloc_chunk* fd;   /* double links -- used only if free. */
1157   struct malloc_chunk* bk;
1158 };
1159
1160 typedef struct malloc_chunk* mchunkptr;
1161
1162 /*
1163
1164    malloc_chunk details:
1165
1166     (The following includes lightly edited explanations by Colin Plumb.)
1167
1168     Chunks of memory are maintained using a `boundary tag' method as
1169     described in e.g., Knuth or Standish.  (See the paper by Paul
1170     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171     survey of such techniques.)  Sizes of free chunks are stored both
1172     in the front of each chunk and at the end.  This makes
1173     consolidating fragmented chunks into bigger chunks very fast.  The
1174     size fields also hold bits representing whether chunks are free or
1175     in use.
1176
1177     An allocated chunk looks like this:
1178
1179
1180     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181             |             Size of previous chunk, if allocated            | |
1182             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183             |             Size of chunk, in bytes                         |P|
1184       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185             |             User data starts here...                          .
1186             .                                                               .
1187             .             (malloc_usable_space() bytes)                     .
1188             .                                                               |
1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190             |             Size of chunk                                     |
1191             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192
1193
1194     Where "chunk" is the front of the chunk for the purpose of most of
1195     the malloc code, but "mem" is the pointer that is returned to the
1196     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1197
1198     Chunks always begin on even word boundries, so the mem portion
1199     (which is returned to the user) is also on an even word boundary, and
1200     thus double-word aligned.
1201
1202     Free chunks are stored in circular doubly-linked lists, and look like this:
1203
1204     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205             |             Size of previous chunk                            |
1206             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207     `head:' |             Size of chunk, in bytes                         |P|
1208       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209             |             Forward pointer to next chunk in list             |
1210             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211             |             Back pointer to previous chunk in list            |
1212             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213             |             Unused space (may be 0 bytes long)                .
1214             .                                                               .
1215             .                                                               |
1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217     `foot:' |             Size of chunk, in bytes                           |
1218             +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219
1220     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221     chunk size (which is always a multiple of two words), is an in-use
1222     bit for the *previous* chunk.  If that bit is *clear*, then the
1223     word before the current chunk size contains the previous chunk
1224     size, and can be used to find the front of the previous chunk.
1225     (The very first chunk allocated always has this bit set,
1226     preventing access to non-existent (or non-owned) memory.)
1227
1228     Note that the `foot' of the current chunk is actually represented
1229     as the prev_size of the NEXT chunk. (This makes it easier to
1230     deal with alignments etc).
1231
1232     The two exceptions to all this are
1233
1234      1. The special chunk `top', which doesn't bother using the
1235         trailing size field since there is no
1236         next contiguous chunk that would have to index off it. (After
1237         initialization, `top' is forced to always exist.  If it would
1238         become less than MINSIZE bytes long, it is replenished via
1239         malloc_extend_top.)
1240
1241      2. Chunks allocated via mmap, which have the second-lowest-order
1242         bit (IS_MMAPPED) set in their size fields.  Because they are
1243         never merged or traversed from any other chunk, they have no
1244         foot size or inuse information.
1245
1246     Available chunks are kept in any of several places (all declared below):
1247
1248     * `av': An array of chunks serving as bin headers for consolidated
1249        chunks. Each bin is doubly linked.  The bins are approximately
1250        proportionally (log) spaced.  There are a lot of these bins
1251        (128). This may look excessive, but works very well in
1252        practice.  All procedures maintain the invariant that no
1253        consolidated chunk physically borders another one. Chunks in
1254        bins are kept in size order, with ties going to the
1255        approximately least recently used chunk.
1256
1257        The chunks in each bin are maintained in decreasing sorted order by
1258        size.  This is irrelevant for the small bins, which all contain
1259        the same-sized chunks, but facilitates best-fit allocation for
1260        larger chunks. (These lists are just sequential. Keeping them in
1261        order almost never requires enough traversal to warrant using
1262        fancier ordered data structures.)  Chunks of the same size are
1263        linked with the most recently freed at the front, and allocations
1264        are taken from the back.  This results in LRU or FIFO allocation
1265        order, which tends to give each chunk an equal opportunity to be
1266        consolidated with adjacent freed chunks, resulting in larger free
1267        chunks and less fragmentation.
1268
1269     * `top': The top-most available chunk (i.e., the one bordering the
1270        end of available memory) is treated specially. It is never
1271        included in any bin, is used only if no other chunk is
1272        available, and is released back to the system if it is very
1273        large (see M_TRIM_THRESHOLD).
1274
1275     * `last_remainder': A bin holding only the remainder of the
1276        most recently split (non-top) chunk. This bin is checked
1277        before other non-fitting chunks, so as to provide better
1278        locality for runs of sequentially allocated chunks.
1279
1280     *  Implicitly, through the host system's memory mapping tables.
1281        If supported, requests greater than a threshold are usually
1282        serviced via calls to mmap, and then later released via munmap.
1283
1284 */
1285 \f
1286 /*  sizes, alignments */
1287
1288 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1289 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1290 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1291 #define MINSIZE                (sizeof(struct malloc_chunk))
1292
1293 /* conversion from malloc headers to user pointers, and back */
1294
1295 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297
1298 /* pad request bytes into a usable size */
1299
1300 #define request2size(req) \
1301  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304
1305 /* Check if m has acceptable alignment */
1306
1307 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308
1309
1310 \f
1311
1312 /*
1313   Physical chunk operations
1314 */
1315
1316
1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318
1319 #define PREV_INUSE 0x1
1320
1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322
1323 #define IS_MMAPPED 0x2
1324
1325 /* Bits to mask off when extracting size */
1326
1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328
1329
1330 /* Ptr to next physical malloc_chunk. */
1331
1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333
1334 /* Ptr to previous physical malloc_chunk */
1335
1336 #define prev_chunk(p)\
1337    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338
1339
1340 /* Treat space at ptr + offset as a chunk */
1341
1342 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1343
1344
1345 \f
1346
1347 /*
1348   Dealing with use bits
1349 */
1350
1351 /* extract p's inuse bit */
1352
1353 #define inuse(p)\
1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355
1356 /* extract inuse bit of previous chunk */
1357
1358 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1359
1360 /* check for mmap()'ed chunk */
1361
1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363
1364 /* set/clear chunk as in use without otherwise disturbing */
1365
1366 #define set_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368
1369 #define clear_inuse(p)\
1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371
1372 /* check/set/clear inuse bits in known places */
1373
1374 #define inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376
1377 #define set_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379
1380 #define clear_inuse_bit_at_offset(p, s)\
1381  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382
1383
1384 \f
1385
1386 /*
1387   Dealing with size fields
1388 */
1389
1390 /* Get size, ignoring use bits */
1391
1392 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1393
1394 /* Set size at head, without disturbing its use bit */
1395
1396 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397
1398 /* Set size/use ignoring previous bits in header */
1399
1400 #define set_head(p, s)        ((p)->size = (s))
1401
1402 /* Set size at footer (only when chunk is not in use) */
1403
1404 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405
1406
1407 \f
1408
1409
1410 /*
1411    Bins
1412
1413     The bins, `av_' are an array of pairs of pointers serving as the
1414     heads of (initially empty) doubly-linked lists of chunks, laid out
1415     in a way so that each pair can be treated as if it were in a
1416     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417     and chunks are the same).
1418
1419     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420     8 bytes apart. Larger bins are approximately logarithmically
1421     spaced. (See the table below.) The `av_' array is never mentioned
1422     directly in the code, but instead via bin access macros.
1423
1424     Bin layout:
1425
1426     64 bins of size       8
1427     32 bins of size      64
1428     16 bins of size     512
1429      8 bins of size    4096
1430      4 bins of size   32768
1431      2 bins of size  262144
1432      1 bin  of size what's left
1433
1434     There is actually a little bit of slop in the numbers in bin_index
1435     for the sake of speed. This makes no difference elsewhere.
1436
1437     The special chunks `top' and `last_remainder' get their own bins,
1438     (this is implemented via yet more trickery with the av_ array),
1439     although `top' is never properly linked to its bin since it is
1440     always handled specially.
