1 // SPDX-License-Identifier: GPL-2.0+
3 * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4 * by Doug Lea and released to the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/-
7 * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8 * as file malloc-2.6.6.c.
11 #if CONFIG_IS_ENABLED(UNIT_TEST)
16 #include <asm/global_data.h>
20 #include <valgrind/memcheck.h>
24 static void malloc_update_mallinfo (void);
25 void malloc_stats (void);
27 static void malloc_update_mallinfo ();
32 DECLARE_GLOBAL_DATA_PTR;
34 #ifdef MCHECK_HEAP_PROTECTION
35 #define STATIC_IF_MCHECK static
38 static inline void MALLOC_ZERO(void *p, size_t sz) { memset(p, 0, sz); }
39 static inline void MALLOC_COPY(void *dest, const void *src, size_t sz) { memcpy(dest, src, sz); }
41 #define STATIC_IF_MCHECK
42 #define mALLOc_impl mALLOc
43 #define fREe_impl fREe
44 #define rEALLOc_impl rEALLOc
45 #define mEMALIGn_impl mEMALIGn
46 #define cALLOc_impl cALLOc
50 Emulation of sbrk for WIN32
51 All code within the ifdef WIN32 is untested by me.
53 Thanks to Martin Fong and others for supplying this.
58 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
59 ~(malloc_getpagesize-1))
60 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
62 /* resrve 64MB to insure large contiguous space */
63 #define RESERVED_SIZE (1024*1024*64)
64 #define NEXT_SIZE (2048*1024)
65 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
68 typedef struct GmListElement GmListElement;
76 static GmListElement* head = 0;
77 static unsigned int gNextAddress = 0;
78 static unsigned int gAddressBase = 0;
79 static unsigned int gAllocatedSize = 0;
82 GmListElement* makeGmListElement (void* bas)
85 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
99 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
100 if (gAddressBase && (gNextAddress - gAddressBase))
102 rval = VirtualFree ((void*)gAddressBase,
103 gNextAddress - gAddressBase,
109 GmListElement* next = head->next;
110 rval = VirtualFree (head->base, 0, MEM_RELEASE);
118 void* findRegion (void* start_address, unsigned long size)
120 MEMORY_BASIC_INFORMATION info;
121 if (size >= TOP_MEMORY) return NULL;
123 while ((unsigned long)start_address + size < TOP_MEMORY)
125 VirtualQuery (start_address, &info, sizeof (info));
126 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
127 return start_address;
130 /* Requested region is not available so see if the */
131 /* next region is available. Set 'start_address' */
132 /* to the next region and call 'VirtualQuery()' */
135 start_address = (char*)info.BaseAddress + info.RegionSize;
137 /* Make sure we start looking for the next region */
138 /* on the *next* 64K boundary. Otherwise, even if */
139 /* the new region is free according to */
140 /* 'VirtualQuery()', the subsequent call to */
141 /* 'VirtualAlloc()' (which follows the call to */
142 /* this routine in 'wsbrk()') will round *down* */
143 /* the requested address to a 64K boundary which */
144 /* we already know is an address in the */
145 /* unavailable region. Thus, the subsequent call */
146 /* to 'VirtualAlloc()' will fail and bring us back */
147 /* here, causing us to go into an infinite loop. */
150 (void *) AlignPage64K((unsigned long) start_address);
157 void* wsbrk (long size)
162 if (gAddressBase == 0)
164 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
165 gNextAddress = gAddressBase =
166 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
167 MEM_RESERVE, PAGE_NOACCESS);
168 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
171 long new_size = max (NEXT_SIZE, AlignPage (size));
172 void* new_address = (void*)(gAddressBase+gAllocatedSize);
175 new_address = findRegion (new_address, new_size);
180 gAddressBase = gNextAddress =
181 (unsigned int)VirtualAlloc (new_address, new_size,
182 MEM_RESERVE, PAGE_NOACCESS);
183 /* repeat in case of race condition */
184 /* The region that we found has been snagged */
185 /* by another thread */
187 while (gAddressBase == 0);
189 assert (new_address == (void*)gAddressBase);
191 gAllocatedSize = new_size;
193 if (!makeGmListElement ((void*)gAddressBase))
196 if ((size + gNextAddress) > AlignPage (gNextAddress))
199 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
200 (size + gNextAddress -
201 AlignPage (gNextAddress)),
202 MEM_COMMIT, PAGE_READWRITE);
206 tmp = (void*)gNextAddress;
207 gNextAddress = (unsigned int)tmp + size;
212 unsigned int alignedGoal = AlignPage (gNextAddress + size);
213 /* Trim by releasing the virtual memory */
214 if (alignedGoal >= gAddressBase)
216 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
218 gNextAddress = gNextAddress + size;
219 return (void*)gNextAddress;
223 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
225 gNextAddress = gAddressBase;
231 return (void*)gNextAddress;
243 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
244 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
245 struct malloc_chunk* fd; /* double links -- used only if free. */
246 struct malloc_chunk* bk;
247 } __attribute__((__may_alias__)) ;
249 typedef struct malloc_chunk* mchunkptr;
253 malloc_chunk details:
255 (The following includes lightly edited explanations by Colin Plumb.)
257 Chunks of memory are maintained using a `boundary tag' method as
258 described in e.g., Knuth or Standish. (See the paper by Paul
259 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
260 survey of such techniques.) Sizes of free chunks are stored both
261 in the front of each chunk and at the end. This makes
262 consolidating fragmented chunks into bigger chunks very fast. The
263 size fields also hold bits representing whether chunks are free or
266 An allocated chunk looks like this:
268 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
269 | Size of previous chunk, if allocated | |
270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
271 | Size of chunk, in bytes |P|
272 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
273 | User data starts here... .
275 . (malloc_usable_space() bytes) .
277 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
281 Where "chunk" is the front of the chunk for the purpose of most of
282 the malloc code, but "mem" is the pointer that is returned to the
283 user. "Nextchunk" is the beginning of the next contiguous chunk.
285 Chunks always begin on even word boundries, so the mem portion
286 (which is returned to the user) is also on an even word boundary, and
287 thus double-word aligned.
289 Free chunks are stored in circular doubly-linked lists, and look like this:
291 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
292 | Size of previous chunk |
293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
294 `head:' | Size of chunk, in bytes |P|
295 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
296 | Forward pointer to next chunk in list |
297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
298 | Back pointer to previous chunk in list |
299 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
300 | Unused space (may be 0 bytes long) .
304 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
305 `foot:' | Size of chunk, in bytes |
306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
308 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
309 chunk size (which is always a multiple of two words), is an in-use
310 bit for the *previous* chunk. If that bit is *clear*, then the
311 word before the current chunk size contains the previous chunk
312 size, and can be used to find the front of the previous chunk.
313 (The very first chunk allocated always has this bit set,
314 preventing access to non-existent (or non-owned) memory.)
316 Note that the `foot' of the current chunk is actually represented
317 as the prev_size of the NEXT chunk. (This makes it easier to
318 deal with alignments etc).
320 The two exceptions to all this are
322 1. The special chunk `top', which doesn't bother using the
323 trailing size field since there is no
324 next contiguous chunk that would have to index off it. (After
325 initialization, `top' is forced to always exist. If it would
326 become less than MINSIZE bytes long, it is replenished via
329 2. Chunks allocated via mmap, which have the second-lowest-order
330 bit (IS_MMAPPED) set in their size fields. Because they are
331 never merged or traversed from any other chunk, they have no
332 foot size or inuse information.