1441
1442 */
1443
1444 #define NAV             128   /* number of bins */
1445
1446 typedef struct malloc_chunk* mbinptr;
1447
1448 /* access macros */
1449
1450 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453
1454 /*
1455    The first 2 bins are never indexed. The corresponding av_ cells are instead
1456    used for bookkeeping. This is not to save space, but to simplify
1457    indexing, maintain locality, and avoid some initialization tests.
1458 */
1459
1460 #define top            (av_[2])          /* The topmost chunk */
1461 #define last_remainder (bin_at(1))       /* remainder from last split */
1462
1463
1464 /*
1465    Because top initially points to its own bin with initial
1466    zero size, thus forcing extension on the first malloc request,
1467    we avoid having any special code in malloc to check whether
1468    it even exists yet. But we still need to in malloc_extend_top.
1469 */
1470
1471 #define initial_top    ((mchunkptr)(bin_at(0)))
1472
1473 /* Helper macro to initialize bins */
1474
1475 #define IAV(i)  bin_at(i), bin_at(i)
1476
1477 static mbinptr av_[NAV * 2 + 2] = {
1478  0, 0,
1479  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1480  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1481  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1482  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1483  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1484  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1485  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1486  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1487  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1488  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1489  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1490  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1491  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1492  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495 };
1496
1497 void malloc_bin_reloc (void)
1498 {
1499         unsigned long *p = (unsigned long *)(&av_[2]);
1500         int i;
1501         for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1502                 *p++ += gd->reloc_off;
1503         }
1504 }
1505
1506 ulong mem_malloc_start = 0;
1507 ulong mem_malloc_end = 0;
1508 ulong mem_malloc_brk = 0;
1509
1510 void *sbrk(ptrdiff_t increment)
1511 {
1512         ulong old = mem_malloc_brk;
1513         ulong new = old + increment;
1514
1515         if ((new < mem_malloc_start) || (new > mem_malloc_end))
1516                 return NULL;
1517
1518         mem_malloc_brk = new;
1519
1520         return (void *)old;
1521 }
1522
1523 #ifndef CONFIG_X86
1524 /*
1525  * x86 boards use a slightly different init sequence thus they implement
1526  * their own version of mem_malloc_init()
1527  */
1528 void mem_malloc_init(ulong start, ulong size)
1529 {
1530         mem_malloc_start = start;
1531         mem_malloc_end = start + size;
1532         mem_malloc_brk = start;
1533
1534         memset((void *)mem_malloc_start, 0, size);
1535 }
1536 #endif
1537
1538 /* field-extraction macros */
1539
1540 #define first(b) ((b)->fd)
1541 #define last(b)  ((b)->bk)
1542
1543 /*
1544   Indexing into bins
1545 */
1546
1547 #define bin_index(sz)                                                          \
1548 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1549  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1550  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1551  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1552  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1553  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1554                                           126)
1555 /*
1556   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1557   identically sized chunks. This is exploited in malloc.
1558 */
1559
1560 #define MAX_SMALLBIN         63
1561 #define MAX_SMALLBIN_SIZE   512
1562 #define SMALLBIN_WIDTH        8
1563
1564 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1565
1566 /*
1567    Requests are `small' if both the corresponding and the next bin are small
1568 */
1569
1570 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1571
1572 \f
1573
1574 /*
1575     To help compensate for the large number of bins, a one-level index
1576     structure is used for bin-by-bin searching.  `binblocks' is a
1577     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1578     have any (possibly) non-empty bins, so they can be skipped over
1579     all at once during during traversals. The bits are NOT always
1580     cleared as soon as all bins in a block are empty, but instead only
1581     when all are noticed to be empty during traversal in malloc.
1582 */
1583
1584 #define BINBLOCKWIDTH     4   /* bins per block */
1585
1586 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1587 #define binblocks_w     (av_[1])
1588
1589 /* bin<->block macros */
1590
1591 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1592 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1593 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1594
1595
1596 \f
1597
1598
1599 /*  Other static bookkeeping data */
1600
1601 /* variables holding tunable values */
1602
1603 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1604 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1605 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1606 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1607
1608 /* The first value returned from sbrk */
1609 static char* sbrk_base = (char*)(-1);
1610
1611 /* The maximum memory obtained from system via sbrk */
1612 static unsigned long max_sbrked_mem = 0;
1613
1614 /* The maximum via either sbrk or mmap */
1615 static unsigned long max_total_mem = 0;
1616
1617 /* internal working copy of mallinfo */
1618 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1619
1620 /* The total memory obtained from system via sbrk */
1621 #define sbrked_mem  (current_mallinfo.arena)
1622
1623 /* Tracking mmaps */
1624
1625 #if 0
1626 static unsigned int n_mmaps = 0;
1627 #endif  /* 0 */
1628 static unsigned long mmapped_mem = 0;
1629 #if HAVE_MMAP
1630 static unsigned int max_n_mmaps = 0;
1631 static unsigned long max_mmapped_mem = 0;
1632 #endif
1633
1634 \f
1635
1636 /*
1637   Debugging support
1638 */
1639
1640 #ifdef DEBUG
1641
1642
1643 /*
1644   These routines make a number of assertions about the states
1645   of data structures that should be true at all times. If any
1646   are not true, it's very likely that a user program has somehow
1647   trashed memory. (It's also possible that there is a coding error
1648   in malloc. In which case, please report it!)
1649 */
1650
1651 #if __STD_C
1652 static void do_check_chunk(mchunkptr p)
1653 #else
1654 static void do_check_chunk(p) mchunkptr p;
1655 #endif
1656 {
1657 #if 0   /* causes warnings because assert() is off */
1658   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1659 #endif  /* 0 */
1660
1661   /* No checkable chunk is mmapped */
1662   assert(!chunk_is_mmapped(p));
1663
1664   /* Check for legal address ... */
1665   assert((char*)p >= sbrk_base);
1666   if (p != top)
1667     assert((char*)p + sz <= (char*)top);
1668   else
1669     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1670
1671 }
1672
1673
1674 #if __STD_C
1675 static void do_check_free_chunk(mchunkptr p)
1676 #else
1677 static void do_check_free_chunk(p) mchunkptr p;
1678 #endif
1679 {
1680   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1681 #if 0   /* causes warnings because assert() is off */
1682   mchunkptr next = chunk_at_offset(p, sz);
1683 #endif  /* 0 */
1684
1685   do_check_chunk(p);
1686
1687   /* Check whether it claims to be free ... */
1688   assert(!inuse(p));
1689
1690   /* Unless a special marker, must have OK fields */
1691   if ((long)sz >= (long)MINSIZE)
1692   {
1693     assert((sz & MALLOC_ALIGN_MASK) == 0);
1694     assert(aligned_OK(chunk2mem(p)));
1695     /* ... matching footer field */
1696     assert(next->prev_size == sz);
1697     /* ... and is fully consolidated */
1698     assert(prev_inuse(p));
1699     assert (next == top || inuse(next));
1700
1701     /* ... and has minimally sane links */
1702     assert(p->fd->bk == p);
1703     assert(p->bk->fd == p);
1704   }
1705   else /* markers are always of size SIZE_SZ */
1706     assert(sz == SIZE_SZ);
1707 }
1708
1709 #if __STD_C
1710 static void do_check_inuse_chunk(mchunkptr p)
1711 #else
1712 static void do_check_inuse_chunk(p) mchunkptr p;
1713 #endif
1714 {
1715   mchunkptr next = next_chunk(p);
1716   do_check_chunk(p);
1717
1718   /* Check whether it claims to be in use ... */
1719   assert(inuse(p));
1720
1721   /* ... and is surrounded by OK chunks.
1722     Since more things can be checked with free chunks than inuse ones,
1723     if an inuse chunk borders them and debug is on, it's worth doing them.