334 Available chunks are kept in any of several places (all declared below):
336 * `av': An array of chunks serving as bin headers for consolidated
337 chunks. Each bin is doubly linked. The bins are approximately
338 proportionally (log) spaced. There are a lot of these bins
339 (128). This may look excessive, but works very well in
340 practice. All procedures maintain the invariant that no
341 consolidated chunk physically borders another one. Chunks in
342 bins are kept in size order, with ties going to the
343 approximately least recently used chunk.
345 The chunks in each bin are maintained in decreasing sorted order by
346 size. This is irrelevant for the small bins, which all contain
347 the same-sized chunks, but facilitates best-fit allocation for
348 larger chunks. (These lists are just sequential. Keeping them in
349 order almost never requires enough traversal to warrant using
350 fancier ordered data structures.) Chunks of the same size are
351 linked with the most recently freed at the front, and allocations
352 are taken from the back. This results in LRU or FIFO allocation
353 order, which tends to give each chunk an equal opportunity to be
354 consolidated with adjacent freed chunks, resulting in larger free
355 chunks and less fragmentation.
357 * `top': The top-most available chunk (i.e., the one bordering the
358 end of available memory) is treated specially. It is never
359 included in any bin, is used only if no other chunk is
360 available, and is released back to the system if it is very
361 large (see M_TRIM_THRESHOLD).
363 * `last_remainder': A bin holding only the remainder of the
364 most recently split (non-top) chunk. This bin is checked
365 before other non-fitting chunks, so as to provide better
366 locality for runs of sequentially allocated chunks.
368 * Implicitly, through the host system's memory mapping tables.
369 If supported, requests greater than a threshold are usually
370 serviced via calls to mmap, and then later released via munmap.
374 /* sizes, alignments */
376 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
377 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
378 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
379 #define MINSIZE (sizeof(struct malloc_chunk))
381 /* conversion from malloc headers to user pointers, and back */
383 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
384 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
386 /* pad request bytes into a usable size */
388 #define request2size(req) \
389 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
390 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
391 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
393 /* Check if m has acceptable alignment */
395 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
398 Physical chunk operations
401 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
403 #define PREV_INUSE 0x1
405 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
407 #define IS_MMAPPED 0x2
409 /* Bits to mask off when extracting size */
411 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
413 /* Ptr to next physical malloc_chunk. */
415 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
417 /* Ptr to previous physical malloc_chunk */
419 #define prev_chunk(p)\
420 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
422 /* Treat space at ptr + offset as a chunk */
424 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
427 Dealing with use bits
430 /* extract p's inuse bit */
433 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
435 /* extract inuse bit of previous chunk */
437 #define prev_inuse(p) ((p)->size & PREV_INUSE)
439 /* check for mmap()'ed chunk */
441 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
443 /* set/clear chunk as in use without otherwise disturbing */
445 #define set_inuse(p)\
446 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
448 #define clear_inuse(p)\
449 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
451 /* check/set/clear inuse bits in known places */
453 #define inuse_bit_at_offset(p, s)\
454 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
456 #define set_inuse_bit_at_offset(p, s)\
457 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
459 #define clear_inuse_bit_at_offset(p, s)\
460 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
463 Dealing with size fields
466 /* Get size, ignoring use bits */
468 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
470 /* Set size at head, without disturbing its use bit */
472 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
474 /* Set size/use ignoring previous bits in header */
476 #define set_head(p, s) ((p)->size = (s))
478 /* Set size at footer (only when chunk is not in use) */
480 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
485 The bins, `av_' are an array of pairs of pointers serving as the
486 heads of (initially empty) doubly-linked lists of chunks, laid out
487 in a way so that each pair can be treated as if it were in a
488 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
489 and chunks are the same).
491 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
492 8 bytes apart. Larger bins are approximately logarithmically
493 spaced. (See the table below.) The `av_' array is never mentioned
494 directly in the code, but instead via bin access macros.
503 2 bins of size 262144
504 1 bin of size what's left
506 There is actually a little bit of slop in the numbers in bin_index
507 for the sake of speed. This makes no difference elsewhere.
509 The special chunks `top' and `last_remainder' get their own bins,
510 (this is implemented via yet more trickery with the av_ array),
511 although `top' is never properly linked to its bin since it is
512 always handled specially.
516 #define NAV 128 /* number of bins */
518 typedef struct malloc_chunk* mbinptr;
522 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
523 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
524 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
527 The first 2 bins are never indexed. The corresponding av_ cells are instead
528 used for bookkeeping. This is not to save space, but to simplify
529 indexing, maintain locality, and avoid some initialization tests.
532 #define top (av_[2]) /* The topmost chunk */
533 #define last_remainder (bin_at(1)) /* remainder from last split */
536 Because top initially points to its own bin with initial
537 zero size, thus forcing extension on the first malloc request,
538 we avoid having any special code in malloc to check whether
539 it even exists yet. But we still need to in malloc_extend_top.
542 #define initial_top ((mchunkptr)(bin_at(0)))
544 /* Helper macro to initialize bins */
546 #define IAV(i) bin_at(i), bin_at(i)
548 static mbinptr av_[NAV * 2 + 2] = {
550 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
551 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
552 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
553 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
554 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
555 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
556 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
557 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
558 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
559 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
560 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
561 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
562 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
563 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
564 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
565 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
568 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
569 static void malloc_init(void);
572 ulong mem_malloc_start = 0;
573 ulong mem_malloc_end = 0;
574 ulong mem_malloc_brk = 0;
576 static bool malloc_testing; /* enable test mode */
577 static int malloc_max_allocs; /* return NULL after this many calls to malloc() */
579 void *sbrk(ptrdiff_t increment)
581 ulong old = mem_malloc_brk;
582 ulong new = old + increment;
585 * if we are giving memory back make sure we clear it out since
586 * we set MORECORE_CLEARS to 1
589 memset((void *)new, 0, -increment);
591 if ((new < mem_malloc_start) || (new > mem_malloc_end))
592 return (void *)MORECORE_FAILURE;
594 mem_malloc_brk = new;
599 void mem_malloc_init(ulong start, ulong size)
601 mem_malloc_start = start;
602 mem_malloc_end = start + size;
603 mem_malloc_brk = start;
605 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
609 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
611 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
612 memset((void *)mem_malloc_start, 0x0, size);
616 /* field-extraction macros */
618 #define first(b) ((b)->fd)
619 #define last(b) ((b)->bk)
625 #define bin_index(sz) \
626 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
627 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
628 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
629 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
630 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
631 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
634 bins for chunks < 512 are all spaced 8 bytes apart, and hold
635 identically sized chunks. This is exploited in malloc.
638 #define MAX_SMALLBIN 63
639 #define MAX_SMALLBIN_SIZE 512
640 #define SMALLBIN_WIDTH 8
642 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
645 Requests are `small' if both the corresponding and the next bin are small
648 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
651 To help compensate for the large number of bins, a one-level index
652 structure is used for bin-by-bin searching. `binblocks' is a
653 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
654 have any (possibly) non-empty bins, so they can be skipped over
655 all at once during during traversals. The bits are NOT always
656 cleared as soon as all bins in a block are empty, but instead only
657 when all are noticed to be empty during traversal in malloc.
660 #define BINBLOCKWIDTH 4 /* bins per block */
662 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
663 #define binblocks_w (av_[1])
665 /* bin<->block macros */
667 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
668 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
669 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
671 /* Other static bookkeeping data */
673 /* variables holding tunable values */
675 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
676 static unsigned long top_pad = DEFAULT_TOP_PAD;
677 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
678 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
680 /* The first value returned from sbrk */
681 static char* sbrk_base = (char*)(-1);
683 /* The maximum memory obtained from system via sbrk */
684 static unsigned long max_sbrked_mem = 0;
686 /* The maximum via either sbrk or mmap */
687 static unsigned long max_total_mem = 0;
689 /* internal working copy of mallinfo */
690 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
692 /* The total memory obtained from system via sbrk */
693 #define sbrked_mem (current_mallinfo.arena)
698 static unsigned int n_mmaps = 0;
700 static unsigned long mmapped_mem = 0;
702 static unsigned int max_n_mmaps = 0;
703 static unsigned long max_mmapped_mem = 0;
706 #ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
707 static void malloc_init(void)
711 debug("bins (av_ array) are at %p\n", (void *)av_);
713 av_[0] = NULL; av_[1] = NULL;
714 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
715 av_[i] = bin_at(j - 2);
716 av_[i + 1] = bin_at(j - 2);
718 /* Just print the first few bins so that
719 * we can see there are alright.
722 debug("av_[%d]=%lx av_[%d]=%lx\n",
724 i + 1, (ulong)av_[i + 1]);
727 /* Init the static bookkeeping as well */
728 sbrk_base = (char *)(-1);
732 memset((void *)¤t_mallinfo, 0, sizeof(struct mallinfo));
744 These routines make a number of assertions about the states
745 of data structures that should be true at all times. If any
746 are not true, it's very likely that a user program has somehow
747 trashed memory. (It's also possible that there is a coding error
748 in malloc. In which case, please report it!)
752 static void do_check_chunk(mchunkptr p)
754 static void do_check_chunk(p) mchunkptr p;
757 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
759 /* No checkable chunk is mmapped */
760 assert(!chunk_is_mmapped(p));
762 /* Check for legal address ... */
763 assert((char*)p >= sbrk_base);
765 assert((char*)p + sz <= (char*)top);
767 assert((char*)p + sz <= sbrk_base + sbrked_mem);
772 static void do_check_free_chunk(mchunkptr p)
774 static void do_check_free_chunk(p) mchunkptr p;
777 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
778 mchunkptr next = chunk_at_offset(p, sz);
782 /* Check whether it claims to be free ... */
785 /* Unless a special marker, must have OK fields */
786 if ((long)sz >= (long)MINSIZE)
788 assert((sz & MALLOC_ALIGN_MASK) == 0);
789 assert(aligned_OK(chunk2mem(p)));
790 /* ... matching footer field */
791 assert(next->prev_size == sz);
792 /* ... and is fully consolidated */
793 assert(prev_inuse(p));
794 assert (next == top || inuse(next));
796 /* ... and has minimally sane links */
797 assert(p->fd->bk == p);
798 assert(p->bk->fd == p);
800 else /* markers are always of size SIZE_SZ */
801 assert(sz == SIZE_SZ);
805 static void do_check_inuse_chunk(mchunkptr p)
807 static void do_check_inuse_chunk(p) mchunkptr p;
810 mchunkptr next = next_chunk(p);
813 /* Check whether it claims to be in use ... */
816 /* ... and is surrounded by OK chunks.
817 Since more things can be checked with free chunks than inuse ones,
818 if an inuse chunk borders them and debug is on, it's worth doing them.
822 mchunkptr prv = prev_chunk(p);
823 assert(next_chunk(prv) == p);
824 do_check_free_chunk(prv);
828 assert(prev_inuse(next));
829 assert(chunksize(next) >= MINSIZE);
831 else if (!inuse(next))
832 do_check_free_chunk(next);
837 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
839 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
842 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
845 do_check_inuse_chunk(p);
848 assert((long)sz >= (long)MINSIZE);
849 assert((sz & MALLOC_ALIGN_MASK) == 0);
851 assert(room < (long)MINSIZE);
853 /* ... and alignment */
854 assert(aligned_OK(chunk2mem(p)));
856 /* ... and was allocated at front of an available chunk */
857 assert(prev_inuse(p));
861 #define check_free_chunk(P) do_check_free_chunk(P)
862 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
863 #define check_chunk(P) do_check_chunk(P)
864 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
866 #define check_free_chunk(P)
867 #define check_inuse_chunk(P)
868 #define check_chunk(P)
869 #define check_malloced_chunk(P,N)
873 Macro-based internal utilities
877 Linking chunks in bin lists.
878 Call these only with variables, not arbitrary expressions, as arguments.
882 Place chunk p of size s in its bin, in size order,
883 putting it ahead of others of same size.
886 #define frontlink(P, S, IDX, BK, FD) \
888 if (S < MAX_SMALLBIN_SIZE) \
890 IDX = smallbin_index(S); \
891 mark_binblock(IDX); \
896 FD->bk = BK->fd = P; \
900 IDX = bin_index(S); \
903 if (FD == BK) mark_binblock(IDX); \
906 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
911 FD->bk = BK->fd = P; \
915 /* take a chunk off a list */
917 #define unlink(P, BK, FD) \
925 /* Place p as the last remainder */
927 #define link_last_remainder(P) \
929 last_remainder->fd = last_remainder->bk = P; \
930 P->fd = P->bk = last_remainder; \
933 /* Clear the last_remainder bin */
935 #define clear_last_remainder \
936 (last_remainder->fd = last_remainder->bk = last_remainder)
938 /* Routines dealing with mmap(). */
943 static mchunkptr mmap_chunk(size_t size)
945 static mchunkptr mmap_chunk(size) size_t size;
948 size_t page_mask = malloc_getpagesize - 1;
951 #ifndef MAP_ANONYMOUS
955 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
957 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
958 * there is no following chunk whose prev_size field could be used.
960 size = (size + SIZE_SZ + page_mask) & ~page_mask;
963 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
964 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
965 #else /* !MAP_ANONYMOUS */
968 fd = open("/dev/zero", O_RDWR);
971 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
974 if(p == (mchunkptr)-1) return 0;
977 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
979 /* We demand that eight bytes into a page must be 8-byte aligned. */
980 assert(aligned_OK(chunk2mem(p)));
982 /* The offset to the start of the mmapped region is stored
983 * in the prev_size field of the chunk; normally it is zero,
984 * but that can be changed in memalign().
987 set_head(p, size|IS_MMAPPED);
990 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
991 max_mmapped_mem = mmapped_mem;
992 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
993 max_total_mem = mmapped_mem + sbrked_mem;
998 static void munmap_chunk(mchunkptr p)
1000 static void munmap_chunk(p) mchunkptr p;
1003 INTERNAL_SIZE_T size = chunksize(p);
1006 assert (chunk_is_mmapped(p));
1007 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1008 assert((n_mmaps > 0));
1009 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1012 mmapped_mem -= (size + p->prev_size);
1014 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1016 /* munmap returns non-zero on failure */
1023 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1025 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1028 size_t page_mask = malloc_getpagesize - 1;
1029 INTERNAL_SIZE_T offset = p->prev_size;
1030 INTERNAL_SIZE_T size = chunksize(p);
1033 assert (chunk_is_mmapped(p));
1034 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1035 assert((n_mmaps > 0));
1036 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1038 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1039 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1041 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1043 if (cp == (char *)-1) return 0;
1045 p = (mchunkptr)(cp + offset);
1047 assert(aligned_OK(chunk2mem(p)));
1049 assert((p->prev_size == offset));
1050 set_head(p, (new_size - offset)|IS_MMAPPED);
1052 mmapped_mem -= size + offset;
1053 mmapped_mem += new_size;
1054 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1055 max_mmapped_mem = mmapped_mem;
1056 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1057 max_total_mem = mmapped_mem + sbrked_mem;