1724   */
1725   if (!prev_inuse(p))
1726   {
1727     mchunkptr prv = prev_chunk(p);
1728     assert(next_chunk(prv) == p);
1729     do_check_free_chunk(prv);
1730   }
1731   if (next == top)
1732   {
1733     assert(prev_inuse(next));
1734     assert(chunksize(next) >= MINSIZE);
1735   }
1736   else if (!inuse(next))
1737     do_check_free_chunk(next);
1738
1739 }
1740
1741 #if __STD_C
1742 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1743 #else
1744 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1745 #endif
1746 {
1747 #if 0   /* causes warnings because assert() is off */
1748   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1749   long room = sz - s;
1750 #endif  /* 0 */
1751
1752   do_check_inuse_chunk(p);
1753
1754   /* Legal size ... */
1755   assert((long)sz >= (long)MINSIZE);
1756   assert((sz & MALLOC_ALIGN_MASK) == 0);
1757   assert(room >= 0);
1758   assert(room < (long)MINSIZE);
1759
1760   /* ... and alignment */
1761   assert(aligned_OK(chunk2mem(p)));
1762
1763
1764   /* ... and was allocated at front of an available chunk */
1765   assert(prev_inuse(p));
1766
1767 }
1768
1769
1770 #define check_free_chunk(P)  do_check_free_chunk(P)
1771 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1772 #define check_chunk(P) do_check_chunk(P)
1773 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1774 #else
1775 #define check_free_chunk(P)
1776 #define check_inuse_chunk(P)
1777 #define check_chunk(P)
1778 #define check_malloced_chunk(P,N)
1779 #endif
1780
1781 \f
1782
1783 /*
1784   Macro-based internal utilities
1785 */
1786
1787
1788 /*
1789   Linking chunks in bin lists.
1790   Call these only with variables, not arbitrary expressions, as arguments.
1791 */
1792
1793 /*
1794   Place chunk p of size s in its bin, in size order,
1795   putting it ahead of others of same size.
1796 */
1797
1798
1799 #define frontlink(P, S, IDX, BK, FD)                                          \
1800 {                                                                             \
1801   if (S < MAX_SMALLBIN_SIZE)                                                  \
1802   {                                                                           \
1803     IDX = smallbin_index(S);                                                  \
1804     mark_binblock(IDX);                                                       \
1805     BK = bin_at(IDX);                                                         \
1806     FD = BK->fd;                                                              \
1807     P->bk = BK;                                                               \
1808     P->fd = FD;                                                               \
1809     FD->bk = BK->fd = P;                                                      \
1810   }                                                                           \
1811   else                                                                        \
1812   {                                                                           \
1813     IDX = bin_index(S);                                                       \
1814     BK = bin_at(IDX);                                                         \
1815     FD = BK->fd;                                                              \
1816     if (FD == BK) mark_binblock(IDX);                                         \
1817     else                                                                      \
1818     {                                                                         \
1819       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1820       BK = FD->bk;                                                            \
1821     }                                                                         \
1822     P->bk = BK;                                                               \
1823     P->fd = FD;                                                               \
1824     FD->bk = BK->fd = P;                                                      \
1825   }                                                                           \
1826 }
1827
1828
1829 /* take a chunk off a list */
1830
1831 #define unlink(P, BK, FD)                                                     \
1832 {                                                                             \
1833   BK = P->bk;                                                                 \
1834   FD = P->fd;                                                                 \
1835   FD->bk = BK;                                                                \
1836   BK->fd = FD;                                                                \
1837 }                                                                             \
1838
1839 /* Place p as the last remainder */
1840
1841 #define link_last_remainder(P)                                                \
1842 {                                                                             \
1843   last_remainder->fd = last_remainder->bk =  P;                               \
1844   P->fd = P->bk = last_remainder;                                             \
1845 }
1846
1847 /* Clear the last_remainder bin */
1848
1849 #define clear_last_remainder \
1850   (last_remainder->fd = last_remainder->bk = last_remainder)
1851
1852
1853 \f
1854
1855
1856 /* Routines dealing with mmap(). */
1857
1858 #if HAVE_MMAP
1859
1860 #if __STD_C
1861 static mchunkptr mmap_chunk(size_t size)
1862 #else
1863 static mchunkptr mmap_chunk(size) size_t size;
1864 #endif
1865 {
1866   size_t page_mask = malloc_getpagesize - 1;
1867   mchunkptr p;
1868
1869 #ifndef MAP_ANONYMOUS
1870   static int fd = -1;
1871 #endif
1872
1873   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1874
1875   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1876    * there is no following chunk whose prev_size field could be used.
1877    */
1878   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1879
1880 #ifdef MAP_ANONYMOUS
1881   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1882                       MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1883 #else /* !MAP_ANONYMOUS */
1884   if (fd < 0)
1885   {
1886     fd = open("/dev/zero", O_RDWR);
1887     if(fd < 0) return 0;
1888   }
1889   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1890 #endif
1891
1892   if(p == (mchunkptr)-1) return 0;
1893
1894   n_mmaps++;
1895   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1896
1897   /* We demand that eight bytes into a page must be 8-byte aligned. */
1898   assert(aligned_OK(chunk2mem(p)));
1899
1900   /* The offset to the start of the mmapped region is stored
1901    * in the prev_size field of the chunk; normally it is zero,
1902    * but that can be changed in memalign().
1903    */
1904   p->prev_size = 0;
1905   set_head(p, size|IS_MMAPPED);
1906
1907   mmapped_mem += size;
1908   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1909     max_mmapped_mem = mmapped_mem;
1910   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1911     max_total_mem = mmapped_mem + sbrked_mem;
1912   return p;
1913 }
1914
1915 #if __STD_C
1916 static void munmap_chunk(mchunkptr p)
1917 #else
1918 static void munmap_chunk(p) mchunkptr p;
1919 #endif
1920 {
1921   INTERNAL_SIZE_T size = chunksize(p);
1922   int ret;
1923
1924   assert (chunk_is_mmapped(p));
1925   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1926   assert((n_mmaps > 0));
1927   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1928
1929   n_mmaps--;
1930   mmapped_mem -= (size + p->prev_size);
1931
1932   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1933
1934   /* munmap returns non-zero on failure */
1935   assert(ret == 0);
1936 }
1937
1938 #if HAVE_MREMAP
1939
1940 #if __STD_C
1941 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1942 #else
1943 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1944 #endif
1945 {
1946   size_t page_mask = malloc_getpagesize - 1;
1947   INTERNAL_SIZE_T offset = p->prev_size;
1948   INTERNAL_SIZE_T size = chunksize(p);
1949   char *cp;
1950
1951   assert (chunk_is_mmapped(p));
1952   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1953   assert((n_mmaps > 0));
1954   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1955
1956   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1957   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1958
1959   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1960
1961   if (cp == (char *)-1) return 0;
1962
1963   p = (mchunkptr)(cp + offset);
1964
1965   assert(aligned_OK(chunk2mem(p)));
1966
1967   assert((p->prev_size == offset));
1968   set_head(p, (new_size - offset)|IS_MMAPPED);
1969
1970   mmapped_mem -= size + offset;
1971   mmapped_mem += new_size;
1972   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1973     max_mmapped_mem = mmapped_mem;
1974   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1975     max_total_mem = mmapped_mem + sbrked_mem;
1976   return p;