1061 #endif /* HAVE_MREMAP */
1063 #endif /* HAVE_MMAP */
1066 Extend the top-most chunk by obtaining memory from system.
1067 Main interface to sbrk (but see also malloc_trim).
1071 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1073 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1076 char* brk; /* return value from sbrk */
1077 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1078 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1079 char* new_brk; /* return of 2nd sbrk call */
1080 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1082 mchunkptr old_top = top; /* Record state of old top */
1083 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1084 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1086 /* Pad request with top_pad plus minimal overhead */
1088 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1089 unsigned long pagesz = malloc_getpagesize;
1091 /* If not the first time through, round to preserve page boundary */
1092 /* Otherwise, we need to correct to a page size below anyway. */
1093 /* (We also correct below if an intervening foreign sbrk call.) */
1095 if (sbrk_base != (char*)(-1))
1096 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1098 brk = (char*)(MORECORE (sbrk_size));
1100 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1101 if (brk == (char*)(MORECORE_FAILURE) ||
1102 (brk < old_end && old_top != initial_top))
1105 sbrked_mem += sbrk_size;
1107 if (brk == old_end) /* can just add bytes to current top */
1109 top_size = sbrk_size + old_top_size;
1110 set_head(top, top_size | PREV_INUSE);
1114 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1116 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1117 sbrked_mem += brk - (char*)old_end;
1119 /* Guarantee alignment of first new chunk made from this space */
1120 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1121 if (front_misalign > 0)
1123 correction = (MALLOC_ALIGNMENT) - front_misalign;
1129 /* Guarantee the next brk will be at a page boundary */
1131 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
1132 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
1134 /* Allocate correction */
1135 new_brk = (char*)(MORECORE (correction));
1136 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1138 sbrked_mem += correction;
1140 top = (mchunkptr)brk;
1141 top_size = new_brk - brk + correction;
1142 set_head(top, top_size | PREV_INUSE);
1144 if (old_top != initial_top)
1147 /* There must have been an intervening foreign sbrk call. */
1148 /* A double fencepost is necessary to prevent consolidation */
1150 /* If not enough space to do this, then user did something very wrong */
1151 if (old_top_size < MINSIZE)
1153 set_head(top, PREV_INUSE); /* will force null return from malloc */
1157 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1158 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1159 set_head_size(old_top, old_top_size);
1160 chunk_at_offset(old_top, old_top_size )->size =
1162 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
1164 /* If possible, release the rest. */
1165 if (old_top_size >= MINSIZE)
1166 fREe(chunk2mem(old_top));
1170 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1171 max_sbrked_mem = sbrked_mem;
1172 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1173 max_total_mem = mmapped_mem + sbrked_mem;
1175 /* We always land on a page boundary */
1176 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1179 /* Main public routines */
1184 The requested size is first converted into a usable form, `nb'.
1185 This currently means to add 4 bytes overhead plus possibly more to
1186 obtain 8-byte alignment and/or to obtain a size of at least
1187 MINSIZE (currently 16 bytes), the smallest allocatable size.
1188 (All fits are considered `exact' if they are within MINSIZE bytes.)
1190 From there, the first successful of the following steps is taken:
1192 1. The bin corresponding to the request size is scanned, and if
1193 a chunk of exactly the right size is found, it is taken.
1195 2. The most recently remaindered chunk is used if it is big
1196 enough. This is a form of (roving) first fit, used only in
1197 the absence of exact fits. Runs of consecutive requests use
1198 the remainder of the chunk used for the previous such request
1199 whenever possible. This limited use of a first-fit style
1200 allocation strategy tends to give contiguous chunks
1201 coextensive lifetimes, which improves locality and can reduce
1202 fragmentation in the long run.
1204 3. Other bins are scanned in increasing size order, using a
1205 chunk big enough to fulfill the request, and splitting off
1206 any remainder. This search is strictly by best-fit; i.e.,
1207 the smallest (with ties going to approximately the least
1208 recently used) chunk that fits is selected.
1210 4. If large enough, the chunk bordering the end of memory
1211 (`top') is split off. (This use of `top' is in accord with
1212 the best-fit search rule. In effect, `top' is treated as
1213 larger (and thus less well fitting) than any other available
1214 chunk since it can be extended to be as large as necessary
1215 (up to system limitations).
1217 5. If the request size meets the mmap threshold and the
1218 system supports mmap, and there are few enough currently
1219 allocated mmapped regions, and a call to mmap succeeds,
1220 the request is allocated via direct memory mapping.
1222 6. Otherwise, the top of memory is extended by
1223 obtaining more space from the system (normally using sbrk,
1224 but definable to anything else via the MORECORE macro).
1225 Memory is gathered from the system (in system page-sized
1226 units) in a way that allows chunks obtained across different
1227 sbrk calls to be consolidated, but does not require
1228 contiguous memory. Thus, it should be safe to intersperse
1229 mallocs with other sbrk calls.
1231 All allocations are made from the the `lowest' part of any found
1232 chunk. (The implementation invariant is that prev_inuse is
1233 always true of any allocated chunk; i.e., that each allocated
1234 chunk borders either a previously allocated and still in-use chunk,
1235 or the base of its memory arena.)
1241 Void_t* mALLOc_impl(size_t bytes)
1243 Void_t* mALLOc_impl(bytes) size_t bytes;
1246 mchunkptr victim; /* inspected/selected chunk */
1247 INTERNAL_SIZE_T victim_size; /* its size */
1248 int idx; /* index for bin traversal */
1249 mbinptr bin; /* associated bin */
1250 mchunkptr remainder; /* remainder from a split */
1251 long remainder_size; /* its size */
1252 int remainder_index; /* its bin index */
1253 unsigned long block; /* block traverser bit */
1254 int startidx; /* first bin of a traversed block */
1255 mchunkptr fwd; /* misc temp for linking */
1256 mchunkptr bck; /* misc temp for linking */
1257 mbinptr q; /* misc temp */
1261 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1262 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
1263 return malloc_simple(bytes);
1266 if (CONFIG_IS_ENABLED(UNIT_TEST) && malloc_testing) {
1267 if (--malloc_max_allocs < 0)
1271 /* check if mem_malloc_init() was run */
1272 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1273 /* not initialized yet */
1277 if ((long)bytes < 0) return NULL;
1279 nb = request2size(bytes); /* padded request size; */
1281 /* Check for exact match in a bin */
1283 if (is_small_request(nb)) /* Faster version for small requests */
1285 idx = smallbin_index(nb);
1287 /* No traversal or size check necessary for small bins. */
1292 /* Also scan the next one, since it would have a remainder < MINSIZE */
1300 victim_size = chunksize(victim);
1301 unlink(victim, bck, fwd);
1302 set_inuse_bit_at_offset(victim, victim_size);
1303 check_malloced_chunk(victim, nb);
1304 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1305 return chunk2mem(victim);
1308 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1313 idx = bin_index(nb);
1316 for (victim = last(bin); victim != bin; victim = victim->bk)
1318 victim_size = chunksize(victim);
1319 remainder_size = victim_size - nb;
1321 if (remainder_size >= (long)MINSIZE) /* too big */
1323 --idx; /* adjust to rescan below after checking last remainder */
1327 else if (remainder_size >= 0) /* exact fit */
1329 unlink(victim, bck, fwd);
1330 set_inuse_bit_at_offset(victim, victim_size);
1331 check_malloced_chunk(victim, nb);
1332 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1333 return chunk2mem(victim);
1341 /* Try to use the last split-off remainder */
1343 if ( (victim = last_remainder->fd) != last_remainder)
1345 victim_size = chunksize(victim);
1346 remainder_size = victim_size - nb;
1348 if (remainder_size >= (long)MINSIZE) /* re-split */
1350 remainder = chunk_at_offset(victim, nb);
1351 set_head(victim, nb | PREV_INUSE);
1352 link_last_remainder(remainder);
1353 set_head(remainder, remainder_size | PREV_INUSE);
1354 set_foot(remainder, remainder_size);
1355 check_malloced_chunk(victim, nb);
1356 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1357 return chunk2mem(victim);
1360 clear_last_remainder;
1362 if (remainder_size >= 0) /* exhaust */
1364 set_inuse_bit_at_offset(victim, victim_size);
1365 check_malloced_chunk(victim, nb);
1366 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1367 return chunk2mem(victim);
1370 /* Else place in bin */
1372 frontlink(victim, victim_size, remainder_index, bck, fwd);
1376 If there are any possibly nonempty big-enough blocks,
1377 search for best fitting chunk by scanning bins in blockwidth units.
1380 if ( (block = idx2binblock(idx)) <= binblocks_r)
1383 /* Get to the first marked block */
1385 if ( (block & binblocks_r) == 0)
1387 /* force to an even block boundary */
1388 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1390 while ((block & binblocks_r) == 0)
1392 idx += BINBLOCKWIDTH;
1397 /* For each possibly nonempty block ... */
1400 startidx = idx; /* (track incomplete blocks) */
1401 q = bin = bin_at(idx);
1403 /* For each bin in this block ... */
1406 /* Find and use first big enough chunk ... */
1408 for (victim = last(bin); victim != bin; victim = victim->bk)
1410 victim_size = chunksize(victim);
1411 remainder_size = victim_size - nb;
1413 if (remainder_size >= (long)MINSIZE) /* split */
1415 remainder = chunk_at_offset(victim, nb);
1416 set_head(victim, nb | PREV_INUSE);
1417 unlink(victim, bck, fwd);
1418 link_last_remainder(remainder);
1419 set_head(remainder, remainder_size | PREV_INUSE);
1420 set_foot(remainder, remainder_size);
1421 check_malloced_chunk(victim, nb);
1422 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1423 return chunk2mem(victim);
1426 else if (remainder_size >= 0) /* take */
1428 set_inuse_bit_at_offset(victim, victim_size);
1429 unlink(victim, bck, fwd);
1430 check_malloced_chunk(victim, nb);
1431 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1432 return chunk2mem(victim);
1437 bin = next_bin(bin);
1439 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1441 /* Clear out the block bit. */
1443 do /* Possibly backtrack to try to clear a partial block */
1445 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1447 av_[1] = (mbinptr)(binblocks_r & ~block);
1452 } while (first(q) == q);
1454 /* Get to the next possibly nonempty block */
1456 if ( (block <<= 1) <= binblocks_r && (block != 0) )
1458 while ((block & binblocks_r) == 0)
1460 idx += BINBLOCKWIDTH;
1469 /* Try to use top chunk */
1471 /* Require that there be a remainder, ensuring top always exists */
1472 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1476 /* If big and would otherwise need to extend, try to use mmap instead */
1477 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
1478 (victim = mmap_chunk(nb)))
1479 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1480 return chunk2mem(victim);
1484 malloc_extend_top(nb);
1485 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1486 return NULL; /* propagate failure */
1490 set_head(victim, nb | PREV_INUSE);
1491 top = chunk_at_offset(victim, nb);
1492 set_head(top, remainder_size | PREV_INUSE);
1493 check_malloced_chunk(victim, nb);
1494 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
1495 return chunk2mem(victim);
1505 1. free(0) has no effect.
1507 2. If the chunk was allocated via mmap, it is release via munmap().
1509 3. If a returned chunk borders the current high end of memory,
1510 it is consolidated into the top, and if the total unused
1511 topmost memory exceeds the trim threshold, malloc_trim is
1514 4. Other chunks are consolidated as they arrive, and
1515 placed in corresponding bins. (This includes the case of
1516 consolidating with the current `last_remainder').
1522 void fREe_impl(Void_t* mem)
1524 void fREe_impl(mem) Void_t* mem;
1527 mchunkptr p; /* chunk corresponding to mem */
1528 INTERNAL_SIZE_T hd; /* its head field */
1529 INTERNAL_SIZE_T sz; /* its size */
1530 int idx; /* its bin index */
1531 mchunkptr next; /* next contiguous chunk */
1532 INTERNAL_SIZE_T nextsz; /* its size */
1533 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1534 mchunkptr bck; /* misc temp for linking */
1535 mchunkptr fwd; /* misc temp for linking */
1536 int islr; /* track whether merging with last_remainder */
1538 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1539 /* free() is a no-op - all the memory will be freed on relocation */
1540 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1541 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1546 if (mem == NULL) /* free(0) has no effect */
1553 if (hd & IS_MMAPPED) /* release mmapped memory. */
1560 check_inuse_chunk(p);
1562 sz = hd & ~PREV_INUSE;
1563 next = chunk_at_offset(p, sz);
1564 nextsz = chunksize(next);
1565 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
1567 if (next == top) /* merge with top */
1571 if (!(hd & PREV_INUSE)) /* consolidate backward */
1573 prevsz = p->prev_size;
1574 p = chunk_at_offset(p, -((long) prevsz));
1576 unlink(p, bck, fwd);
1579 set_head(p, sz | PREV_INUSE);
1581 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1582 malloc_trim(top_pad);
1586 set_head(next, nextsz); /* clear inuse bit */
1590 if (!(hd & PREV_INUSE)) /* consolidate backward */
1592 prevsz = p->prev_size;
1593 p = chunk_at_offset(p, -((long) prevsz));
1596 if (p->fd == last_remainder) /* keep as last_remainder */
1599 unlink(p, bck, fwd);
1602 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1606 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1609 link_last_remainder(p);
1612 unlink(next, bck, fwd);
1615 set_head(p, sz | PREV_INUSE);
1618 frontlink(p, sz, idx, bck, fwd);
1625 Chunks that were obtained via mmap cannot be extended or shrunk
1626 unless HAVE_MREMAP is defined, in which case mremap is used.
1627 Otherwise, if their reallocation is for additional space, they are
1628 copied. If for less, they are just left alone.
1630 Otherwise, if the reallocation is for additional space, and the
1631 chunk can be extended, it is, else a malloc-copy-free sequence is
1632 taken. There are several different ways that a chunk could be
1633 extended. All are tried:
1635 * Extending forward into following adjacent free chunk.
1636 * Shifting backwards, joining preceding adjacent space
1637 * Both shifting backwards and extending forward.
1638 * Extending into newly sbrked space
1640 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1641 size argument of zero (re)allocates a minimum-sized chunk.
1643 If the reallocation is for less space, and the new request is for
1644 a `small' (<512 bytes) size, then the newly unused space is lopped
1647 The old unix realloc convention of allowing the last-free'd chunk
1648 to be used as an argument to realloc is no longer supported.
1649 I don't know of any programs still relying on this feature,
1650 and allowing it would also allow too many other incorrect
1651 usages of realloc to be sensible.