1977 }
1978
1979 #endif /* HAVE_MREMAP */
1980
1981 #endif /* HAVE_MMAP */
1982
1983
1984 \f
1985
1986 /*
1987   Extend the top-most chunk by obtaining memory from system.
1988   Main interface to sbrk (but see also malloc_trim).
1989 */
1990
1991 #if __STD_C
1992 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1993 #else
1994 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1995 #endif
1996 {
1997   char*     brk;                  /* return value from sbrk */
1998   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1999   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
2000   char*     new_brk;              /* return of 2nd sbrk call */
2001   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
2002
2003   mchunkptr old_top     = top;  /* Record state of old top */
2004   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2005   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2006
2007   /* Pad request with top_pad plus minimal overhead */
2008
2009   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2010   unsigned long pagesz    = malloc_getpagesize;
2011
2012   /* If not the first time through, round to preserve page boundary */
2013   /* Otherwise, we need to correct to a page size below anyway. */
2014   /* (We also correct below if an intervening foreign sbrk call.) */
2015
2016   if (sbrk_base != (char*)(-1))
2017     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2018
2019   brk = (char*)(MORECORE (sbrk_size));
2020
2021   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2022   if (brk == (char*)(MORECORE_FAILURE) ||
2023       (brk < old_end && old_top != initial_top))
2024     return;
2025
2026   sbrked_mem += sbrk_size;
2027
2028   if (brk == old_end) /* can just add bytes to current top */
2029   {
2030     top_size = sbrk_size + old_top_size;
2031     set_head(top, top_size | PREV_INUSE);
2032   }
2033   else
2034   {
2035     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2036       sbrk_base = brk;
2037     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2038       sbrked_mem += brk - (char*)old_end;
2039
2040     /* Guarantee alignment of first new chunk made from this space */
2041     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2042     if (front_misalign > 0)
2043     {
2044       correction = (MALLOC_ALIGNMENT) - front_misalign;
2045       brk += correction;
2046     }
2047     else
2048       correction = 0;
2049
2050     /* Guarantee the next brk will be at a page boundary */
2051
2052     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2053                    ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2054
2055     /* Allocate correction */
2056     new_brk = (char*)(MORECORE (correction));
2057     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2058
2059     sbrked_mem += correction;
2060
2061     top = (mchunkptr)brk;
2062     top_size = new_brk - brk + correction;
2063     set_head(top, top_size | PREV_INUSE);
2064
2065     if (old_top != initial_top)
2066     {
2067
2068       /* There must have been an intervening foreign sbrk call. */
2069       /* A double fencepost is necessary to prevent consolidation */
2070
2071       /* If not enough space to do this, then user did something very wrong */
2072       if (old_top_size < MINSIZE)
2073       {
2074         set_head(top, PREV_INUSE); /* will force null return from malloc */
2075         return;
2076       }
2077
2078       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2079       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2080       set_head_size(old_top, old_top_size);
2081       chunk_at_offset(old_top, old_top_size          )->size =
2082         SIZE_SZ|PREV_INUSE;
2083       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2084         SIZE_SZ|PREV_INUSE;
2085       /* If possible, release the rest. */
2086       if (old_top_size >= MINSIZE)
2087         fREe(chunk2mem(old_top));
2088     }
2089   }
2090
2091   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2092     max_sbrked_mem = sbrked_mem;
2093   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2094     max_total_mem = mmapped_mem + sbrked_mem;
2095
2096   /* We always land on a page boundary */
2097   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2098 }
2099
2100
2101 \f
2102
2103 /* Main public routines */
2104
2105
2106 /*
2107   Malloc Algorthim:
2108
2109     The requested size is first converted into a usable form, `nb'.
2110     This currently means to add 4 bytes overhead plus possibly more to
2111     obtain 8-byte alignment and/or to obtain a size of at least
2112     MINSIZE (currently 16 bytes), the smallest allocatable size.
2113     (All fits are considered `exact' if they are within MINSIZE bytes.)
2114
2115     From there, the first successful of the following steps is taken:
2116
2117       1. The bin corresponding to the request size is scanned, and if
2118          a chunk of exactly the right size is found, it is taken.
2119
2120       2. The most recently remaindered chunk is used if it is big
2121          enough.  This is a form of (roving) first fit, used only in
2122          the absence of exact fits. Runs of consecutive requests use
2123          the remainder of the chunk used for the previous such request
2124          whenever possible. This limited use of a first-fit style
2125          allocation strategy tends to give contiguous chunks
2126          coextensive lifetimes, which improves locality and can reduce
2127          fragmentation in the long run.
2128
2129       3. Other bins are scanned in increasing size order, using a
2130          chunk big enough to fulfill the request, and splitting off
2131          any remainder.  This search is strictly by best-fit; i.e.,
2132          the smallest (with ties going to approximately the least
2133          recently used) chunk that fits is selected.
2134
2135       4. If large enough, the chunk bordering the end of memory
2136          (`top') is split off. (This use of `top' is in accord with
2137          the best-fit search rule.  In effect, `top' is treated as
2138          larger (and thus less well fitting) than any other available
2139          chunk since it can be extended to be as large as necessary
2140          (up to system limitations).
2141
2142       5. If the request size meets the mmap threshold and the
2143          system supports mmap, and there are few enough currently
2144          allocated mmapped regions, and a call to mmap succeeds,
2145          the request is allocated via direct memory mapping.
2146
2147       6. Otherwise, the top of memory is extended by
2148          obtaining more space from the system (normally using sbrk,
2149          but definable to anything else via the MORECORE macro).
2150          Memory is gathered from the system (in system page-sized
2151          units) in a way that allows chunks obtained across different
2152          sbrk calls to be consolidated, but does not require
2153          contiguous memory. Thus, it should be safe to intersperse
2154          mallocs with other sbrk calls.
2155
2156
2157       All allocations are made from the the `lowest' part of any found
2158       chunk. (The implementation invariant is that prev_inuse is
2159       always true of any allocated chunk; i.e., that each allocated
2160       chunk borders either a previously allocated and still in-use chunk,
2161       or the base of its memory arena.)
2162
2163 */
2164
2165 #if __STD_C
2166 Void_t* mALLOc(size_t bytes)
2167 #else
2168 Void_t* mALLOc(bytes) size_t bytes;
2169 #endif
2170 {
2171   mchunkptr victim;                  /* inspected/selected chunk */
2172   INTERNAL_SIZE_T victim_size;       /* its size */
2173   int       idx;                     /* index for bin traversal */
2174   mbinptr   bin;                     /* associated bin */
2175   mchunkptr remainder;               /* remainder from a split */
2176   long      remainder_size;          /* its size */
2177   int       remainder_index;         /* its bin index */
2178   unsigned long block;               /* block traverser bit */
2179   int       startidx;                /* first bin of a traversed block */
2180   mchunkptr fwd;                     /* misc temp for linking */
2181   mchunkptr bck;                     /* misc temp for linking */
2182   mbinptr q;                         /* misc temp */
2183
2184   INTERNAL_SIZE_T nb;
2185
2186   if ((long)bytes < 0) return 0;
2187
2188   nb = request2size(bytes);  /* padded request size; */
2189
2190   /* Check for exact match in a bin */
2191
2192   if (is_small_request(nb))  /* Faster version for small requests */
2193   {
2194     idx = smallbin_index(nb);
2195
2196     /* No traversal or size check necessary for small bins.  */
2197
2198     q = bin_at(idx);
2199     victim = last(q);
2200
2201     /* Also scan the next one, since it would have a remainder < MINSIZE */
2202     if (victim == q)
2203     {
2204       q = next_bin(q);
2205       victim = last(q);
2206     }
2207     if (victim != q)
2208     {
2209       victim_size = chunksize(victim);
2210       unlink(victim, bck, fwd);
2211       set_inuse_bit_at_offset(victim, victim_size);
2212       check_malloced_chunk(victim, nb);
2213       return chunk2mem(victim);
2214     }
2215
2216     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2217
2218   }
2219   else
2220   {
2221     idx = bin_index(nb);
2222     bin = bin_at(idx);
2223
2224     for (victim = last(bin); victim != bin; victim = victim->bk)
2225     {
2226       victim_size = chunksize(victim);
2227       remainder_size = victim_size - nb;
2228
2229       if (remainder_size >= (long)MINSIZE) /* too big */
2230       {
2231         --idx; /* adjust to rescan below after checking last remainder */
2232         break;
2233       }
2234
2235       else if (remainder_size >= 0) /* exact fit */
2236       {
2237         unlink(victim, bck, fwd);
2238         set_inuse_bit_at_offset(victim, victim_size);
2239         check_malloced_chunk(victim, nb);
2240         return chunk2mem(victim);
2241       }
2242     }
2243
2244     ++idx;
2245
2246   }
2247
2248   /* Try to use the last split-off remainder */
2249
2250   if ( (victim = last_remainder->fd) != last_remainder)
2251   {
2252     victim_size = chunksize(victim);
2253     remainder_size = victim_size - nb;
2254
2255     if (remainder_size >= (long)MINSIZE) /* re-split */
2256     {
2257       remainder = chunk_at_offset(victim, nb);
2258       set_head(victim, nb | PREV_INUSE);
2259       link_last_remainder(remainder);
2260       set_head(remainder, remainder_size | PREV_INUSE);
2261       set_foot(remainder, remainder_size);
2262       check_malloced_chunk(victim, nb);
2263       return chunk2mem(victim);
2264     }
2265
2266     clear_last_remainder;
2267
2268     if (remainder_size >= 0)  /* exhaust */
2269     {
2270       set_inuse_bit_at_offset(victim, victim_size);
2271       check_malloced_chunk(victim, nb);
2272       return chunk2mem(victim);
2273     }
2274
2275     /* Else place in bin */
2276
2277     frontlink(victim, victim_size, remainder_index, bck, fwd);
2278   }
2279
2280   /*
2281      If there are any possibly nonempty big-enough blocks,
2282      search for best fitting chunk by scanning bins in blockwidth units.
2283   */
2284
2285   if ( (block = idx2binblock(idx)) <= binblocks_r)
2286   {
2287
2288     /* Get to the first marked block */
2289
2290     if ( (block & binblocks_r) == 0)
2291     {
2292       /* force to an even block boundary */
2293       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2294       block <<= 1;
2295       while ((block & binblocks_r) == 0)
2296       {
2297         idx += BINBLOCKWIDTH;
2298         block <<= 1;
2299       }
2300     }
2301
2302     /* For each possibly nonempty block ... */
2303     for (;;)
2304     {
2305       startidx = idx;          /* (track incomplete blocks) */
2306       q = bin = bin_at(idx);
2307
2308       /* For each bin in this block ... */
2309       do
2310       {
2311         /* Find and use first big enough chunk ... */
2312
2313         for (victim = last(bin); victim != bin; victim = victim->bk)
2314         {
2315           victim_size = chunksize(victim);
2316           remainder_size = victim_size - nb;
2317
2318           if (remainder_size >= (long)MINSIZE) /* split */
2319           {
2320             remainder = chunk_at_offset(victim, nb);
2321             set_head(victim, nb | PREV_INUSE);
2322             unlink(victim, bck, fwd);
2323             link_last_remainder(remainder);
2324             set_head(remainder, remainder_size | PREV_INUSE);
2325             set_foot(remainder, remainder_size);
2326             check_malloced_chunk(victim, nb);
2327             return chunk2mem(victim);
2328           }
2329
2330           else if (remainder_size >= 0)  /* take */
2331           {
2332             set_inuse_bit_at_offset(victim, victim_size);
2333             unlink(victim, bck, fwd);
2334             check_malloced_chunk(victim, nb);
2335             return chunk2mem(victim);
2336           }
2337
2338         }
2339
2340        bin = next_bin(bin);
2341
2342       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2343
2344       /* Clear out the block bit. */
2345
2346       do   /* Possibly backtrack to try to clear a partial block */
2347       {
2348         if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2349         {
2350           av_[1] = (mbinptr)(binblocks_r & ~block);
2351           break;
2352         }
2353         --startidx;
2354        q = prev_bin(q);
2355       } while (first(q) == q);
2356
2357       /* Get to the next possibly nonempty block */
2358
2359       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2360       {
2361         while ((block & binblocks_r) == 0)
2362         {
2363           idx += BINBLOCKWIDTH;
2364           block <<= 1;
2365         }
2366       }
2367       else
2368         break;
2369     }
2370   }
2371
2372
2373   /* Try to use top chunk */
2374
2375   /* Require that there be a remainder, ensuring top always exists  */
2376   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2377   {
2378
2379 #if HAVE_MMAP
2380     /* If big and would otherwise need to extend, try to use mmap instead */
2381     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2382         (victim = mmap_chunk(nb)) != 0)
2383       return chunk2mem(victim);
2384 #endif
2385
2386     /* Try to extend */
2387     malloc_extend_top(nb);
2388     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2389       return 0; /* propagate failure */
2390   }
2391
2392   victim = top;
2393   set_head(victim, nb | PREV_INUSE);
2394   top = chunk_at_offset(victim, nb);
2395   set_head(top, remainder_size | PREV_INUSE);
2396   check_malloced_chunk(victim, nb);
2397   return chunk2mem(victim);
2398
2399 }
2400
2401
2402 \f
2403
2404 /*
2405
2406   free() algorithm :
2407
2408     cases:
2409
2410        1. free(0) has no effect.
2411
2412        2. If the chunk was allocated via mmap, it is release via munmap().
2413
2414        3. If a returned chunk borders the current high end of memory,
2415           it is consolidated into the top, and if the total unused
2416           topmost memory exceeds the trim threshold, malloc_trim is
2417           called.
2418
2419        4. Other chunks are consolidated as they arrive, and
2420           placed in corresponding bins. (This includes the case of
2421           consolidating with the current `last_remainder').
2422
2423 */
2424
2425
2426 #if __STD_C
2427 void fREe(Void_t* mem)
2428 #else
2429 void fREe(mem) Void_t* mem;
2430 #endif
2431 {
2432   mchunkptr p;         /* chunk corresponding to mem */
2433   INTERNAL_SIZE_T hd;  /* its head field */
2434   INTERNAL_SIZE_T sz;  /* its size */
2435   int       idx;       /* its bin index */
2436   mchunkptr next;      /* next contiguous chunk */
2437   INTERNAL_SIZE_T nextsz; /* its size */
2438   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2439   mchunkptr bck;       /* misc temp for linking */
2440   mchunkptr fwd;       /* misc temp for linking */
2441   int       islr;      /* track whether merging with last_remainder */
2442
2443   if (mem == 0)                              /* free(0) has no effect */
2444     return;
2445
2446   p = mem2chunk(mem);
2447   hd = p->size;
2448
2449 #if HAVE_MMAP
2450   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2451   {
2452     munmap_chunk(p);
2453     return;
2454   }
2455 #endif
2456
2457   check_inuse_chunk(p);
2458
2459   sz = hd & ~PREV_INUSE;
2460   next = chunk_at_offset(p, sz);
2461   nextsz = chunksize(next);
2462
2463   if (next == top)                            /* merge with top */
2464   {
2465     sz += nextsz;
2466
2467     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2468     {
2469       prevsz = p->prev_size;
2470       p = chunk_at_offset(p, -((long) prevsz));
2471       sz += prevsz;
2472       unlink(p, bck, fwd);
2473     }
2474
2475     set_head(p, sz | PREV_INUSE);
2476     top = p;
2477     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2478       malloc_trim(top_pad);
2479     return;
2480   }
2481
2482   set_head(next, nextsz);                    /* clear inuse bit */
2483
2484   islr = 0;
2485
2486   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2487   {
2488     prevsz = p->prev_size;
2489     p = chunk_at_offset(p, -((long) prevsz));
2490     sz += prevsz;
2491
2492     if (p->fd == last_remainder)             /* keep as last_remainder */
2493       islr = 1;
2494     else
2495       unlink(p, bck, fwd);
2496   }
2497
2498   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2499   {
2500     sz += nextsz;
2501
2502     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2503     {
2504       islr = 1;
2505       link_last_remainder(p);
2506     }
2507     else
2508       unlink(next, bck, fwd);
2509   }
2510
2511
2512   set_head(p, sz | PREV_INUSE);
2513   set_foot(p, sz);
2514   if (!islr)
2515     frontlink(p, sz, idx, bck, fwd);
2516 }
2517
2518
2519 \f
2520
2521
2522 /*
2523
2524   Realloc algorithm:
2525
2526     Chunks that were obtained via mmap cannot be extended or shrunk
2527     unless HAVE_MREMAP is defined, in which case mremap is used.
2528     Otherwise, if their reallocation is for additional space, they are
2529     copied.  If for less, they are just left alone.
2530
2531     Otherwise, if the reallocation is for additional space, and the
2532     chunk can be extended, it is, else a malloc-copy-free sequence is
2533     taken.  There are several different ways that a chunk could be
2534     extended. All are tried:
2535
2536        * Extending forward into following adjacent free chunk.