1657 Void_t* rEALLOc_impl(Void_t* oldmem, size_t bytes)
1659 Void_t* rEALLOc_impl(oldmem, bytes) Void_t* oldmem; size_t bytes;
1662 INTERNAL_SIZE_T nb; /* padded request size */
1664 mchunkptr oldp; /* chunk corresponding to oldmem */
1665 INTERNAL_SIZE_T oldsize; /* its size */
1667 mchunkptr newp; /* chunk to return */
1668 INTERNAL_SIZE_T newsize; /* its size */
1669 Void_t* newmem; /* corresponding user mem */
1671 mchunkptr next; /* next contiguous chunk after oldp */
1672 INTERNAL_SIZE_T nextsize; /* its size */
1674 mchunkptr prev; /* previous contiguous chunk before oldp */
1675 INTERNAL_SIZE_T prevsize; /* its size */
1677 mchunkptr remainder; /* holds split off extra space from newp */
1678 INTERNAL_SIZE_T remainder_size; /* its size */
1680 mchunkptr bck; /* misc temp for linking */
1681 mchunkptr fwd; /* misc temp for linking */
1683 #ifdef REALLOC_ZERO_BYTES_FREES
1690 if ((long)bytes < 0) return NULL;
1692 /* realloc of null is supposed to be same as malloc */
1693 if (oldmem == NULL) return mALLOc_impl(bytes);
1695 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1696 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1697 /* This is harder to support and should not be needed */
1698 panic("pre-reloc realloc() is not supported");
1702 newp = oldp = mem2chunk(oldmem);
1703 newsize = oldsize = chunksize(oldp);
1705 nb = request2size(bytes);
1708 if (chunk_is_mmapped(oldp))
1711 newp = mremap_chunk(oldp, nb);
1712 if(newp) return chunk2mem(newp);
1714 /* Note the extra SIZE_SZ overhead. */
1715 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1716 /* Must alloc, copy, free. */
1717 newmem = mALLOc_impl(bytes);
1719 return NULL; /* propagate failure */
1720 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1726 check_inuse_chunk(oldp);
1728 if ((long)(oldsize) < (long)(nb))
1731 /* Try expanding forward */
1733 next = chunk_at_offset(oldp, oldsize);
1734 if (next == top || !inuse(next))
1736 nextsize = chunksize(next);
1738 /* Forward into top only if a remainder */
1741 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1743 newsize += nextsize;
1744 top = chunk_at_offset(oldp, nb);
1745 set_head(top, (newsize - nb) | PREV_INUSE);
1746 set_head_size(oldp, nb);
1747 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1748 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1749 return chunk2mem(oldp);
1753 /* Forward into next chunk */
1754 else if (((long)(nextsize + newsize) >= (long)(nb)))
1756 unlink(next, bck, fwd);
1757 newsize += nextsize;
1758 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1759 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
1769 /* Try shifting backwards. */
1771 if (!prev_inuse(oldp))
1773 prev = prev_chunk(oldp);
1774 prevsize = chunksize(prev);
1776 /* try forward + backward first to save a later consolidation */
1783 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1785 unlink(prev, bck, fwd);
1787 newsize += prevsize + nextsize;
1788 newmem = chunk2mem(newp);
1789 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1790 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1791 top = chunk_at_offset(newp, nb);
1792 set_head(top, (newsize - nb) | PREV_INUSE);
1793 set_head_size(newp, nb);
1794 VALGRIND_FREELIKE_BLOCK(oldmem, SIZE_SZ);
1799 /* into next chunk */
1800 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1802 unlink(next, bck, fwd);
1803 unlink(prev, bck, fwd);
1805 newsize += nextsize + prevsize;
1806 newmem = chunk2mem(newp);
1807 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1808 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1814 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
1816 unlink(prev, bck, fwd);
1818 newsize += prevsize;
1819 newmem = chunk2mem(newp);
1820 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
1821 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1828 newmem = mALLOc_impl (bytes);
1830 if (newmem == NULL) /* propagate failure */
1833 /* Avoid copy if newp is next chunk after oldp. */
1834 /* (This can only happen when new chunk is sbrk'ed.) */
1836 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1838 newsize += chunksize(newp);
1843 /* Otherwise copy, free, and exit */
1844 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1848 VALGRIND_RESIZEINPLACE_BLOCK(oldmem, 0, bytes, SIZE_SZ);
1849 VALGRIND_MAKE_MEM_DEFINED(oldmem, bytes);
1852 split: /* split off extra room in old or expanded chunk */
1854 if (newsize - nb >= MINSIZE) /* split off remainder */
1856 remainder = chunk_at_offset(newp, nb);
1857 remainder_size = newsize - nb;
1858 set_head_size(newp, nb);
1859 set_head(remainder, remainder_size | PREV_INUSE);
1860 set_inuse_bit_at_offset(remainder, remainder_size);
1861 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
1863 fREe_impl(chunk2mem(remainder)); /* let free() deal with it */
1867 set_head_size(newp, newsize);
1868 set_inuse_bit_at_offset(newp, newsize);
1871 check_inuse_chunk(newp);
1872 return chunk2mem(newp);
1879 memalign requests more than enough space from malloc, finds a spot
1880 within that chunk that meets the alignment request, and then
1881 possibly frees the leading and trailing space.
1883 The alignment argument must be a power of two. This property is not
1884 checked by memalign, so misuse may result in random runtime errors.
1886 8-byte alignment is guaranteed by normal malloc calls, so don't
1887 bother calling memalign with an argument of 8 or less.
1889 Overreliance on memalign is a sure way to fragment space.
1895 Void_t* mEMALIGn_impl(size_t alignment, size_t bytes)
1897 Void_t* mEMALIGn_impl(alignment, bytes) size_t alignment; size_t bytes;
1900 INTERNAL_SIZE_T nb; /* padded request size */
1901 char* m; /* memory returned by malloc call */
1902 mchunkptr p; /* corresponding chunk */
1903 char* brk; /* alignment point within p */
1904 mchunkptr newp; /* chunk to return */
1905 INTERNAL_SIZE_T newsize; /* its size */
1906 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1907 mchunkptr remainder; /* spare room at end to split off */
1908 long remainder_size; /* its size */
1910 if ((long)bytes < 0) return NULL;
1912 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
1913 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1914 return memalign_simple(alignment, bytes);
1918 /* If need less alignment than we give anyway, just relay to malloc */
1920 if (alignment <= MALLOC_ALIGNMENT) return mALLOc_impl(bytes);
1922 /* Otherwise, ensure that it is at least a minimum chunk size */
1924 if (alignment < MINSIZE) alignment = MINSIZE;
1926 /* Call malloc with worst case padding to hit alignment. */
1928 nb = request2size(bytes);
1929 m = (char*)(mALLOc_impl(nb + alignment + MINSIZE));
1932 * The attempt to over-allocate (with a size large enough to guarantee the
1933 * ability to find an aligned region within allocated memory) failed.
1935 * Try again, this time only allocating exactly the size the user wants. If
1936 * the allocation now succeeds and just happens to be aligned, we can still
1937 * fulfill the user's request.
1940 size_t extra, extra2;
1942 * Use bytes not nb, since mALLOc internally calls request2size too, and
1943 * each call increases the size to allocate, to account for the header.
1945 m = (char*)(mALLOc_impl(bytes));
1946 /* Aligned -> return it */
1947 if ((((unsigned long)(m)) % alignment) == 0)
1950 * Otherwise, try again, requesting enough extra space to be able to
1951 * acquire alignment.
1954 /* Add in extra bytes to match misalignment of unexpanded allocation */
1955 extra = alignment - (((unsigned long)(m)) % alignment);
1956 m = (char*)(mALLOc_impl(bytes + extra));
1958 * m might not be the same as before. Validate that the previous value of
1959 * extra still works for the current value of m.