2537        * Shifting backwards, joining preceding adjacent space
2538        * Both shifting backwards and extending forward.
2539        * Extending into newly sbrked space
2540
2541     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2542     size argument of zero (re)allocates a minimum-sized chunk.
2543
2544     If the reallocation is for less space, and the new request is for
2545     a `small' (<512 bytes) size, then the newly unused space is lopped
2546     off and freed.
2547
2548     The old unix realloc convention of allowing the last-free'd chunk
2549     to be used as an argument to realloc is no longer supported.
2550     I don't know of any programs still relying on this feature,
2551     and allowing it would also allow too many other incorrect
2552     usages of realloc to be sensible.
2553
2554
2555 */
2556
2557
2558 #if __STD_C
2559 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2560 #else
2561 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2562 #endif
2563 {
2564   INTERNAL_SIZE_T    nb;      /* padded request size */
2565
2566   mchunkptr oldp;             /* chunk corresponding to oldmem */
2567   INTERNAL_SIZE_T    oldsize; /* its size */
2568
2569   mchunkptr newp;             /* chunk to return */
2570   INTERNAL_SIZE_T    newsize; /* its size */
2571   Void_t*   newmem;           /* corresponding user mem */
2572
2573   mchunkptr next;             /* next contiguous chunk after oldp */
2574   INTERNAL_SIZE_T  nextsize;  /* its size */
2575
2576   mchunkptr prev;             /* previous contiguous chunk before oldp */
2577   INTERNAL_SIZE_T  prevsize;  /* its size */
2578
2579   mchunkptr remainder;        /* holds split off extra space from newp */
2580   INTERNAL_SIZE_T  remainder_size;   /* its size */
2581
2582   mchunkptr bck;              /* misc temp for linking */
2583   mchunkptr fwd;              /* misc temp for linking */
2584
2585 #ifdef REALLOC_ZERO_BYTES_FREES
2586   if (bytes == 0) { fREe(oldmem); return 0; }
2587 #endif
2588
2589   if ((long)bytes < 0) return 0;
2590
2591   /* realloc of null is supposed to be same as malloc */
2592   if (oldmem == 0) return mALLOc(bytes);
2593
2594   newp    = oldp    = mem2chunk(oldmem);
2595   newsize = oldsize = chunksize(oldp);
2596
2597
2598   nb = request2size(bytes);
2599
2600 #if HAVE_MMAP
2601   if (chunk_is_mmapped(oldp))
2602   {
2603 #if HAVE_MREMAP
2604     newp = mremap_chunk(oldp, nb);
2605     if(newp) return chunk2mem(newp);
2606 #endif
2607     /* Note the extra SIZE_SZ overhead. */
2608     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2609     /* Must alloc, copy, free. */
2610     newmem = mALLOc(bytes);
2611     if (newmem == 0) return 0; /* propagate failure */
2612     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2613     munmap_chunk(oldp);
2614     return newmem;
2615   }
2616 #endif
2617
2618   check_inuse_chunk(oldp);
2619
2620   if ((long)(oldsize) < (long)(nb))
2621   {
2622
2623     /* Try expanding forward */
2624
2625     next = chunk_at_offset(oldp, oldsize);
2626     if (next == top || !inuse(next))
2627     {
2628       nextsize = chunksize(next);
2629
2630       /* Forward into top only if a remainder */
2631       if (next == top)
2632       {
2633         if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2634         {
2635           newsize += nextsize;
2636           top = chunk_at_offset(oldp, nb);
2637           set_head(top, (newsize - nb) | PREV_INUSE);
2638           set_head_size(oldp, nb);
2639           return chunk2mem(oldp);
2640         }
2641       }
2642
2643       /* Forward into next chunk */
2644       else if (((long)(nextsize + newsize) >= (long)(nb)))
2645       {
2646         unlink(next, bck, fwd);
2647         newsize  += nextsize;
2648         goto split;
2649       }
2650     }
2651     else
2652     {
2653       next = 0;
2654       nextsize = 0;
2655     }
2656
2657     /* Try shifting backwards. */
2658
2659     if (!prev_inuse(oldp))
2660     {
2661       prev = prev_chunk(oldp);
2662       prevsize = chunksize(prev);
2663
2664       /* try forward + backward first to save a later consolidation */
2665
2666       if (next != 0)
2667       {
2668         /* into top */
2669         if (next == top)
2670         {
2671           if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2672           {
2673             unlink(prev, bck, fwd);
2674             newp = prev;
2675             newsize += prevsize + nextsize;
2676             newmem = chunk2mem(newp);
2677             MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2678             top = chunk_at_offset(newp, nb);
2679             set_head(top, (newsize - nb) | PREV_INUSE);
2680             set_head_size(newp, nb);
2681             return newmem;
2682           }
2683         }
2684
2685         /* into next chunk */
2686         else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2687         {
2688           unlink(next, bck, fwd);
2689           unlink(prev, bck, fwd);
2690           newp = prev;
2691           newsize += nextsize + prevsize;
2692           newmem = chunk2mem(newp);
2693           MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2694           goto split;
2695         }
2696       }
2697
2698       /* backward only */
2699       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2700       {
2701         unlink(prev, bck, fwd);
2702         newp = prev;
2703         newsize += prevsize;
2704         newmem = chunk2mem(newp);
2705         MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2706         goto split;
2707       }
2708     }
2709
2710     /* Must allocate */
2711
2712     newmem = mALLOc (bytes);
2713
2714     if (newmem == 0)  /* propagate failure */
2715       return 0;
2716
2717     /* Avoid copy if newp is next chunk after oldp. */
2718     /* (This can only happen when new chunk is sbrk'ed.) */
2719
2720     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2721     {
2722       newsize += chunksize(newp);
2723       newp = oldp;
2724       goto split;
2725     }
2726
2727     /* Otherwise copy, free, and exit */
2728     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2729     fREe(oldmem);
2730     return newmem;
2731   }
2732
2733
2734  split:  /* split off extra room in old or expanded chunk */
2735
2736   if (newsize - nb >= MINSIZE) /* split off remainder */
2737   {
2738     remainder = chunk_at_offset(newp, nb);
2739     remainder_size = newsize - nb;
2740     set_head_size(newp, nb);
2741     set_head(remainder, remainder_size | PREV_INUSE);
2742     set_inuse_bit_at_offset(remainder, remainder_size);
2743     fREe(chunk2mem(remainder)); /* let free() deal with it */
2744   }
2745   else
2746   {
2747     set_head_size(newp, newsize);
2748     set_inuse_bit_at_offset(newp, newsize);
2749   }
2750
2751   check_inuse_chunk(newp);
2752   return chunk2mem(newp);
2753 }
2754
2755
2756 \f
2757
2758 /*
2759
2760   memalign algorithm:
2761
2762     memalign requests more than enough space from malloc, finds a spot
2763     within that chunk that meets the alignment request, and then
2764     possibly frees the leading and trailing space.
2765
2766     The alignment argument must be a power of two. This property is not
2767     checked by memalign, so misuse may result in random runtime errors.
2768
2769     8-byte alignment is guaranteed by normal malloc calls, so don't
2770     bother calling memalign with an argument of 8 or less.
2771
2772     Overreliance on memalign is a sure way to fragment space.
2773
2774 */
2775
2776
2777 #if __STD_C
2778 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2779 #else
2780 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2781 #endif
2782 {
2783   INTERNAL_SIZE_T    nb;      /* padded  request size */
2784   char*     m;                /* memory returned by malloc call */
2785   mchunkptr p;                /* corresponding chunk */
2786   char*     brk;              /* alignment point within p */
2787   mchunkptr newp;             /* chunk to return */
2788   INTERNAL_SIZE_T  newsize;   /* its size */
2789   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2790   mchunkptr remainder;        /* spare room at end to split off */
2791   long      remainder_size;   /* its size */
2792
2793   if ((long)bytes < 0) return 0;
2794
2795   /* If need less alignment than we give anyway, just relay to malloc */
2796
2797   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2798
2799   /* Otherwise, ensure that it is at least a minimum chunk size */
2800
2801   if (alignment <  MINSIZE) alignment = MINSIZE;
2802
2803   /* Call malloc with worst case padding to hit alignment. */
2804
2805   nb = request2size(bytes);
2806   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2807
2808   if (m == 0) return 0; /* propagate failure */
2809
2810   p = mem2chunk(m);
2811
2812   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2813   {
2814 #if HAVE_MMAP
2815     if(chunk_is_mmapped(p))
2816       return chunk2mem(p); /* nothing more to do */
2817 #endif
2818   }
2819   else /* misaligned */
2820   {
2821     /*
2822       Find an aligned spot inside chunk.
2823       Since we need to give back leading space in a chunk of at
2824       least MINSIZE, if the first calculation places us at
2825       a spot with less than MINSIZE leader, we can move to the
2826       next aligned spot -- we've allocated enough total room so that
2827       this is always possible.
2828     */
2829
2830     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2831     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2832
2833     newp = (mchunkptr)brk;
2834     leadsize = brk - (char*)(p);
2835     newsize = chunksize(p) - leadsize;
2836
2837 #if HAVE_MMAP
2838     if(chunk_is_mmapped(p))
2839     {
2840       newp->prev_size = p->prev_size + leadsize;
2841       set_head(newp, newsize|IS_MMAPPED);
2842       return chunk2mem(newp);
2843     }
2844 #endif
2845
2846     /* give back leader, use the rest */
2847
2848     set_head(newp, newsize | PREV_INUSE);
2849     set_inuse_bit_at_offset(newp, newsize);
2850     set_head_size(p, leadsize);
2851     fREe(chunk2mem(p));
2852     p = newp;
2853
2854     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2855   }
2856
2857   /* Also give back spare room at the end */
2858
2859   remainder_size = chunksize(p) - nb;
2860
2861   if (remainder_size >= (long)MINSIZE)
2862   {
2863     remainder = chunk_at_offset(p, nb);
2864     set_head(remainder, remainder_size | PREV_INUSE);
2865     set_head_size(p, nb);
2866     fREe(chunk2mem(remainder));
2867   }
2868
2869   check_inuse_chunk(p);
2870   return chunk2mem(p);
2871
2872 }
2873
2874 \f
2875
2876
2877 /*
2878     valloc just invokes memalign with alignment argument equal
2879     to the page size of the system (or as near to this as can
2880     be figured out from all the includes/defines above.)
2881 */
2882
2883 #if __STD_C
2884 Void_t* vALLOc(size_t bytes)
2885 #else
2886 Void_t* vALLOc(bytes) size_t bytes;
2887 #endif
2888 {
2889   return mEMALIGn (malloc_getpagesize, bytes);
2890 }
2891
2892 /*
2893   pvalloc just invokes valloc for the nearest pagesize
2894   that will accommodate request
2895 */
2896
2897
2898 #if __STD_C
2899 Void_t* pvALLOc(size_t bytes)
2900 #else
2901 Void_t* pvALLOc(bytes) size_t bytes;
2902 #endif
2903 {
2904   size_t pagesize = malloc_getpagesize;
2905   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2906 }
2907
2908 /*
2909
2910   calloc calls malloc, then zeroes out the allocated chunk.
2911
2912 */
2913
2914 #if __STD_C
2915 Void_t* cALLOc(size_t n, size_t elem_size)
2916 #else
2917 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2918 #endif
2919 {
2920   mchunkptr p;
2921   INTERNAL_SIZE_T csz;
2922
2923   INTERNAL_SIZE_T sz = n * elem_size;
2924
2925
2926   /* check if expand_top called, in which case don't need to clear */
2927 #if MORECORE_CLEARS
2928   mchunkptr oldtop = top;
2929   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2930 #endif
2931   Void_t* mem = mALLOc (sz);
2932
2933   if ((long)n < 0) return 0;
2934
2935   if (mem == 0)
2936     return 0;
2937   else
2938   {
2939     p = mem2chunk(mem);
2940
2941     /* Two optional cases in which clearing not necessary */
2942
2943
2944 #if HAVE_MMAP
2945     if (chunk_is_mmapped(p)) return mem;
2946 #endif
2947
2948     csz = chunksize(p);
2949
2950 #if MORECORE_CLEARS
2951     if (p == oldtop && csz > oldtopsize)
2952     {
2953       /* clear only the bytes from non-freshly-sbrked memory */
2954       csz = oldtopsize;
2955     }
2956 #endif
2957
2958     MALLOC_ZERO(mem, csz - SIZE_SZ);
2959     return mem;
2960   }
2961 }
2962
2963 /*
2964
2965   cfree just calls free. It is needed/defined on some systems
2966   that pair it with calloc, presumably for odd historical reasons.
2967
2968 */
2969
2970 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2971 #if __STD_C
2972 void cfree(Void_t *mem)
2973 #else
2974 void cfree(mem) Void_t *mem;
2975 #endif
2976 {
2977   fREe(mem);
2978 }
2979 #endif
2980
2981 \f
2982
2983 /*
2984
2985     Malloc_trim gives memory back to the system (via negative
2986     arguments to sbrk) if there is unused memory at the `high' end of
2987     the malloc pool. You can call this after freeing large blocks of
2988     memory to potentially reduce the system-level memory requirements
2989     of a program. However, it cannot guarantee to reduce memory. Under
2990     some allocation patterns, some large free blocks of memory will be
2991     locked between two used chunks, so they cannot be given back to
2992     the system.
2993
2994     The `pad' argument to malloc_trim represents the amount of free
2995     trailing space to leave untrimmed. If this argument is zero,
2996     only the minimum amount of memory to maintain internal data
2997     structures will be left (one page or less). Non-zero arguments
2998     can be supplied to maintain enough trailing space to service
2999     future expected allocations without having to re-obtain memory
3000     from the system.
3001
3002     Malloc_trim returns 1 if it actually released any memory, else 0.
3003
3004 */
3005
3006 #if __STD_C
3007 int malloc_trim(size_t pad)
3008 #else
3009 int malloc_trim(pad) size_t pad;
3010 #endif
3011 {
3012   long  top_size;        /* Amount of top-most memory */
3013   long  extra;           /* Amount to release */
3014   char* current_brk;     /* address returned by pre-check sbrk call */
3015   char* new_brk;         /* address returned by negative sbrk call */
3016
3017   unsigned long pagesz = malloc_getpagesize;
3018
3019   top_size = chunksize(top);
3020   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3021
3022   if (extra < (long)pagesz)  /* Not enough memory to release */
3023     return 0;
3024
3025   else
3026   {
3027     /* Test to make sure no one else called sbrk */
3028     current_brk = (char*)(MORECORE (0));
3029     if (current_brk != (char*)(top) + top_size)
3030       return 0;     /* Apparently we don't own memory; must fail */
3031
3032     else
3033     {
3034       new_brk = (char*)(MORECORE (-extra));
3035
3036       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3037       {
3038         /* Try to figure out what we have */
3039         current_brk = (char*)(MORECORE (0));
3040         top_size = current_brk - (char*)top;
3041         if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3042         {
3043           sbrked_mem = current_brk - sbrk_base;
3044           set_head(top, top_size | PREV_INUSE);
3045         }
3046         check_chunk(top);
3047         return 0;
3048       }
3049
3050       else
3051       {
3052         /* Success. Adjust top accordingly. */
3053         set_head(top, (top_size - extra) | PREV_INUSE);
3054         sbrked_mem -= extra;
3055         check_chunk(top);
3056         return 1;
3057       }
3058     }
3059   }
3060 }
3061
3062 \f
3063
3064 /*
3065   malloc_usable_size:
3066
3067     This routine tells you how many bytes you can actually use in an
3068     allocated chunk, which may be more than you requested (although
3069     often not). You can use this many bytes without worrying about
3070     overwriting other allocated objects. Not a particularly great
3071     programming practice, but still sometimes useful.