1960 * If (!m), extra2=alignment so
1963 extra2 = alignment - (((unsigned long)(m)) % alignment);
1964 if (extra2 > extra) {
1969 /* Fall through to original NULL check and chunk splitting logic */
1972 if (m == NULL) return NULL; /* propagate failure */
1976 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
1979 if(chunk_is_mmapped(p))
1980 return chunk2mem(p); /* nothing more to do */
1983 else /* misaligned */
1986 Find an aligned spot inside chunk.
1987 Since we need to give back leading space in a chunk of at
1988 least MINSIZE, if the first calculation places us at
1989 a spot with less than MINSIZE leader, we can move to the
1990 next aligned spot -- we've allocated enough total room so that
1991 this is always possible.
1994 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
1995 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
1997 newp = (mchunkptr)brk;
1998 leadsize = brk - (char*)(p);
1999 newsize = chunksize(p) - leadsize;
2002 if(chunk_is_mmapped(p))
2004 newp->prev_size = p->prev_size + leadsize;
2005 set_head(newp, newsize|IS_MMAPPED);
2006 return chunk2mem(newp);
2010 /* give back leader, use the rest */
2012 set_head(newp, newsize | PREV_INUSE);
2013 set_inuse_bit_at_offset(newp, newsize);
2014 set_head_size(p, leadsize);
2015 fREe_impl(chunk2mem(p));
2017 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(p), bytes, SIZE_SZ, false);
2019 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2022 /* Also give back spare room at the end */
2024 remainder_size = chunksize(p) - nb;
2026 if (remainder_size >= (long)MINSIZE)
2028 remainder = chunk_at_offset(p, nb);
2029 set_head(remainder, remainder_size | PREV_INUSE);
2030 set_head_size(p, nb);
2031 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
2033 fREe_impl(chunk2mem(remainder));
2036 check_inuse_chunk(p);
2037 return chunk2mem(p);
2042 valloc just invokes memalign with alignment argument equal
2043 to the page size of the system (or as near to this as can
2044 be figured out from all the includes/defines above.)
2048 Void_t* vALLOc(size_t bytes)
2050 Void_t* vALLOc(bytes) size_t bytes;
2053 return mEMALIGn (malloc_getpagesize, bytes);
2057 pvalloc just invokes valloc for the nearest pagesize
2058 that will accommodate request
2062 Void_t* pvALLOc(size_t bytes)
2064 Void_t* pvALLOc(bytes) size_t bytes;
2067 size_t pagesize = malloc_getpagesize;
2068 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2073 calloc calls malloc, then zeroes out the allocated chunk.
2079 Void_t* cALLOc_impl(size_t n, size_t elem_size)
2081 Void_t* cALLOc_impl(n, elem_size) size_t n; size_t elem_size;
2085 INTERNAL_SIZE_T csz;
2087 INTERNAL_SIZE_T sz = n * elem_size;
2089 /* check if expand_top called, in which case don't need to clear */
2090 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
2092 mchunkptr oldtop = top;
2093 INTERNAL_SIZE_T oldtopsize = chunksize(top);
2096 Void_t* mem = mALLOc_impl (sz);
2098 if ((long)n < 0) return NULL;
2104 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
2105 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
2112 /* Two optional cases in which clearing not necessary */
2115 if (chunk_is_mmapped(p)) return mem;
2120 #if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
2122 if (p == oldtop && csz > oldtopsize)
2124 /* clear only the bytes from non-freshly-sbrked memory */
2130 MALLOC_ZERO(mem, csz - SIZE_SZ);
2131 VALGRIND_MAKE_MEM_DEFINED(mem, sz);
2138 cfree just calls free. It is needed/defined on some systems
2139 that pair it with calloc, presumably for odd historical reasons.
2143 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2145 void cfree(Void_t *mem)
2147 void cfree(mem) Void_t *mem;
2154 #ifdef MCHECK_HEAP_PROTECTION
2155 #include "mcheck_core.inc.h"
2157 #error "must have __STD_C"
2160 Void_t *mALLOc(size_t bytes)
2162 mcheck_pedantic_prehook();
2163 size_t fullsz = mcheck_alloc_prehook(bytes);
2164 void *p = mALLOc_impl(fullsz);
2168 return mcheck_alloc_posthook(p, bytes);
2171 void fREe(Void_t *mem) { fREe_impl(mcheck_free_prehook(mem)); }
2173 Void_t *rEALLOc(Void_t *oldmem, size_t bytes)
2175 mcheck_pedantic_prehook();
2183 return mALLOc(bytes);
2185 void *p = mcheck_reallocfree_prehook(oldmem);
2186 size_t newsz = mcheck_alloc_prehook(bytes);
2188 p = rEALLOc_impl(p, newsz);
2191 return mcheck_alloc_noclean_posthook(p, bytes);
2194 Void_t *mEMALIGn(size_t alignment, size_t bytes)
2196 mcheck_pedantic_prehook();
2197 size_t fullsz = mcheck_memalign_prehook(alignment, bytes);
2198 void *p = mEMALIGn_impl(alignment, fullsz);
2202 return mcheck_memalign_posthook(alignment, p, bytes);
2205 // pvALLOc, vALLOc - redirect to mEMALIGn, defined here, so they need no wrapping.
2207 Void_t *cALLOc(size_t n, size_t elem_size)
2209 mcheck_pedantic_prehook();
2210 // NB: here is no overflow check.
2211 size_t fullsz = mcheck_alloc_prehook(n * elem_size);
2212 void *p = cALLOc_impl(1, fullsz);
2216 return mcheck_alloc_noclean_posthook(p, n * elem_size);
2220 int mcheck_pedantic(mcheck_abortfunc_t f)
2222 mcheck_initialize(f, 1);
2226 int mcheck(mcheck_abortfunc_t f)
2228 mcheck_initialize(f, 0);
2232 void mcheck_check_all(void) { mcheck_pedantic_check(); }
2234 enum mcheck_status mprobe(void *__ptr) { return mcheck_mprobe(__ptr); }
2240 Malloc_trim gives memory back to the system (via negative
2241 arguments to sbrk) if there is unused memory at the `high' end of
2242 the malloc pool. You can call this after freeing large blocks of
2243 memory to potentially reduce the system-level memory requirements
2244 of a program. However, it cannot guarantee to reduce memory. Under
2245 some allocation patterns, some large free blocks of memory will be
2246 locked between two used chunks, so they cannot be given back to
2249 The `pad' argument to malloc_trim represents the amount of free
2250 trailing space to leave untrimmed. If this argument is zero,
2251 only the minimum amount of memory to maintain internal data
2252 structures will be left (one page or less). Non-zero arguments
2253 can be supplied to maintain enough trailing space to service
2254 future expected allocations without having to re-obtain memory
2257 Malloc_trim returns 1 if it actually released any memory, else 0.
2262 int malloc_trim(size_t pad)
2264 int malloc_trim(pad) size_t pad;
2267 long top_size; /* Amount of top-most memory */
2268 long extra; /* Amount to release */
2269 char* current_brk; /* address returned by pre-check sbrk call */
2270 char* new_brk; /* address returned by negative sbrk call */
2272 unsigned long pagesz = malloc_getpagesize;
2274 top_size = chunksize(top);
2275 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2277 if (extra < (long)pagesz) /* Not enough memory to release */
2282 /* Test to make sure no one else called sbrk */
2283 current_brk = (char*)(MORECORE (0));
2284 if (current_brk != (char*)(top) + top_size)
2285 return 0; /* Apparently we don't own memory; must fail */
2289 new_brk = (char*)(MORECORE (-extra));
2291 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2293 /* Try to figure out what we have */
2294 current_brk = (char*)(MORECORE (0));
2295 top_size = current_brk - (char*)top;
2296 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2298 sbrked_mem = current_brk - sbrk_base;
2299 set_head(top, top_size | PREV_INUSE);
2307 /* Success. Adjust top accordingly. */
2308 set_head(top, (top_size - extra) | PREV_INUSE);
2309 sbrked_mem -= extra;
2320 This routine tells you how many bytes you can actually use in an
2321 allocated chunk, which may be more than you requested (although
2322 often not). You can use this many bytes without worrying about
2323 overwriting other allocated objects. Not a particularly great
2324 programming practice, but still sometimes useful.