3072
3073 */
3074
3075 #if __STD_C
3076 size_t malloc_usable_size(Void_t* mem)
3077 #else
3078 size_t malloc_usable_size(mem) Void_t* mem;
3079 #endif
3080 {
3081   mchunkptr p;
3082   if (mem == 0)
3083     return 0;
3084   else
3085   {
3086     p = mem2chunk(mem);
3087     if(!chunk_is_mmapped(p))
3088     {
3089       if (!inuse(p)) return 0;
3090       check_inuse_chunk(p);
3091       return chunksize(p) - SIZE_SZ;
3092     }
3093     return chunksize(p) - 2*SIZE_SZ;
3094   }
3095 }
3096
3097
3098 \f
3099
3100 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3101
3102 #if 0
3103 static void malloc_update_mallinfo()
3104 {
3105   int i;
3106   mbinptr b;
3107   mchunkptr p;
3108 #ifdef DEBUG
3109   mchunkptr q;
3110 #endif
3111
3112   INTERNAL_SIZE_T avail = chunksize(top);
3113   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3114
3115   for (i = 1; i < NAV; ++i)
3116   {
3117     b = bin_at(i);
3118     for (p = last(b); p != b; p = p->bk)
3119     {
3120 #ifdef DEBUG
3121       check_free_chunk(p);
3122       for (q = next_chunk(p);
3123            q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3124            q = next_chunk(q))
3125         check_inuse_chunk(q);
3126 #endif
3127       avail += chunksize(p);
3128       navail++;
3129     }
3130   }
3131
3132   current_mallinfo.ordblks = navail;
3133   current_mallinfo.uordblks = sbrked_mem - avail;
3134   current_mallinfo.fordblks = avail;
3135   current_mallinfo.hblks = n_mmaps;
3136   current_mallinfo.hblkhd = mmapped_mem;
3137   current_mallinfo.keepcost = chunksize(top);
3138
3139 }
3140 #endif  /* 0 */
3141
3142 \f
3143
3144 /*
3145
3146   malloc_stats:
3147
3148     Prints on the amount of space obtain from the system (both
3149     via sbrk and mmap), the maximum amount (which may be more than
3150     current if malloc_trim and/or munmap got called), the maximum
3151     number of simultaneous mmap regions used, and the current number
3152     of bytes allocated via malloc (or realloc, etc) but not yet
3153     freed. (Note that this is the number of bytes allocated, not the
3154     number requested. It will be larger than the number requested
3155     because of alignment and bookkeeping overhead.)
3156
3157 */
3158
3159 #if 0
3160 void malloc_stats()
3161 {
3162   malloc_update_mallinfo();
3163   printf("max system bytes = %10u\n",
3164           (unsigned int)(max_total_mem));
3165   printf("system bytes     = %10u\n",
3166           (unsigned int)(sbrked_mem + mmapped_mem));
3167   printf("in use bytes     = %10u\n",
3168           (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3169 #if HAVE_MMAP
3170   printf("max mmap regions = %10u\n",
3171           (unsigned int)max_n_mmaps);
3172 #endif
3173 }
3174 #endif  /* 0 */
3175
3176 /*
3177   mallinfo returns a copy of updated current mallinfo.
3178 */
3179
3180 #if 0
3181 struct mallinfo mALLINFo()
3182 {
3183   malloc_update_mallinfo();
3184   return current_mallinfo;
3185 }
3186 #endif  /* 0 */
3187
3188
3189 \f
3190
3191 /*
3192   mallopt:
3193
3194     mallopt is the general SVID/XPG interface to tunable parameters.
3195     The format is to provide a (parameter-number, parameter-value) pair.
3196     mallopt then sets the corresponding parameter to the argument
3197     value if it can (i.e., so long as the value is meaningful),
3198     and returns 1 if successful else 0.
3199
3200     See descriptions of tunable parameters above.
3201
3202 */
3203
3204 #if __STD_C
3205 int mALLOPt(int param_number, int value)
3206 #else
3207 int mALLOPt(param_number, value) int param_number; int value;
3208 #endif
3209 {
3210   switch(param_number)
3211   {
3212     case M_TRIM_THRESHOLD:
3213       trim_threshold = value; return 1;
3214     case M_TOP_PAD:
3215       top_pad = value; return 1;
3216     case M_MMAP_THRESHOLD:
3217       mmap_threshold = value; return 1;
3218     case M_MMAP_MAX:
3219 #if HAVE_MMAP
3220       n_mmaps_max = value; return 1;
3221 #else
3222       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3223 #endif
3224
3225     default:
3226       return 0;
3227   }
3228 }
3229
3230 /*
3231
3232 History:
3233
3234     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3235       * return null for negative arguments
3236       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3237          * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3238           (e.g. WIN32 platforms)
3239          * Cleanup up header file inclusion for WIN32 platforms
3240          * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3241          * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3242            memory allocation routines
3243          * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3244          * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3245            usage of 'assert' in non-WIN32 code
3246          * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3247            avoid infinite loop
3248       * Always call 'fREe()' rather than 'free()'
3249
3250     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3251       * Fixed ordering problem with boundary-stamping
3252
3253     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3254       * Added pvalloc, as recommended by H.J. Liu
3255       * Added 64bit pointer support mainly from Wolfram Gloger
3256       * Added anonymously donated WIN32 sbrk emulation
3257       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3258       * malloc_extend_top: fix mask error that caused wastage after
3259         foreign sbrks
3260       * Add linux mremap support code from HJ Liu
3261
3262     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3263       * Integrated most documentation with the code.
3264       * Add support for mmap, with help from
3265         Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3266       * Use last_remainder in more cases.
3267       * Pack bins using idea from  colin@nyx10.cs.du.edu
3268       * Use ordered bins instead of best-fit threshhold
3269       * Eliminate block-local decls to simplify tracing and debugging.
3270       * Support another case of realloc via move into top
3271       * Fix error occuring when initial sbrk_base not word-aligned.
3272       * Rely on page size for units instead of SBRK_UNIT to
3273         avoid surprises about sbrk alignment conventions.
3274       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3275         (raymond@es.ele.tue.nl) for the suggestion.
3276       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3277       * More precautions for cases where other routines call sbrk,
3278         courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3279       * Added macros etc., allowing use in linux libc from
3280         H.J. Lu (hjl@gnu.ai.mit.edu)
3281       * Inverted this history list
3282
3283     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3284       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3285       * Removed all preallocation code since under current scheme
3286         the work required to undo bad preallocations exceeds
3287         the work saved in good cases for most test programs.
3288       * No longer use return list or unconsolidated bins since
3289         no scheme using them consistently outperforms those that don't
3290         given above changes.
3291       * Use best fit for very large chunks to prevent some worst-cases.
3292       * Added some support for debugging
3293
3294     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3295       * Removed footers when chunks are in use. Thanks to
3296         Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3297
3298     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3299       * Added malloc_trim, with help from Wolfram Gloger
3300         (wmglo@Dent.MED.Uni-Muenchen.DE).
3301
3302     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3303
3304     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3305       * realloc: try to expand in both directions
3306       * malloc: swap order of clean-bin strategy;
3307       * realloc: only conditionally expand backwards
3308       * Try not to scavenge used bins
3309       * Use bin counts as a guide to preallocation
3310       * Occasionally bin return list chunks in first scan
3311       * Add a few optimizations from colin@nyx10.cs.du.edu
3312
3313     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3314       * faster bin computation & slightly different binning
3315       * merged all consolidations to one part of malloc proper
3316          (eliminating old malloc_find_space & malloc_clean_bin)
3317       * Scan 2 returns chunks (not just 1)
3318       * Propagate failure in realloc if malloc returns 0
3319       * Add stuff to allow compilation on non-ANSI compilers
3320           from kpv@research.att.com
3321
3322     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3323       * removed potential for odd address access in prev_chunk
3324       * removed dependency on getpagesize.h
3325       * misc cosmetics and a bit more internal documentation
3326       * anticosmetics: mangled names in macros to evade debugger strangeness
3327       * tested on sparc, hp-700, dec-mips, rs6000
3328           with gcc & native cc (hp, dec only) allowing
3329           Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3330
3331     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3332       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3333          structure of old version,  but most details differ.)
3334
3335 */