2329 size_t malloc_usable_size(Void_t* mem)
2331 size_t malloc_usable_size(mem) Void_t* mem;
2340 if(!chunk_is_mmapped(p))
2342 if (!inuse(p)) return 0;
2343 check_inuse_chunk(p);
2344 return chunksize(p) - SIZE_SZ;
2346 return chunksize(p) - 2*SIZE_SZ;
2350 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2353 static void malloc_update_mallinfo(void)
2362 INTERNAL_SIZE_T avail = chunksize(top);
2363 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2365 for (i = 1; i < NAV; ++i)
2368 for (p = last(b); p != b; p = p->bk)
2371 check_free_chunk(p);
2372 for (q = next_chunk(p);
2373 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2375 check_inuse_chunk(q);
2377 avail += chunksize(p);
2382 current_mallinfo.ordblks = navail;
2383 current_mallinfo.uordblks = sbrked_mem - avail;
2384 current_mallinfo.fordblks = avail;
2385 current_mallinfo.hblks = n_mmaps;
2386 current_mallinfo.hblkhd = mmapped_mem;
2387 current_mallinfo.keepcost = chunksize(top);
2396 Prints on the amount of space obtain from the system (both
2397 via sbrk and mmap), the maximum amount (which may be more than
2398 current if malloc_trim and/or munmap got called), the maximum
2399 number of simultaneous mmap regions used, and the current number
2400 of bytes allocated via malloc (or realloc, etc) but not yet
2401 freed. (Note that this is the number of bytes allocated, not the
2402 number requested. It will be larger than the number requested
2403 because of alignment and bookkeeping overhead.)
2408 void malloc_stats(void)
2410 malloc_update_mallinfo();
2411 printf("max system bytes = %10u\n",
2412 (unsigned int)(max_total_mem));
2413 printf("system bytes = %10u\n",
2414 (unsigned int)(sbrked_mem + mmapped_mem));
2415 printf("in use bytes = %10u\n",
2416 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
2418 printf("max mmap regions = %10u\n",
2419 (unsigned int)max_n_mmaps);
2425 mallinfo returns a copy of updated current mallinfo.
2429 struct mallinfo mALLINFo(void)
2431 malloc_update_mallinfo();
2432 return current_mallinfo;
2439 mallopt is the general SVID/XPG interface to tunable parameters.
2440 The format is to provide a (parameter-number, parameter-value) pair.
2441 mallopt then sets the corresponding parameter to the argument
2442 value if it can (i.e., so long as the value is meaningful),
2443 and returns 1 if successful else 0.
2445 See descriptions of tunable parameters above.
2450 int mALLOPt(int param_number, int value)
2452 int mALLOPt(param_number, value) int param_number; int value;
2455 switch(param_number)
2457 case M_TRIM_THRESHOLD:
2458 trim_threshold = value; return 1;
2460 top_pad = value; return 1;
2461 case M_MMAP_THRESHOLD:
2462 mmap_threshold = value; return 1;
2465 n_mmaps_max = value; return 1;
2467 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2475 int initf_malloc(void)
2477 #if CONFIG_IS_ENABLED(SYS_MALLOC_F)
2478 assert(gd->malloc_base); /* Set up by crt0.S */
2479 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
2486 void malloc_enable_testing(int max_allocs)
2488 malloc_testing = true;
2489 malloc_max_allocs = max_allocs;
2492 void malloc_disable_testing(void)
2494 malloc_testing = false;
2501 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2502 * return null for negative arguments
2503 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
2504 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2505 (e.g. WIN32 platforms)
2506 * Cleanup up header file inclusion for WIN32 platforms
2507 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2508 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2509 memory allocation routines
2510 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2511 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
2512 usage of 'assert' in non-WIN32 code
2513 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2515 * Always call 'fREe()' rather than 'free()'
2517 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2518 * Fixed ordering problem with boundary-stamping
2520 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2521 * Added pvalloc, as recommended by H.J. Liu
2522 * Added 64bit pointer support mainly from Wolfram Gloger
2523 * Added anonymously donated WIN32 sbrk emulation
2524 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2525 * malloc_extend_top: fix mask error that caused wastage after
2527 * Add linux mremap support code from HJ Liu
2529 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2530 * Integrated most documentation with the code.
2531 * Add support for mmap, with help from
2532 Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2533 * Use last_remainder in more cases.
2534 * Pack bins using idea from colin@nyx10.cs.du.edu
2535 * Use ordered bins instead of best-fit threshhold
2536 * Eliminate block-local decls to simplify tracing and debugging.
2537 * Support another case of realloc via move into top
2538 * Fix error occuring when initial sbrk_base not word-aligned.
2539 * Rely on page size for units instead of SBRK_UNIT to
2540 avoid surprises about sbrk alignment conventions.
2541 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
2542 (raymond@es.ele.tue.nl) for the suggestion.
2543 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2544 * More precautions for cases where other routines call sbrk,
2545 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
2546 * Added macros etc., allowing use in linux libc from
2547 H.J. Lu (hjl@gnu.ai.mit.edu)
2548 * Inverted this history list
2550 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2551 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2552 * Removed all preallocation code since under current scheme
2553 the work required to undo bad preallocations exceeds
2554 the work saved in good cases for most test programs.
2555 * No longer use return list or unconsolidated bins since
2556 no scheme using them consistently outperforms those that don't
2557 given above changes.
2558 * Use best fit for very large chunks to prevent some worst-cases.
2559 * Added some support for debugging
2561 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2562 * Removed footers when chunks are in use. Thanks to
2563 Paul Wilson (wilson@cs.texas.edu) for the suggestion.
2565 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2566 * Added malloc_trim, with help from Wolfram Gloger
2567 (wmglo@Dent.MED.Uni-Muenchen.DE).
2569 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2571 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2572 * realloc: try to expand in both directions
2573 * malloc: swap order of clean-bin strategy;
2574 * realloc: only conditionally expand backwards
2575 * Try not to scavenge used bins
2576 * Use bin counts as a guide to preallocation
2577 * Occasionally bin return list chunks in first scan
2578 * Add a few optimizations from colin@nyx10.cs.du.edu
2580 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2581 * faster bin computation & slightly different binning
2582 * merged all consolidations to one part of malloc proper
2583 (eliminating old malloc_find_space & malloc_clean_bin)
2584 * Scan 2 returns chunks (not just 1)
2585 * Propagate failure in realloc if malloc returns 0
2586 * Add stuff to allow compilation on non-ANSI compilers
2587 from kpv@research.att.com
2589 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2590 * removed potential for odd address access in prev_chunk
2591 * removed dependency on getpagesize.h
2592 * misc cosmetics and a bit more internal documentation
2593 * anticosmetics: mangled names in macros to evade debugger strangeness
2594 * tested on sparc, hp-700, dec-mips, rs6000
2595 with gcc & native cc (hp, dec only) allowing
2596 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
2598 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2599 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
2600 structure of old version, but most details differ.)